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Abstract—The nearest neighbor transform of a binary image
assigns to each pixel the index of the nearest black pixel – it is
the discrete analog of the Voronoi diagram. Implementations
that compute the transform use numerical calculations to
perform geometric tests, so they may produce erroneous results
if the calculations require more arithmetic precision than is
available. Liotta, Preparata, and Tamassia, in 1999, suggested
designing algorithms that not only minimize time and space
resources, but also arithmetic precision.

A simple algorithm using double precision can compute the
nearest neighbor transform: compare the squared distances
of each pixel to all black pixels, but this is inefficient when
many pixels are black. We develop and implement efficient
algorithms, computing the nearest neighbor transform of an
image in linear time with respect to the number of pixels, while
still using only double precision.

Keywords-Computational geometry; Image processing; Dis-
tance transform; Arithmetic precision; Degree-driven analysis
of algorithms

I. INTRODUCTION

The nearest neighbor transform of a binary U ×U image

assigns to every pixel the index of the closest black pixel

under the Euclidean metric; this is a discretized Voronoi

diagram of the black pixels [1]. The closely related distance
transform assigns the distance to the closest black pixel.

Both transforms have a long history of application in image

processing [2].

Both can be computed in a straightforward manner, es-

pecially with the assistance of graphics hardware [3]; these

algorithms are often used to generate approximations to the

Voronoi diagram. It is a challenge, however, to compute the

nearest neighbor transform in time that is bounded by the

image size O(U2) only, and not by the number of black

pixels; the algorithms that do this are based on computing

the true Voronoi diagram and discretizing to a grid [1], [4],

[5]. Computing the true Voronoi diagram, however, requires

four times the input precision to guarantee correct, consistent

output, and this is usually ignored in work on efficient

geometric algorithms.

We observed [6] that it would be possible to apply

Liotta et al.’s “degree-driven analysis of algorithms” [7]

to derive an algorithm to compute the nearest neighbor

transform in double precision. In this paper, we provide the

full algorithm and show that our degree 2 algorithm takes

expected O(U2) time and O(U2) space. We also describe a

simpler degree 2 algorithm that takes O(U2 logU) time and

O(U2) space but is faster in practice. In addition, we report

on experiments with our prototype implementation.

In the next section, we precisely define our task and

survey previous work. Then, after exploring predicates in

Section II-D, we give algorithm details in Section III, and

experiments in Section IV.

II. PRELIMINARIES

We begin by defining some notation for the nearest neigh-

bor transform, reviewing previous work, and transforming

the problem to that of computing an envelope of lines.

A. Definitions

We assume that we are given the coordinates of n black

pixels, or sites from a U ×U grid, U. Denote the sites S =
{s1, ..., sn}, where each si = (xi, yi) with 1 ≤ xi, yi ≤ U .

We will be a little lazy in notation, denoting the coordinates

of other pixels p ∈ U as p = (xp, yp).
We assume throughout this paper that the n sites S are

listed in order of increasing x-coordinates, with ties broken

by y-coordinates. That is, for all i < j, either xi < xj or

(xi = xj and yi < yj). Note that this also forbids duplication

of sites. We can create this ordered list easily from pixels in

a given image in O(U2) time and O(n) additional space, or

from an unordered list by counting sort in O(n + U) time

and space.

The nearest neighbor transform finds the closest site for

each pixel, breaking ties by site index.

Problem 1 (NNTrans-min): For each pixel q ∈ U2, find

the site si ∈ S such that, for all j < i, the distance ‖q−si‖ <
‖q−sj‖, and for all j > i, the distance ‖q−si‖ ≤ ‖q−sj‖.
B. Previous work

Many researchers have developed algorithms for comput-

ing the nearest neighbor transform on various architectures,

including serial and parallel CPUs and GPUs. However, the

arithmetic precision of the algorithms are often overlooked,

even though all algorithms need exact arithmetic to guaran-

tee a correct output.
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Breu et al. [1] proposed the first linear time algorithm,

which uses divide and conquer to compute and discretize a

2-d Voronoi diagram computation. If you analyze the arith-

metic calculations of their geometric predicates, you find

that their algorithm requires five times the input precision.

Both Chan and Maurer et al. proposed dimension re-

duction algorithms [8], [4], [5] that compute the nearest

neighbor transform from one-dimensional Voronoi diagrams

for each column and one-dimensional weighted Voronoi

diagrams for each row. Their calculations can be modified

to require only three times the input precision. By changing

parts of the algorithm, we will see how to reduce that to

double precision without affecting the asymptotic O(U2)
bound on the expected running time.

Hoff and others [3] presented the earliest work on using

the GPU to compute the nearest neighbor transform. Their

algorithm is dependent on the number of black pixels in

addition to the size of the image, and precision is de-

termined by the resolution of the Z-buffer. Approximate

GPU algorithms have been proposed proposed [9], [10],

[11], but these cannot guarantee an exact result. Cao et
al. [12] adapted Maurer’s algorithm to the GPU, focusing on

efficient data structures that take advantage of the memory

and the multi-threaded processing power of the GPU. Cao’s

implementation used triple precision, just like Maurer’s.

Liotta, Preparata, and Tamassia [7] suggested that since

most geometric predicates are based on the sign of a

polynomial, we can analyze the precision of an algorithm

by the degree of the polynomials of its predicates. If we

assume that our input coordinates are scaled to b-bit integers,

and the coefficients of the polynomials are small (which

is common for geometric predicates), the sign of a degree

d polynomial can be evaluated in O(db) bits (carries from

summing can be handled with a compensated sum [13]).

By analyzing precision, we can determine if for a given

input size, the computer has enough arithmetic bits to carry

out intermediate calculations without truncation or rounding

errors. Thus, their “degree-driven design of geometric algo-

rithms” [7] incorporates reducing the number of arithmetic

bits as an algorithm design criterion. The resulting algorithm

can be implemented on any hardware that provides the

needed precision, or additonal predicate evaluation schemes

such as [14], [15], [16], [17] can be used to further reduce

the number of bits required.

As a shorthand to calculate degrees, we frequently just

replace polynomial expressions with a circled number in-

dicating their degree. Let us see an example of precision

analysis. Given the six coordinates of a query pixel, q, and

two pixel sites, si and sj , we can determine the closer site

to q by comparing squared distances, which is a degree 2

polynomial in the input coordinates. As a function of q, we

could write

fi,j(q) = sign ( ‖q − si‖2 − ‖q − sj‖2
)

= sign ( x2
i + y2i − 2(xi − xj)xq

−2(yi − yj)yq − x2
j − y2j

)
= sign ( 2©+ 1©xq + 1©yq ) .

Let’s name this predicate.

Observation 2: Given two sites, si and sj and a query

point q with si, sj , q ∈ U, the predicate Closer(si, sj , q)
is degree 2.

In special geometric configurations this may simplify further.

For example, if the sites are on the same vertical line

so xi = xj , then there is a factor of (yi − yj), so the

computation need only determine the signs of two linear

terms. In general, however, it is irreducible of degree 2. For

more on irreducibility proofs see [18].

Observation 3: Given two sites si and sj on the same

vertical line and a query point q with si, sj , q ∈ U the

predicate Closer1D(si, sj , q) is degree 1.

C. Problem transformations

We can use common transformations [19], [20] to turn the

NNTrans-min problem into a series of problems on lines.

First, we can work with squared distances when comparing

distances from q to sites si and sj , using any of the following

equivalent inequalities for j < i: (For i < j, replace all strict

inequalities, so > becomes ≥ in the third line below.)

‖q − si‖2 < ‖q − sj‖2
q · q − 2q · si + si · si < q · q − 2q · sj + sj · sj

2xixq + 2yiyq − x2
i − y2i > 2xjxq + 2yjyq − x2

j − y2j .

Thus, we can convert the NNTrans-min problem to an

equivalent:

Problem 4 (NNTrans-max): For each pixel q, find the site

with lowest index si ∈ S that achieves the maximum of

2xixq + 2yiyq − x2
i − y2i .

NNTrans-max can be solved one row at a time, labeling

each pixel along the row y = Y with the index of its closest

site. We transform the problem further for the given Y : Let

LY (si) map site si to the line �Yi : y = aix+ bi where the

slope ai = 2xi = 1© and intercept bi = 2yiY − x2
i − y2i =

2©. Let LY = LY (S) denote the set of all lines obtained

from sites S. Note that since S is sorted by x with ties

broken by y, LY is sorted by slope, with ties broken by

y-intercept.

Along a fixed row y = Y of the grid, we can phrase the

NNTtrans-max problem as determining the highest line at

each pixel – the discrete upper envelope (DUE) of the lines.

Problem 5 (DUE-Y): For a fixed 1 ≤ Y ≤ U , and for

each 1 ≤ X ≤ U , find the smallest index of a line of LY

with maximum y coordinate at x = X .

The key to computing the Nearest Neighbor transform

in O(U2) time and degree 2 will be solving DUE-Y in
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Figure 1. Example transformation from S to LY (S) for Y = 7. Left:
sites s1 through s4 are shown. Right: Each site si is transformed to the
line �7i . Observe that when �7i is the highest line at x = X , site si is the
site with minimal distance to pixel at (X, 7)

O(U) time and degree 2. As shown in Figure 1, when �Yi
is the highest line at x = X , site si is the site with minimal

distance to pixel at (X,Y ). Observe that each line in LY

has the form y = 1©x+ 2©. In Section II-D we show how to

compute the discrete upper envelope in O(U) expected time

with degree 2 and in Section III we use this construction to

solve NNTrans-max in O(U2) expected time and degree 2.

D. Geometric primitives

Before diving into algorithms, we present some geometric

primitives (predicates and constructions) and their precision.

Most of these primitives are part of our algorithm; the few

that are not are tempting options that we avoid because of

their high precision requirement.

A common test in geometric algorithms is determining the

orientation of three points, a, b, and c, by evaluating the sign

of a determinate whose entries are the homogeneous coor-

dinates of the points. The Orientation(a, b, c) predicate

is degree 2 on points with degree 1 coordinates. When the

points have coordinate values of ( 1©, 2©) (which is the form

our points will take after transformations), the predicate has

higher degree:∣∣∣∣∣∣
1 ax ay
1 bx cy
1 cx cy

∣∣∣∣∣∣ =
∣∣∣∣∣∣
0© 1© 2©
0© 1© 2©
0© 1© 2©

∣∣∣∣∣∣ =
∣∣∣∣ 1©− 1© 2©− 2©
1©− 1© 2©− 2©

∣∣∣∣
=

∣∣∣∣ 1© 2©
1© 2©

∣∣∣∣ = 1© 2©− 1© 2© = 3©

Observation 6: Given three points a, b, and c
with coordinate precision ( 1©, 2©) the predicate

Orientation(a, b, c) is degree 3.

Consider two lines, � : y = �mx+ �b and h : y = hmx+
hb, each with degree 1 slope and degree 2 y-intercept, i.e.

y = 1©x+ 2©. The construction Intersect(�, h) returns

the coordinates of the intersection of the two lines q, which

are:

qx =
hb − �b
�m − hm

=
2©− 2©
1©− 1© =

2©
1©

qy =
�mhb − �bhm

�m − hm
=

2© 1©− 1© 2©
1©− 1© =

3©
1©

Observation 7: Given two lines � and h of the form

y = 1©x + 2©, the Intersect(�, h) construction

produces a point with rational x- and y-coordinates of

( 2©/ 1©, 3©/ 1©).
As our goal is a degree 2 algorithm, the high degree

primitives of Observations 6 and 7 are undesirable. Next, we

describe the predicates that provide just enough information

to compute a nearest neighbor transform with degree 2.

Given two points a, b ∈ U, the predicate Before(a, b)
returns true if a is lexicographically before b. That is, if

ax < bx (or ax = bx and ay < by). This test compares

degree 1 values only, therefore the predicate is degree 1.

Observation 8: Given two points a, b ∈ U, the predicate

Before(a, b) is degree 1.

Given two lines, �1 and �2, of the form y = 1©x + 2©,

and a degree 1 vertical line h defined by points satisfying

the equation x − x0 = 0, the predicate Above(�1, �2, h)
returns true if �1 is above �2 on the line h. We evaluate this

predicate by plugging x0 into the slope intercept form of

the lines and comparing the result. Thus, we compare the

evaluation of two degree 2 polynomials.

Observation 9: Given two lines �1 and �2 of the form

y = 1©x+ 2© and a degree 1 vertical line h, the predicate

Above(�1, �2, h) is degree 2.

We can use the Above predicate in a binary search for

the vertical slab in which the ordering of two lines swap.

When the vertical slab is a column width, we can return the

column containing the lines intersection. Thus,

Lemma 10: Given two lines �1 and �2 of the form y =
1©x+ 2©, the construction IntersectCol(�1, �2) returns

the column containing the intersection of the two lines in

O(logU) time and degree 2.

III. ALGORITHM DESCRIPTION

We show first how to compute the discrete upper envelope

of lines with double precision, then how to use this to

compute the nearest neighbor transform.

A. Discrete Upper Envelope

Consider the discrete upper envelope (DUE) of a set of

lines, which we represent as a minimal length sequence of

tuples (s, i, j) where s is the highest line at x for all integers

between i and j, and ties in ‘highest’ are broken by lowest

index. Each tuple (s, i, j) determines a cell consisting of all

the points on or above s at i ≤ x ≤ j.

For any set of lines with the same slope, only the line with

largest y-intercept appears on the upper envelope. Thus, in

O(n) time we can throw away any line that shares a slope

68



Ci Ci+1

B list

C3 C4C2 C2 C3

λ list

C1 C5

λ list�1 �2

�3

�̂

s

Figure 2. A DUE of m lines L is created by adding a random sample R of m/2 lines to the DUE of L \R. Left: The DUE contains cells C1 through
C5 defined by lines shown in gray. Each cell is defined by (s, i, j), and can be visualized as the trapezoidal area above line s, between x = i, and x = j.
Sometimes boundaries do not match up and we get a gap between two cells, for example, the gray gap between C2 and C3. Center: Three examples of
identifying the first cell intersected by identically sloped lines �i. Thanks to the slope ordering of an upper envelope, each �i would intersect cells C2 or
C3 if it intersects any cells. Since we are computing the DUE, cells that would be completely inside a grid column, for example a cell formed by �2, are
dropped. As �3 intersects C2 and C3 we test cells to the left until finding the leftmost intersected cell. That cell then adds �3 to its B list. Right: Each
cell Ci maintains three lists of lines: s, colored magenta, defines Ci; B, colored blue, are the lines intersecting Ci from the bottom; and λ, colored green,
are the lines intersecting Ci from the left. We find cell Ci+1’s λ list by throwing away any line of � ∈ λ ∪B that is below the defining line of Ci+1 at

its leftmost gridpoint, for example �̂.

but has smaller y-intercept value. We are left with a set L of

m = O(U) lines; for the remainder, we compute the discrete

upper envelope of these lines.

We briefly sketch three algorithms for computing dis-

crete upper envelopes, which, in increasing implementation

complexity, are: D3-DUE is an O(U) algorithm using a

degree 3 Orientation predicate; UlgU-DUE replaces the

predicate with IntersectCol to reduce to degree 2 at the

cost of logU time for binary search; U-DUE achieves O(U)
expected time and degree 2 by randomization. We test all

three algorithms in our experiments.

First, we sketch the D3-DUE procedure, which takes

L and produces the upper envelope of L. It is known

that computing the upper envelope of a set of lines is

equivalent to computing the lower hull of a set of points

sorted by x under a transformation that maps each line

y = ax + b to point (a,−b) [21] . Linear time algorithms

for computing the lower hull of a set of points sorted by x
use the Orientation predicate [22]. For our input, the

coefficients a and b are degree 1 and 2, respectively, so

Orientation is degree 3 by Observation 6; any procedure

that uses Orientation is at least degree 3. Thus, D3-DUE
takes O(U) time and degree 3.

Second, the UlgU-DUE procedure also takes L =
{�1, . . . , �m}, sorted by slope, and produces the discrete

upper envelope directly from the lines. Even here we have

an obstacle; in Observation 7 we saw that computing inter-

section points requires too much precision. Fortunately, for

the discrete upper envelope it is enough to identify the grid

column containing the intersection of a pair of lines, which

is degree 2 and O(logU) time by Lemma 10. We use this

as follows.

We maintain a stack to represent the prefix of the DUE

computed so far, much like a convex hull algorithm. Instead

of using an orientation test to decide to pop the stack on

the insertion of a new line �k, we use the Above test

to pop all cells (s, i, j) where �k is above s at i and

at j. Let line � be the line defining the last cell of the

DUE, we find the beginning column of the cell for �k with

IntersectCol(�k, �). The procedure UlgU-DUE uses

only the degree 2 predicates Above and IntersectCol
and takes O(U logU) time.

Third, the U-DUE procedure solves the DUE-Y problem

in expected O(U) time and degree 2 by random sampling

and one-sided recursion. We use a stable random partitioning

of the set L of m lines to create a set R of m/2 lines that

maintains slope ordering. In order to find the DUE of all m
lines, we (recursively) find Q, the DUE of the lines not in

R, and then ‘add’ the lines of R into Q.

Here is an overview of the input, output, and invariants

for the ‘adding’ procedure in U-DUE, depicted in Figure 2:

Input: The sampled lines R, ordered by slope with no

duplicate slopes, and

Q: the DUE of rest of the lines, represented as an

array of cells in order of increasing x: Each cell

stores its defining line and leftmost gridpoint; the

sentinel leftmost cell has left end at −∞.

Output: The DUE of all the lines, in the same represen-

tation as an array of cells as the input.

Data Structure: Each cell is given the head of a slope-

sorted linked list of lines that “start in the cell;”

each line of R is put in the list for the first cell it

intersects (by increasing x).

Processing: The new DUE is built by processing the old

cells in increasing x, i.e. from left to right.

Invariant 1: Three slope-sorted lists of lines contribute to
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the DUE inside a cell: s, the single line defining

the cell; B, the list of lines that start in the cell;

and λ, the list of lines that cross over from the

previous cell.

Invariant 2: The algorithm uses a stack to maintain the

output DUE of the set of lines from the lists of

Invariant 1 up to a chosen slope.

We initialize and maintain invariants as follows.

First, we identify, for each line � of R, the cell that �
starts in. We do so in two sub-steps: first we identify a cell

intersected by � (if one should exist). Since R and the lines

of an upper envelope are ordered by slope, we can do this

by merging Q and R in O(m) time. Next, we walk through

cells to the left to find the first cell intersected by each line �.
We bound the expected time of this operation later. We do

these sub-steps for the lines of R in reverse order, inserting

lines at the head of the linked list associated with the cell,

so that the lines starting in each cell remain in order of

increasing slope.

Next we process cells from left to right. To begin, any

lines that start in the sentinel are checked to see if they

continue into the first finite cell. Those that do not are

discarded. This gives the three lists for the first cell.

In processing a cell, we maintain a stack to represent the

DUE, as in UlgU-DUE. The only difference is that the

binary searches of IntersectCol is over the boundary

of the cell (not the entire grid).

Lemma 11: Given a set S of n lines sorted by slope of

the form y = 1©x+ 2©, we can compute the discrete upper

envelope of S in O(U + n) expected time.

Proof: As mentioned above, in O(n) we produce L of

size m, where each lines has a unique slope. We can upper

bound the processing for a cell of width Ui that is intersected

by mi lines as cmi logUi, where c is a constant. Clarkson’s

results on random sampling [23, Theorem 3.7] say that

E[
∑

i m
2
i ] = O(m), so each cell intersects not too many

lines on average. Using the Cauchy-Schwartz inequality, and

the fact that
∑

i Ui ≤ U , we can upper bound the total cost

of processing all cells:

E

[∑
i

cmi logUi

]
≤ c

√√√√E

[∑
i

m2
i

]
·
∑
i

log2 Ui

≤ c

√
O (m) ·m log2

U

m

= O

(
m log

U

m

)
.

We build DUEs recursively on random samples of half the

lines, so the total expected time is bounded by the following

s1

S1

s3

s4

s7s2

s1

s6

s5

Pi+1

Pi

P1

PU

S1 SX SU

= {s2, s4, s5, s7}
= {s1, s4, s5, s7}

= {s1, s4, s5, s7}

s3

s2

Figure 3. Left: Ovals drawn around sites depicting pixels to which they
are nearest neighbor. The Voronoi diagram of sites in the same column
SX are horizontal lines. Thus, all pixels in row Y are always closer to
the same site in SX than any other sites in SX . So, only one site per
column can ever be the nearest neighbor to a pixel, and vertical comparisons
suffice to find out which one is nearestX(Y ), leaving us with only O(U)
sites to consider for each row. Right: Illustration of possible lists and their
generation. Ovals show vertical nearest neighbors. After determining which
sites are the highest in their column, (s3, s4, s6, and s7), we only need to
perform a few tests for each site si ∈ Pi to generate Pi+1. Each site si
exhibits one of three cases. Case 1: si is the highest in its column, so it is in
Pi+1. Case 2: si is still nearestX(Y ). Case 3: si+1 is now nearestX(Y )
so it replaces si in Pi+1.

recurrence:

T (m,U) = T
(m
2
, U
)
+O (m) +O

(
E

[∑
i

mi logUi

])

= T
(m
2
, U
)
+O

(
m log

(
U

m

))
=⇒

T (m,U) = O

(
m log

(
U

m

))

Since m ≤ U , we have T (m,U) = O(U). Thus, in total it

takes O(n+U) time in expectation to compute the discrete

upper envelope.

B. NNTrans Algorithm

Assume that we are given a set of n sites S =
{s1, . . . , sn} on a U×U pixel grid. We compute the Nearest

Neighbor transform of S by using DUE-Y in each row in

order, which takes in O(U2) expected time, O(U2) space

and degree 2. Our algorithm has the following three steps.

In the first step, if S is not already sorted, then we sort

the sites by increasing x-coordinate (breaking ties by y-

coordinate) using counting sort by y and then by x. For

convenience, we assume that the sites of S are labeled in

their sorted order.

Let SX denote the set of sites of S with given x-

coordinate value X – sites in a given grid column, as seen

in Figure 3. Each SX is a contiguous sublist of S, thanks

to the sorting. The Voronoi diagram of just the sites in SX

is formed by the horizontal lines bisecting adjacent sites in

SX .

If we now consider a given grid row y = Y , then

from each non-empty SX at most one site can possibly
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Figure 4. The three steps of the NNTrans algorithm: (Steps one and two show the Voronoi diagram of the sites to illustrate that it does not change along
Y when sites are removed.) Step one: Sites are sorted by x-coordinate breaking ties by y-coordinate. Step two: For each row Y , sites are reduced to the
possible list PY . Step three: Each site si ∈ PY is transformed to the line �Yi and we compute the DUE of the lines.

contribute to the Voronoi diagram – for non-empty SX , let

nearestX(Y ) = the site of SX nearest to (X,Y ), breaking

ties by lowest index. The possible list, PY = {nearestX(Y ) |
∀1 ≤ x ≤ U}, contains the at most U sites that can be

nearest neighbors of a pixel in row y = Y .
In the second step, depicted in Figure 3, we produce a

data structure, which we call the possible list generator,

that iterates from Y = 1, . . . , U producing each PY . This

data structure simply maintains a pointer to the last site

used in each ordered list SX . These pointers advance as

Y crosses the bisector between adjacent elements in each

list SX , generating all possible lists PY in sequence.
In the third step, we transform each possible list into

lines, and compute the discrete upper envelope of the lines

LY (PY ) from Problem 5 by Lemma 11. Each DUE-Y

constructs one row of the Nearest Neighbor transform.
Theorem 12: Given n sites on a U × U pixel grid, we

can compute the Nearest Neighbor transform of the sites in

O(U2) expected time, O(U2) space, and degree 2.
Proof: The procedure to compute the Nearest Neighbor

transform of the sites has three steps, shown in Figure 4.
The first step sorts the n sites with two counting sort

in two passes over S and makes degree 1 comparisons of

coordinates. Thus, the step uses O(U) space, O(n) time and

degree 1.
The second step constructs the possible list generator.

Each possible list contains at most U sites. Thus, the size

of the data structure is O(U). Since S is sorted we can

initialize P1 in O(U) time by identifying adjacent sites with

different x-coordinates, which is degree 1. To update from

PY to PY+1, we perform at most U evaluations of the

Closer1D predicate, which by Observation 3 is degree 1.

Thus, initializing the possible list generator takes O(U) time,

O(U) space and degree 1 and generating PY+1 from PY

takes O(U) time and degree 1.
The third step generates the possible list PY for each

Y = 1, . . . U . The sites are transformed into lines LY (PY )
sorted by slope. Each line in LY has the form 1©x+ 2© and

we compute the discrete upper envelope of LY . Since LY

has at most U lines, by Lemma 11, processing each Y takes

O(U) expected time, O(U) space and degree 2. Therefore,

processing all possible sites takes O(U2) expected time,

O(U2) space and degree 2.

In the proof above we use the procedure U-DUE to

compute the nearest neighbor transform in O(U2) time and

degree 2. However, we could have instead used UlogU-DUE
to get an O(U2 logU) degree 2 algorithm or Deg3-DUE to

get an O(U2) degree 3 algorithm. In the next section we will

compare the experimental running times of implementations

of the three algorithms and MATLAB’s implementation of

Maurer’s algorithm.

IV. EXPERIMENTS

In this section we investigate robustness and timings of

four implementations of algorithms that compute the nearest

neighbor transform of an image. We will see that the theo-

retical advantage of removing a logU factor is outweighed

by the cost of generating and maintaining random samples.

On the positive side, however, our degree 2 algorithms,

which are guaranteed correct in double precision, are notably

faster than the implementation of Maurer’s algorithm used

to perform MATLAB’s bwdist function.

Here are the four implementations:

Usq is our implementation of the expected O(U2)
time and degree 2 algorithm, discussed in Sec-

tion III-B;

UsqLgU is our implementation of the O(U2 logU)
time and degree 2 algorithm, discussed at the end

of Section III-B;

Deg3 is our implementation of the (U2) and

degree 3 algorithm, also discussed at the end of

Section III-B; and

Maurer is the MATLAB bwdist function,

which is a compiled implementation of Maurer’s

algorithm (after version of 2009a).

Recall that Usq and UsqLgU are degree 2 and Deg3 and

Maurer’s algorithm are degree 3.
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Figure 5. Time-per-pixel box plots of 100 runs of Usq on densities
between .01 and .5 and grid sizes between 256 and 8192.

Timings were taken on a 3.2GHz Intel Xeon processor

with 12GB RAM running Ubuntu 10.04. Our implementa-

tions were were written in C++, compiled with gcc toolchain

and bwdist was run using MATLAB 7.0.10 (R2010a).

In our timing experiments we run the four implementa-

tions on varying grid sizes and site densities. The tuple of

an algorithm A, grid size U , and density δ form a run. For

each run, we generate a set of sites S by selecting if a pixel

contains a site uniformly at random with probability δ, then

we execute A on input S for enough iterations so that it

takes over one second and report the average run length of

an iteration of the time of the run. For runs on algorithm

Usq, the random number generator is reset to a fixed seed

before each iteration to maintain the same execution path.

Our first experiment investigates timings and variance of

Usq. The implementation was run on increasing grid sizes

{265, 512, . . . , 8192}, and densities {.01, .02, . . . , .05}, and

{.1, .2 . . . , .5}. In Figure 5, we see a box and whiskers plot

of the time-per-pixel for 100 runs of different seeds and the

medians of runs on the same grid size are connected with

lines. We plot time-per-pixel as it allow detail to be seen at

both small and large grid sizes.

The first observation about Figure 5 is that the boxes are

small, about 2 microsecond width on average, indicating that

Usq’s expected O(U2) running time comes with a small

variance. This is not surprising, as Usq makes U calls to

a randomized algorithm with expected O(U) time, which

smooths out the variance.

One might expect that since Usq has an expected O(U2)
running time, the time-per-pixel should be constant across

varying grid sizes and densities. In fact, one would even

expect higher per-pixel-times for smaller grid sizes since

overheads are amortized over fewer pixels.

First, to explain why the per-pixel times increase with

������

��	

��	
��

���


Figure 6. Time-per-pixel on a logarithmic scale for four implementations
on grid sizes ranging from 512 to 8192 with densities ranging from .1 to .5.

the grid size, we fixed the density, varied the grid size, and

used Valgrind [24] to capture the number of calls to each

line. The per-pixel line counts were equal (or slightly higher

for smaller grid sizes, as expected). Thus, we believe that

the time increase on larger problems can be attributed to

different memory usage patterns, e.g., at data sizes that no

longer fit into L1 or L2 cache.

Second, to explain why per-pixel times increase with

higher densities, recall that each discrete upper envelope

calculation produces a run length encoding of the nearest

neighbor transform along each horizontal line and that the

sites are uniformly distributed. At density δ, we would

expect that a row would intersect
√
δU2 Voronoi cells, for

a total output size of δ
1
2U2. The experimental times are

consistent with a large fraction of the running time being

proportional to the output size.

Our second experiment compares the per-pixel time

of the four implementations on the three grid sizes,

{512, 2048, 8192} and the five densities {0.1, . . . , 0.5}. In

Figure 6, we see a plot of density verses time-per-pixel.

Each algorithm is shown as a different line style and the

markers correspond to grid size. For every run, Maurer is

the slowest followed by Usq (5–7× faster than Maurer),

UsqLgU(15–23× faster than Maurer), and Deg3 (20–33×
faster than Maurer). First, notice that even though the

computational complexity of Usq is less than UsqLgU, the

clock time of UsqLgU is faster than Usq (by about 3×).

The unexpected speed difference is because logU is not

large, and UsqLgU maintains almost no data structure while

Usq keeps track of a lot of data structures, and random

number generation is slow. Next it is interesting to note that

even though Maurer is degree 3 it is still slower than the

degree 2 algorithms in Usq and UsqLgU. Finally, while the

Deg3 is the fastest implementation (at about 1.5× faster

than UsqLgU) it uses degree 3.
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Figure 7. Time-per-pixel on a logarithmic scale for four implementations
on boundaries extracted from 120 images from the MPEG7 data set.

Our third experiment compares per-pixel time of the four

implementations on 120 extracted boundaries of images

from the MPEG7 CE Shape-1 Part B data set. We used the

first 20 images from the fish, frog, lizard, lmfish, octopus,

and turtle sets, which range in size from 1742 to 7742 pixels.

Since the boundaries are closed curves or a small number

closed curves, an image of U2 pixels has O(U) sites. In

Figure 7, we see a scatter plot of image size verses time-

per-pixel. Each algorithm is depicted with a different marker.

As is expected, the per-pixel times of the all four algorithms

are similar to the previous experiment, even though the grid

sizes are smaller and site densities are substantially reduced.

V. CONCLUSIONS

We presented a O(U2) expected time degree 2 algorithm

for computing the Nearest Neighbor transform of a U × U
pixel image. The key step was in computing the discrete

upper envelope of at most U lines in O(U) expected time

and degree 2. It seems possible that the discrete upper

envelope could be computed deterministically by divide-and-

conquer with more programming complexity, however, any

non-randomized degree 2 algorithm that we attempted had

an extra logU factor. Can the logU factor be removed, while

still using degree 2, without randomization? If it could not,

it would be interesting.

We also wonder what other problems are accessible

when using degree-driven algorithm design? The algorithms

presented in this paper generalize to higher dimensions, but

can we create low degree algorithms for the nearest neighbor

transform in other norms? L1 and L∞ are particularly inter-

esting, as they each have a degree 1 distance comparison.
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