Degree-driven algorithm design for computing the Voronoi diagram

David L. Millman *

Jack Snoeyink |

Department of Computer Science, University of North Carolina at Chapel Hill

1 Introduction

The Voronoi diagram is the classic proximity query
structure. It finds the nearest point from a finite set
S to a given query point ¢ and it is the partition of
the plane into the maximal connected regions. The
Voronoi diagram’s topological structure can be com-
puted using four times the precision of the input, but
representing its vertices requires five times the input
precision. Furthermore, using the Voronoi diagram to
solve proximity queries in O(logn) requires six times
the precision of the input and query points. Liotta,
Preparata, and Tamassia [3] have derived a structure
from the Voronoi diagram whose computation re-
quires five times the precision of the input, but which
supports proximity queries in O(logn) time, using
only two times the input precision. In this paper, we
show how this structure can be computed directly,
using at most triple precision in O(n(logn + logg))
time where g is the bisector length.

Computing Voronoi diagrams is a well studied
problem and many optimal algorithms have been pro-
posed [1]. These algorithms rely on correct predicates
to handle the numerical issues that arise upon imple-
mentation but do not let the complexity of predicate
implantation affect the design of the algorithm.

Methods for handling numeric issues in geometric
algorithms fall into a few categories: rounding, ex-
act geometric computation [5], arithmetic filters [2],
topological consistency [4] and degree-driven algo-
rithmic design [3]. This paper falls into the last group
of degree-driven design.

2 The Cell Graph

Given a set of n sites S = {s1, s2,. .., S, } whose coor-
dinates are b-bit integers, we would like to construct
the implicit Voronoi diagram V*(S) of [3], which con-

*dave@cs.unc.edu
1Lsnoeyink@cs .unc.edu

sists of a topological component, the planar embed-
ding represented by a suitable structure such as a
doubly connected edge list [1] and a geometric com-
ponent, which for each vertex (v, v,) of the Voronoi
diagram of S, the implicit Voronoi diagram, V*(S)
stores the half integers vy, v, where vy = v, when
vy is an integer and vi = |v,] + & when v, is not.
We define vy in a similar manner.

To construct V*(S) we create a structure called a
cell graph that encodes all the information of V*(S)
and maintains connectivity and orientation informa-
tion used for incremental updating. Any Voronoi ver-
tex on a grid point and any grid cell containing one
or more Voronoi vertices is a cell vertex. When differ-
entiation is necessary, we refer to the former as a grid
cell vertexr and the latter as a non-grid cell verter.
For each edge (u,v) € V(S) if u is mapped to ¢, and
v is mapped to ¢, then the edge (¢, c,) € C(S). We
call (cy,cy) a cell edge. Each cell edge corresponds
to a Voronoi edge, b, and stores the two sites defin-
ing b. In addition, each cell vertex v maintains a
circular doubly-linked list of cell edges with the same
ordering as Voronoi edges entering the grid cell that
v represents.

From the cell graph we can create the structure of
[3] by leaving grid cell vertices where they are and
snapping non-grid cell vertices to half gird points.
In the following sections we describe the predicates
and operations used in a randomized incremental con-
struction for the cell graph.

3 Predicates and Operations

Two sites s1,s2 on a grid determine a bisector, by
that partitions the grid into points closest to s1, so
or equidistant and on b12. Using this observation we
describe predicates for testing a grid cell against a
bisector, enumerating grid cells containing bisectors
and locating grid cells of bisector intersections.
Given two sites s1,s2 and a grid cell G, deciding

if the bisector of s; and sy is in G takes constant
time and requires degree two computation, through
computing the squared distances of the grid points of
G. Furthermore we can use the information derived
in this predicate to decide the cardinal directions that
a bisector stabs a grid cell if at all. We call this the
bisectorInCell predicate.

Given two sites s1,s2 and a grid cell G that by
stabs we can compute the intersection points of by
and the grid cell using degree three computations in
constant time. Usually, the intersection of two bi-
sectors requires degree five predicates, but by taking
advantage of the fact that we are intersecting by, with
horizontal or a vertical line, we can simplify the com-
putation.

Given si, s9, and a direction to walk, we define a
bisector Walk operation to be a traversal of a subset
of the cells that bis passes though. Using the bisec-
torInCell predicate, we can walk bi5 starting at the
midpoint of $753 with computations of maximal de-
gree two in O(log g) where ¢ is the length of the walk.

The previous predicates and operations can be used
to compute the bisectorIntersection operation. Given
four non collinear sites {s;,i = 1,...,4}, the grid cell
that contains the intersection of the bisector of sq, so
and ss3,s4 can be computed using maximal degree
three predicates in O(log g), where g is the distance
between the intersection of the bisectors and the mid-
point of segment 5753.

4 Incremental construction

Next we describe the randomized incremental con-
struction (RIC) [1] of the cell graph, and begin with
three non-collinear sites si, s, s3. As these sites are
non-collinear they form a Voronoi vertex. Using the
bisectorIntersection operation with b1 and b3, we
can determine the grid cell where this vertex resides.

Assume that we have already constructed a cell
graph of n — 1 sites and that we would like to insert
site s,. We proceed in the standard RIC fashion for
computing Voronoi diagrams, by first locating the cell
containing s,, and carving out the region of s,, similar
to the method used in [4]. Instead of the normal RIC
method that actually computes the intersection point
of bisectors we use the bisectorIntersection operation
to find the grid cell G where the intersection of two
bisectors occur.

Finding G has two cases, either there is no cell
vertex corresponding to G or one already exists. In
the first case, we just create a new cell vertex and

update cell edges. Care must be taken if a cell vertex
¢, already exists. First, we add the new cell edge to
¢, appropriately ordered. Next we walk around the
cell edges of ¢, in the direction that cell edges are
removed. This can be determined by the side of the
bisector s,, is on.

As each insertion will cause an expected constant
number of vertices, faces and edges to be modified the
only additional penalty we incur with this method
as apposed to the standard RIC algorithm is the
O(log g) for each segment intersection. This gives
us that the cell graph of n sites can be constructed
in O(n(logn + log g)) where g is the bisector length
using computations of maximal degree three. As the
the cell graph subsumes all the information encoded
in V*(.9), it can also support nearest neighbor queries
in O(logn) time with degree two computations.

5 Conclusions

This paper presented a method for computing the im-
plicit Voronoi diagrams of [3] in O(n(logn + logg))
where ¢ is the bisector length using a maximal of
degree three predicates. Furthermore, to our knowl-
edge this is the first algorithm that allows for such
a construction without fully computing the Voronoi
diagram.

References

[1] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications. Santa Clara, CA, USA, 2008.

[2] O. Devillers and F. P. Preparata. Further results on
arithmetic filters for geometric predicates. Comput.
Geom. Theory Appl., 13(2):141-148, 1999.

[3] G. Liotta, F. P. Preparata, and R. Tamassia. Robust
proximity queries: an illustration of degree-driven al-
gorithm design. In SCG ’97, pages 156-165, New
York, NY, USA, 1997. ACM.

[4] K. Sugihara and M. Iri. Construction of the Voronoi
diagram for ‘one million’ generators in single-precision
arithmetic. Proceedings of the IEEE, 80(9):1471-1484,
1992.

[6] C.-K. Yap. Towards exact geometric computation.
Comput. Geom. Theory Appl., 7(1-2):3-23, 1997.

