
CG:YRF, Chapel Hill, NC, USA, June 16-20, 2012

Degree-Driven Algorithm Design for Computing Volumes of CSG Models

David L. Millman Jack Snoeyink
Department of Computer Science, University of North Carolina Chapel Hill ∗

Abstract

We describe a framework for computing volumes of CSG
models. The framework was designed using Liotta,
Preparata, and Tamassia’s degree-driven algorithm de-
sign paradigm, which suggests that the algorithm de-
signer balances minimizing the time, space, and preci-
sion used by an algorithm. The framework serves as an
example of how degree-driven algorithm design can be
used in practice to produce a fast and accurate imple-
mentation.

1 Introduction

Consider the query on a multi-component constructive
solid geometry (CSG) model: What is the volume en-
closed by each component within some tolerance?

Let the modeling primitives be point sets satisfying
the inequality

f(x, y, z) ≤A1x
2 +A2y

2 +A3z
2 +A4xy +A5xz +A6yz

+A7x+A8y +A9z +A10.

Each component Ci is defined by a formula Fi of regu-
larized set operations on primitives. Moreover, all com-
ponents have disjoint interiors, and are contained in a
bounding box B. We can test if a point q is in Ci by
plugging the coordinates of q into the inequalities defin-
ing Ci and evaluating Fi.

Multi-component CSG models are used by simulation
codes, such as MC21 [5], that solve the neutron trans-
port equation. Volumes are computed with a Monte
Carlo algorithm that samples N points inside B, counts
the number of points hi landing in each Ci, and ap-
proximates the volume of each Ci as Vol(B) ∗ hi/N . In
practice, N is very large, over 1.4 billion samples for a
10−4 relative error, causing this algorithm to be slow.

With co-authors, in [4], we proposed a framework
for computing volumes that was over 500x faster and
two orders of magnitude more accurate than the Monte
Carlo algorithm. Liotta, Preparata, and Tamassia’s
degree-driven algorithm design paradigm [3] guided
many of our decisions. While the decisions were not
discussed in [4], we believe that they were important
because the framework is an example of how one can,
in practice, use degree-driven design to arrive at a

∗[dave,snoeyink]@cs.unc.edu

fast and accurate implementation even without sophis-
ticated software libraries.

2 Precision of Computing Volumes

When designing a geometric algorithm, it is common
to assume the Real-RAM model of computation, which
assumes that arithmetic operations are exact and take
unit time. In this setting, the predicates, which control
branching in an algorithm by deciding geometric rela-
tionship between objects, are exact.

When implementing a geometric algorithm, predi-
cates are evaluated numerically. Often a computer
trades a small amount of error in the numeric calcu-
lation so that it can be done quickly in hardware. The
small errors can cause a predicate to decide an incor-
rect relationship between two objects. As a result, an
algorithm may branch incorrectly, possible breaking the
invariants used to prove the correctness of an algorithm.

Liotta, Preparata, and Tamassia [3] suggested that in
addition to analyzing the time and space used by a geo-
metric algorithm one could also analyze the precision as
well. Their suggestion, called degree-driven algorithm
design, was to analyze the precision of an algorithm
by its predicates. More formally, consider a geomet-
ric problem where the input is defined by coordinates
(perhaps with some combinatorial relationships), that
can be scaled to w-bit integers. A predicate, tests the
sign of a multivariate polynomial whose variables are
from the input coordinates. We define the degree of a
predicate as the degree of its corresponding polynomial
and the degree of an algorithm as the highest degree of
the predicates used by the algorithm.

Let’s see an example where we wish to test if point q
is inside a primitive s, defined in the previous section,
which we call the isInside(s, q) predicate. The 13 in-
put coordinates are the x-, y-, and z-coordinates of q
and the coefficients s1, . . . , s10 defining s scaled to w-
bit integers. The combinatorial relationships are that
q = (qx, qy, qz) and s = (s1, . . . , s10). To test if q is
inside of s check the sign of the polynomial P (s, q) =
s1x

2 + s2y
2 + . . .+ s10. Observe that P is degree 3 and

therefore isInside is degree 3. Moreover, any algo-
rithm using isInside is at least degree 3. Sometimes
the degree d of a polynomial is more important than
the polynomial itself. In such a case, we write d©, for
example P (s, q) = 3©.

This is an abstract of a presentation given at CG:YRF 2012. It has been made public for the benefit of the community and should be considered a preprint rather
than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.



1st Computational Geometry Young Researchers Forum, 2012

To begin, let’s consider algorithms for computing vol-
umes. First, consider the Monte Carlo algorithm de-
scribed in the previous section. As its only predicate is
isInside, which is degree 3, the algorithm is degree 3.
To our knowledge, this is the lowest degree algorithm,
but, as mentioned earlier, many samples are needed for
an accurate volume.

Second, consider constructing the boundary represen-
tation of each Ci by extending Berberich et al.[1] and
using the surface patches to set up the integration do-
mains. Having a boundary representation could achieve
a very accurate volume calculation, but the precision
required for building the boundary, in particular inter-
secting some (but not all) pairs of quadrics, is high.

The framework described in [4] explores an octree,
computing in each cell the representation of the model
restricted to the cell. Once the representation restricted
to the cell is simple enough or the cell is small enough,
the framework computes volumes. For example, it com-
putes a portion of the boundary representation in cells
containing edges formed by the intersection of a plane
and a quadric, but uses Monte Carlo in small cells where
many curved surfaces intersect. Exploring the octree de-
pends on the predicate Classify, and the constructions
Simplify and Integrate which we detail below.

The predicate Classify(s, b) takes an axis aligned
box b, with degree 1 corners, and a primitive s, and
returns if b is completely inside, outside, or intersects s.
The implementation of this predicate, described in [4],
determines the type of the conical intersection curve of
a plane and a quadric. The conic can be written as

f(x, y) =
(
x y 1

) 1© 1© 2©
1© 1© 2©
2© 2© 3©

xy
1


The matrix in the above equation is called the discrim-
inant. The suggestion of [4] was to determine the type
of the conic with Levin’s classification [2], which uses a
high precision calculation of computing the eigenvalues
of the discriminant. Since, we have observed that it is
sufficient to check if the type of the conic is an ellipse,
which simplifies to a degree 5 test of the sign of the
determinant of the discriminant.

Theorem 1 Given an axis aligned box b with degree 1
corners and a quadric s defined by degree 1 coefficients.
The Classify(s, b) predicate returns the side of s con-
taining b or if b intersects s in degree 5.

Note that many quadrics have special forms, for exam-
ple a plane or an axis aligned cylinder, in such cases,
Classify factors and has lower degree.

The construction Simplify(C, b) takes a set of com-
ponents C, and an axis aligned box b and computes the
representation of each component restricted to b. For

each Ci the construction: classifies each surface defin-
ing Ci with respect to b, replaces any surface in which b
is inside or outside with a true or a false, and uses
Boolean logic to simplify each formula. The only nu-
merical test of Simplify is Classify, the rest is logic
and data structuring.

Theorem 2 Given an axis aligned bounding box b and
a set of components C, the construction Simplify(C, b)
returns the restriction of each component of C to b with
degree 5.

The construction Integrate(C, b, ε, δ) takes set of
components C with representations restricted to box b,
and error ε and confidence δ and returns the volume of
the intersection of each component’s intersection with b
to error within ε and confidence δ or a flag if it can-
not. Three example integrators are: the box integrator,
which returns volumes when b is completely inside or
outside of components; the cylinder bundle integrator,
which returns volumes when the forumulæ restricted
to b represent non-intersecting cylinders (which is com-
mon when the model contains bundles of pipes); and
the Monte Carlo integrator mentioned earlier.

The framework we described in [4] keeps track of error
bounds on computed volumes so that the specified tol-
erance is met. We have observed that the error bounds
are too loose, resulting in unnecessary work. For exam-
ple, when only three decimal places of accuracy are re-
quested we get five decimal places correct. Currently, we
are investigating how to better maintain error bounds
from the integrators in order to produce volumes that
are still accurate but not past the point of benefit.

References

[1] E. Berberich, M. Hemmer, L. Kettner, E. Schömer, and
N. Wolpert. An exact, complete and efficient implemen-
tation for computing planar maps of quadric intersec-
tion curves. In Proc. of the 21st Annu. Symp. Comput.
Geom., pages 99–106. ACM, 2005.

[2] J. Levin. A parametric algorithm for drawing pictures
of solid objects composed of quadric surfaces. Commun.
ACM, 19(10):555–563, 1976.

[3] G. Liotta, F. P. Preparata, and R. Tamassia. Robust
proximity queries: An illustration of degree-driven algo-
rithm design. SIAM J. Comput., 28(3):864–889, 1999.

[4] D. L. Millman, D. P. Griesheimer, B. R. Nease, and
J. Snoeyink. Robust volume calculations for construc-
tive solid geometry (CSG) components in Monte Carlo
transport calculations. In PHYSOR: Advances in Reac-
tor Physics. Amer. Nucl. Soc., 2012. electron. proc.

[5] T. M. Sutton, T. J. Donovan, T. H. Trumbull, P. S. Do-
breff, E. Caro, D. P. Griesheimer, L. J. Tyburski, D. C.
Carpenter, and H. Joo. The MC21 Monte Carlo trans-
port code. In Joint international topical meeting M&C
+ SNA 2007. Amer. Nucl. Soc., 2007. electron. proc.


