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Abstract

Do convex obstacles in the plane always leave 3 sepa-
rate escape routes? Here, an escape route is a locally
geodesic path that avoids the obstacles; escape routes
are separate if they have no point in common but their
origin. We answer this question, posed at FWCG ’09
by Al-Jubeh, Ishaque and Tóth, in the affirmative and
show how to efficiently compute the routes.

1 Introduction

Given a set of obstacles in the plane and a fixed point,
how may separate geodesic paths out beyond all ob-
stacles are there? Arkin et al. [4] observed that there
are always two monotone paths among convex obsta-
cles, which can be turned into separate geodesics [2, 8].
It is relatively easy to construct examples like Figure 1
that do not have four paths. At the 2009 Fall Work-
shop in Computational Geometry, Al-Jubeh, Ishaque
and Tóth asked, “does every configuration of disjoint
convex obstacles always leave 3 separate geodesic paths
out?” With co-authors [1, 3] they have several results on
vertex disjoint paths in embedded graphs, but wanted
separate geodesics. We answer their question in the af-
firmative.
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Figure 1: Disjoint convex obstacles and a starting point
s that admit only 3 separate geodesic paths out.

Let s be a chosen starting point and t be the point
at infinity. Let O denote a fixed set of disjoint, convex,
polygonal obstacles in the plane, ∂O its boundary and
O its complement. Our approach, defined precisely in
the next section, is to partition O into a radial trapezoi-
dation T by drawing segments of lines through s. We
add enough segments that the dual graph dual(T ) has
maximum degree 3. We show that the min-cut separat-
ing s from t in dual(T ) has 3 edges, which means that
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a max-flow algorithm will find 3 edge-disjoint paths in
dual(T ). Since the dual graph has maximum degree 3,
the paths must be vertex disjoint. Vertex disjoint paths
in the dual graph can be pulled tight to become separate
geodesic paths in O.

2 Radial trapezoidation and min-cut

Consider the lines through s that are tangent to any
convex obstacle in O. The radial trapezoidation T of
O is formed by drawing the segments from each point
of tangency toward and away from s until encountering
the first obstacle or s itself. Figure 2 shows an example.
Even though the added radial segments are not paral-
lel (unless we do a projective transformation sending s
to infinity) we still call the regions trapezoids. Each
trapezoid has a top obstacle or is unbounded, a bottom
obstacle or s, and points of tangency defining 2 lines
that contain 2 to 4 radial segments. Split each trape-
zoid bounded by 4 radial segments (i.e., each trapezoid
where neither tangent point defining the radial sides is
on the top or bottom obstacles) by adding a new radial
segment. Figure 2 depicts three such segments with
dashed lines.
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Figure 2: The radial trapezoidation has tangent seg-
ments (solid) and splitting segments (dashed) on lines
through s.

The dual graph of a partition T ofO, denoted dual(T ),
is an abstract graph in which the vertices are the cells of
the partition and the edges are the boundaries between
the cells. We add s and t as vertices to the dual graph
and edges from s to each cell incident on s and from t to
each unbounded cell. We say that the points s and t are
k-edge connected if at least k edges of dual(T ) must be
removed to disconnect s and t, and k-vertex connected
if k vertices of dual(T ) must be removed to disconnect
s and t.
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Lemma 1 Given disjoint, convex, polygonal obstacles
in the plane with a total of n vertices, a radial trapezoi-
dation can be built in O(n log n) time, or Θ(n) time if a
triangulation of O is given in the input. Its dual graph
has maximum degree 3.

Proof. The radial trapezoidation T with respect to a
point s can be built by a radial sweep, by randomized
incremental construction, or by converting from a tri-
angulation; we need only minor modifications of algo-
rithms for standard trapezoidations (aka vertical visi-
bility maps) [6, 7]. Trapezoids with degree 4 in the dual
can then be split in O(1) time apiece. �
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Figure 3: To show there are no separating 2-cycles, note
that any convex obstacle subtends an arc of < π radians.

Lemma 2 For a radial trapezoidation T , in the graph
dual(T ) the nodes for s and t are 3-edge connected.

Proof. The obstacles in O are disjoint, so each k-edge
cut in dual(T ) can be identified with an alternating cy-
cle of k boundary edges of T and at most k obstacles
surrounding s. Each radial boundary edge subtends 0
radians. Each obstacle is convex, so, as in Figure 3, it
subtends less than π radians, which is less than half of
the total 2π required. Hence k ≥ 3. �

Lemma 3 Consider any partition of O with all vertices
on ∂O and straight boundary edges. Any path P from s
to t visits cells of the partition; the geodesic path from s
to t homotopic to P visits a subset of these cells.

Proof. This is best proved using a universal cover,
which lifts the possible paths to a simply connected
space (see [8, Theorem 3.2]). We sketch the key idea:
Let R be the union of cells visited by P and consider
a partition edge e on the boundary of R. Since e is a
straight line with end points affixed to obstacles and the
end points of P are fixed, any continuous deformation
of P that crosses e does so an even number of times, and
can be shortened to follow e. Thus the geodesic path
homotopic to P is contained in R. �

Theorem 4 For any set of disjoint convex polygonal
obstacles in the plane O and a starting point s ∈ O,
there are 3 disjoint geodesic paths from s to t. Paths can
be found in Θ(n) time from the radial trapezoidation.

Figure 4: The dual graph of the radial trapezoidation
with highlighted vertex disjoint paths from s to t.

Proof. Given O, a starting point s and a radial trape-
zoidation T of O, by lemma 1, s and t are 3-edge con-
nected. By applying the min-cut max-flow theorem [5],
there are 3-edge disjoint paths from s to t in dual(T ).
Figure 4 is an example. Three paths can be found with
a depth first search and 3 Ford-Fulkerson path augmen-
tations [5], taking O(n) time. Since the maximum de-
gree for any vertex in dual(T ) is 3, edge disjoint paths
are also vertex disjoint paths, which can be embedded
into T as paths that pass through disjoint trapezoids.
By lemma 3, the paths can be simultaneously pulled to
geodesics while remaining separate. Since O is convex
and polygonal, finding the geodesic paths in dual(T ) re-
duces to finding the vertices that the paths turn on [8].
Thus, the paths can be found in Θ(n) time from the
radial trapezoidation. �
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