
ORAL EXAM: DEGREE-DRIVEN GEOMETRIC ALGORITHM DESIGN

DAVID L. MILLMAN

Recall that my thesis investigates adding precision as an optimization criterion for the design and analysis
of geometric algorithms. Classically, we analyze an algorithm’s precision by bounding the extent to which
a small perturbation of the input changes the output. This definition is natural for algorithms that model
real valued functions, but what about geometric algorithms that produce combinatorial structures?

Liotta, Preparata, and Tamassia, suggested that we analyze the precision of a geometric algorithm in terms
of the algebraic degree of its predicates, calling it degree-driven algorithm design. I seek to investigate and
implement degree-driven algorithms for Voronoi diagrams, and I would like to organize the implementations
into a kernel for a degree-driven algorithm library.

Precision analysis helps us classify the conditions under which an algorithm’s implementation will be
“correct”. As demonstrated below, the term “correct” has different meanings in different contexts and
to different communities. I provide a sample of papers from GPU computing, computational geometry,
and CSG that highlight notions of correctness, common sophisticated techniques for ensuring it and their
implementations.

1. Examples of the Hazards of Blindly Apply Floating Point Arithmetic

I begin with a paper on simple examples that warn us of the potential hazards of blindly using floating
point arithmetic.

[KMP08] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra and C. Yap Classroom examples of robustness
problems in geometric computations Computational Geometry, 40(1): 61–78, 2008

2. Correctness Frameworks

Three complimentary correctness frameworks are discussed in the CSG and computational geometry
literature.

• Yap, observed that geometric algorithms are a combination of combinatorial tests and numerical
predicates. He proposed a framework in which numerical predicates are evaluated exactly, thus,
making numerical error a non-issue. I achieve Yap’s framework with static analysis carried out
during an algorithm’s design.

• Suighara et al. proposed a framework for topological correctness, in which some set of topological
invariants are maintained through a construction. Should ambiguity arise, the branch most likely to
be correct, is chosen. Sugihara et al.’s discussion of data representations will play an important role
in the thesis.

• Liotta et al. proposed a framework for analyzing the precision of a geometric algorithm. I use this
framework though out the thesis.

[Y97] C.-K. Yap. Towards exact geometric computation. Comput. Geom. Theory Appl., 7(1-2):3–23,
1997.

[SII00] K. Sugihara, M. Iri, H. Inagaki, and T. Imai. Topology-Oriented Implementation—An Approach
to Robust Geometric Algorithms. Algorithmica, 27(1):5–20, 2000.

Date: April 18, 2011.
Department of Computer Science, University of North Carolina at Chapel Hill

{dave}@cs.unc.edu
1



2 DAVID L. MILLMAN

[LPT99] G. Liotta, F. P. Preparata, and R. Tamassia. Robust Proximity Queries: An Illustration of
Degree-Driven Algorithm Design. SIAM J. Comput., 28(3):864–889, 1999.

2.1. Examples of Exact Geometric Computation. Many have implemented the exact geometric com-
putation framework. This section’s papers highlight two implementations.

[ABD97] F. Avnaim, J. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Evaluating signs of
determinants using single-precision arithmetic. Algorithmica, 17(2):111–132, 1997.

[BBP01] H. Brönnimann, C. Burnikel, and S. Pion. Interval arithmetic yields efficient dynamic filters for
computational geometry. Discrete Appl. Math., 109(1-2):25–47, Apr. 2001.

2.2. Example of Snap Rounding. When we use EGC, we may need to round an internal representation
of a geometric construction for output. Snap rounding is a popular choice for outputting a construction.
Degree-driven analysis provides us with a static bounds on the precision of a construction and uses ideas
from snap rounding in the algorithm design process. For example, a Voronoi Polygon is a snap-rounded
representation of a Voronoi cell.

[dBHO07] M. de Berg, D. Halperin, and M. Overmars An intersection-sensitive algorithm for snap round-
ing. Computational Geometry, 36(3):159–165, Apr. 2007.

2.3. Examples of Degree-driven Geometric Algorithm Design. Aside from the paper that intro-
duces LPT’s framework, I highlight Bossonnat and Preparata’s paper, which considers segment intersection
problems in the plane.

[BP00] J.-D. Boissonnat and F. P. Preparata. Robust Plane Sweep for Intersecting Segments. SIAM J.
Comput., 29(5):1401–1421, 2000.

3. Predicates

The two chapters from Schneider and Eberly describe representations for geometric primitives, and pred-
icates and constructions on these representations. In the algebraic decision tree model of computation,
commonly used in computational geometry, we evaluate ternary predicates that evaluate to zero, positive,
or negative. In practice, the zero evaluations are difficult to handle, and perturbation methods, such as the
one described by Seidel, are commonly employed.

[PE03a] P. Schneider and D. Eberly. Chapter 5: Geometric Primitives in 2D, pages 171–188. Geometric
Tools for Computer Graphics, 2003.

[PE03b] P. Schneider and D. Eberly. Chapter 7: Intersection in 2D, pages 241–284. Geometric Tools for
Computer Graphics, 2003.

[R98] R. Seidel, The Nature and Meaning of Perturbations in Geometric Computing. Discrete and Com-
putational Geometry, 19(1), 1-17. Springer, 1998.

4. CSG

CSG has a wide range of definitions for a correct construction. Below, we see three of the strongest
definitions, listed in increasing order of exactness. Varadhan et al. consider homotopy, Plantinga and Vegter
consider isotopy and Bernstein and Fussell consider exact constructions.

[VKS04] G. Varadhan, S. Krishnan, T. Sriram, and D. Manocha, Topology preserving surface extraction
using adaptive subdivision Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry
processing, 235–244, ACM, 2004.

[PV06] S. Plantinga and G. Vegter. Isotopic meshing of implicit surfaces. The Visual Computer, 23(1):45–
58, Oct. 2006.



ORAL EXAM 3

[BF09] G. Bernstein and D. Fussell. Fast, Exact, Linear Booleans. Computer Graphics Forum, 28(5):1269–
1278, July 2009.

5. GPU

Many GPU algorithms rely on floating point computations and define an implementation as correct if
it terminates and produces an output close to the desired result. The early work of Hoff et al. observed
that their output’s correctness was determined by the resolution of the depth buffer and discuss the errors
that can occur in in their final result. Krishnamurthy and McManis consider their problem from the stand
point of numerical analysis by investigating 1-, 2- and 3- point Gaussian quadrature schemes and analyze
the errors introduced by their method. Cao et al. do not discuss numerical error. In personal discussions,
they reported that they have yet to detect any errors in their implementation, however, we have constructed
degenerate examples that break their perturbation method.

[HKL99] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha, and T. Culver. Fast computation of generalized
Voronoi diagrams using graphics hardware. In SIGGRAPH ’99: Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, pages 277–286, New York, NY, USA, 1999. ACM
Press/Addison-Wesley Publishing Co.

[KM10] A. Krishnamurthy and S. McMains. Accurate moment computation using the GPU. ACM Press,
New York, New York, USA, Sept. 2010.

[CTM10] T.-T. Cao, K. Tang, A. Mohamed, and T.-S. Tan. Parallel Banding Algorithm to Compute
Exact Distance Transform with the GPU. In I3D ’10: Proceedings of the 2010 symposium on Interactive 3D
graphics and games, New York, NY, USA, 2010. ACM.

6. Kernel Design

One of my goals is to implement the low precision algorithms described in my thesis and to organize the
implementations into a kernel for a degree-driven algorithm library. Below are papers relevant to the design
of some successful kernels.

[SL95] A. Stepanov, and M. Lee. The Standard Template Library. Technical Report Hewlett-Packard,
1995.

[FGL96] A. Fabri, G.-J. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. The CGAL kernel: A basis
for geometric computation. 1148:191–202–202, 1996.

[KPY99] V. Karamcheti, C. Li, I. Pechtchanski, and C. Yap. A core library for robust numeric and
geometric computation. In SCG ’99: Proceedings of the fifteenth annual symposium on Computational
geometry, pages 351–359, New York, NY, USA, 1999. ACM.


