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Motivation/Background 

Constructive solid geometry (CSG)  
is used to define geometric objects in 
Monte Carlo transport calculations. 
 

CSG provides an exact representation 
of an objects boundary. 
 

CSG allow nearly unlimited flexibility 
for creating complex models for: 

n  Criticality analysis 
n  Reactor analysis 
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Motivation/Background 

CSG components can be difficult to 
process.  Compared to other 
representations, for CSG components: 
 

n  Particle tracking is slower 

n  Sampling is more resource intensive 

n  Properties (such as volume) are 
difficult to compute  
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Motivation/Background 

Bounding boxes help solve  
many of these difficulties…. 

 
…unfortunately,                  

computing bounding boxes  
for CSG components  

is non-trivial. 
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What People See 

Let D be the region left  
after drilling a radius r  
hole through the center  
of a radius R sphere 
centered at the origin. 

What is the optimal axis-aligned box bounding of D? 
Provided R > r, a box with: 
n minimal point (-R, -R, -R+f(R,r) )  
n maximal point (R, R, R+f(R,r) )                    5 



What the Computer Sees 

0 > 0.74742x^2 + 0.93022y^2 + 0.32256z^2 + 0.26590xy +-0.82750xz + 0.43517yz + 2.47974x +26.97936y + 7.15111z +171.27254 
0 > 0.00487x^2 + 0.00638y^2 + 0.00212z^2 + 0.00181xy +-0.00537xz + 0.00299yz + 0.51989x +-0.07938y + 0.87196z + 36.54138 
0 <-0.00469x^2 + 0.00617y^2 +-0.00134z^2 + 0.00116xy + 0.00609xz + 0.00326yz + 0.52845x +-0.08488y + 0.86497z +-11.92745 
0 > 0.00180x^2 + 0.00647y^2 + 0.00497z^2 +-0.00039xy + 0.00597xz + 0.00003yz + 0.59729x +-0.12904y + 0.98774z + 37.27755 
0 > 0.00173x^2 + 0.00681y^2 + 0.00479z^2 +-0.00022xy + 0.00574xz + 0.00034yz +-0.76442x + 0.12037y + 0.67647z + 27.71845 
0 > 0.00180x^2 + 0.00657y^2 + 0.00498z^2 +-0.00037xy + 0.00599xz + 0.00008yz +-0.76185x + 0.11119y + 0.68028z + 27.63880 
0 <-0.00156x^2 + 0.00591y^2 +-0.00403z^2 + 0.00324xy +-0.00503xz + 0.00601yz +-0.90629x + 0.19555y + 0.44420z +-24.48200 
0 > 0.00643x^2 + 0.00046y^2 + 0.00614z^2 +-0.00143xy +-0.00036xz +-0.00301yz +-0.04751x +-1.00153y +-0.12108z + 11.02481 
0 > 0.00323x^2 +-0.00046y^2 +-0.00276z^2 + 0.00209xy +-0.01145xz + 0.00273yz +-0.19156x +-0.92584y +-0.35667z +-40.49961 
0 < 0.50007x^2 + 0.50004y^2 + 0.50003z^2 + 0.00009xy + 0.00002xz + 0.00004yz + 6.69291x +10.62269y +12.50413z +106.97040 

Let D be the intersection of 10 quadratics: 

From a picture, we can determine the 
bounding box without trouble. 
 

Not so easy for a collection of polynomials.  
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Computing Bounding Boxes Is Difficult 

Alg 1: Apply set operations to the bounding boxes of primitives.  
“for difference and intersection operations this will hardly ever lead to an 
optimal bounding box.”  

 –POV-Ray documentation 
 

Alg 2: Convert CSG to boundary rep.  
“efficient, accurate, and robust computation of the boundary remains a hard 
problem for CSG model described using curved primitives.” 

 – Lin & Gottschalk [SG98] 
 

More recent work indicates converting CSG to boundary rep is 
still hard. [K00], [MTT05], [SW06], [DLL+08] 



Computing an AABB 
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Question: Given a domain D, compute the  
optimal axis-aligned bounding box (AABB) of D? 

Observation: To compute optimal AABB we compute 
extremal points in each direction.   



Ask an easier question 
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Given ɛ > 0, ɛ-box for D is an axis-aligned bounding box 
that is at most ɛ larger in each direction than the optimal 
axis aligned bounding box for D. 
 

We call an ɛ-box a numerically-optimal bounding box.  

ɛ  



Ask an easier question 
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Question: Given a domain D, compute the ɛ-box of D? 

ɛ  

Observation: To compute ɛ-box for D we must  
identify boxes of size ɛ containing an extremal point.   

ɛ  
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Question: Given a domain D, compute the ɛ-box of D? 

Observation: To compute ɛ-box for D we must  
identify boxes of size ɛ containing an extremal point.   

 
 
   How do we identify boxes of size ɛ     
   containing an extremal point?** 
 
**In this talk, I describe a simpler version of our algorithm that is good in 
practice but does not have provably tight bounds.  See our paper for the gory 
details of the full algorithm and the proofs! 



Primitives:  
Signed Quadratic Surfaces 
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Model Representation 
Component: Boolean Formula 

A component defined by intersections and 
unions of signed surfaces  
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Algorithm Overview  (D&C) 

(1) Given an initial (very large) 
bounding box  

(2) Traverse an octree: 
 (a) Subdivide initial box  
      into sub-boxes 
 (b) For each sub-box: 

 (i) classify sub-box as     
     Inside, Outside,  

     Boundary, or Unknown 
 (ii) subdivide Unknown & 
      Boundary sub-boxes 
   … 

(3) Terminates once  
ɛ-box is found 
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The crux 
of this algorithm is  

the classify operation 
 
 
 
 



The classify Operation Overview 
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Given comp C  and axis-aligned box B,  
classify(C,B), returns:  
 
n  Inside  

n  Outside 

n  Boundary 

n  Unknown 
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Given comp C  and axis-aligned box B,  
classify(C,B), returns:  
 
n  Inside  

n  Outside 

n  Boundary 

n  Unknown 

B C⇒ ⊆

B C⇒ ∩ =∅

  points  p,q   with  p C  and  q CB⇒∃ ∈ ∈ ∈/

could  not  classify⇒



Operations used for classify 
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Let b be an axis aligned box: 
n  boxLabel – given a surface S,  

return if the points of b are  
inside, outside, or both with respect to S. 
 

n  formulaRestriction – given a Boolean 
formula G and the classification for all 
surfaces of G for b, replace all surfaces of 
G in which b is completely inside or 
outside with T or F and simplify. 



The boxLabel Operation [M12] 
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Let b be an axis aligned box: 
n  boxLabel – given a surface S,  

return if the points of b are  
inside, outside, or both with respect to S. 
 

n  formulaRestriction – given a Boolean 
formula G and the classification for all 
surfaces of G for b, replace all surfaces of 
G in which b is completely inside or 
outside with T or F and simplify. 

Operations used for classify 



The formulaRestriction Operation 
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Let b be an axis-aligned box,  
given a Boolean formula G and  
the classification for all surfaces of G for b,  
replace all surfaces of G in which  
      b is completely inside or outside with T or F and simplify. 

formulaRestriction –  



The formulaRestriction Operation 
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Let b be an axis-aligned box,  
given a Boolean formula G and  
the classification for all surfaces of G for b,  
replace all surfaces of G in which  
      b is completely inside or outside with T or F and simplify. 

formulaRestriction –  
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Given comp C  and axis-aligned box B,  
classify(C,B), returns:  
 
n  Inside  

n  Outside 

n  Boundary 
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The classify Operation 
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Given comp C  and axis-aligned box B,  
classify(C,B), returns:  
 
n  Inside  Formula resolved to T 

n  Outside  Formula resolved to F 

n  Boundary  Formula resolved to 1 surface 

n  Unknown  could not classify   

⇔

Using boxLabel and formulaRestriction we implement classify as: 

⇔

⇔
(or strengthen by cherry picking special 

 cases that are commonly modeled [NMGG13]) 

⇔



Experiment: Models 

RotatedCube – a rotated cube inside of a sphere. 
It is easy to verify that the computed box is actually 
an epsilon box.   

HelicalPipe20 – a helical section of piping. 
A model with multiple levels of hierarchy.   

                   43 

SpikeyBall – each spike is formed by the 
intersection of three planes and two paraboloids.  
The sharp features cause stochastic and sampling 
based algorithms produce a box that is too tight.  



Experiment: 1. Compute AABB 
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Comp ID Time (s) for 
ɛ = 0.5 ɛ = 0.05 

SpikeyBall 
C0 0.60 1.67 

RotatedCube 
C0 0.02 0.10 

C1 <.01 <.01 
Total 0.02 0.10 

Initial bounding box:  
  Min point: (-1000, -1000, -1000) 
  Max point: ( 1000,  1000,  1000) 



Experiment: 1. Compute AABB 
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Comp ID Time (s) for 
ɛ = 0.5 ɛ = 0.05 

HelicalPipe20 
C0 0.13 1.62 

C1 0.02 0.25 
C11 0.03 0.19 

C2 0.02  0.39 
C12 0.05 0.36 

C3 0.02 0.63 
C13 0.03 0.22 

Total 0.75 8.53 
 

What is time consuming: 
n  The size of reducing from 

the initial bounding box to a 
tight bounding box. 

n  Tightening to a smaller ɛ. 



Experiment: 2. Initial AABB 
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Computing the bounding box is practical 
even if we must reduce by 4 orders of magnitude. 



Experiment: 3. Tolerance 

                   47 

Discontinuities are where a smaller  
box is needed to achieve specified ɛ 

Empirically, it takes O(1/ɛ) to compute an ɛ box.  



Conclusion 
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Described an operation for testing if an axis-aligned 
box contains the boundary of a component 
 
 

Described a divide-and-conquer framework for 
computing numerically-optimal bounding boxes 
 
 

Experiments suggest that algorithm  could be routine 
pre-processing for CSG components. 
Extrapolating from experiments,  
one million comps on 100 CPUs in about 5.5 min 
 

 
Contact: 
Author: David L. Millman  
Email: david.millman@unnpp.gov 
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