
MC21MC21

Joint International Conference on Supercomputing in Nuclear Applications
and Monte Carlo 2013 (SNA + MC 2013)
La Cité des Sciences et de l’Industrie, Paris, France, October 27–31, 2013

David L. Millman1, David P. Griesheimer1,
Brian R. Nease1, and Jack Snoeyink2

1. Bettis Laboratory, Bechtel Marine Propulsion Corp.
2. Department of Computer Science UNC-Chapel Hill

30 October 2013

Computing
Numerically-Optimal Bounding Boxes for

CSG Components in
Monte Carlo Particle Transport Calculations

T.M. Sutton, et. al., The MC21 Monte Carlo Transport Code,
 M&C+SNA 2007

()\= U

Motivation/Background

Constructive solid geometry (CSG)
is used to define geometric objects in
Monte Carlo transport calculations.

CSG provides an exact representation
of an objects boundary.

CSG allow nearly unlimited flexibility
for creating complex models for:

n  Criticality analysis
n  Reactor analysis

 2

T.M. Sutton, et. al., The MC21 Monte Carlo Transport Code,
 M&C+SNA 2007

()\= U

Motivation/Background

CSG components can be difficult to
process. Compared to other
representations, for CSG components:

n  Particle tracking is slower

n  Sampling is more resource intensive

n  Properties (such as volume) are
difficult to compute

 3

T.M. Sutton, et. al., The MC21 Monte Carlo Transport Code,
 M&C+SNA 2007

()\= U

Motivation/Background

Bounding boxes help solve
many of these difficulties….

…unfortunately,

computing bounding boxes
for CSG components

is non-trivial.

 4

What People See

Let D be the region left
after drilling a radius r
hole through the center
of a radius R sphere
centered at the origin.

What is the optimal axis-aligned box bounding of D?
Provided R > r, a box with:
n minimal point (-R, -R, -R+f(R,r))
n maximal point (R, R, R+f(R,r)) 5

What the Computer Sees

0 > 0.74742x^2 + 0.93022y^2 + 0.32256z^2 + 0.26590xy +-0.82750xz + 0.43517yz + 2.47974x +26.97936y + 7.15111z +171.27254
0 > 0.00487x^2 + 0.00638y^2 + 0.00212z^2 + 0.00181xy +-0.00537xz + 0.00299yz + 0.51989x +-0.07938y + 0.87196z + 36.54138
0 <-0.00469x^2 + 0.00617y^2 +-0.00134z^2 + 0.00116xy + 0.00609xz + 0.00326yz + 0.52845x +-0.08488y + 0.86497z +-11.92745
0 > 0.00180x^2 + 0.00647y^2 + 0.00497z^2 +-0.00039xy + 0.00597xz + 0.00003yz + 0.59729x +-0.12904y + 0.98774z + 37.27755
0 > 0.00173x^2 + 0.00681y^2 + 0.00479z^2 +-0.00022xy + 0.00574xz + 0.00034yz +-0.76442x + 0.12037y + 0.67647z + 27.71845
0 > 0.00180x^2 + 0.00657y^2 + 0.00498z^2 +-0.00037xy + 0.00599xz + 0.00008yz +-0.76185x + 0.11119y + 0.68028z + 27.63880
0 <-0.00156x^2 + 0.00591y^2 +-0.00403z^2 + 0.00324xy +-0.00503xz + 0.00601yz +-0.90629x + 0.19555y + 0.44420z +-24.48200
0 > 0.00643x^2 + 0.00046y^2 + 0.00614z^2 +-0.00143xy +-0.00036xz +-0.00301yz +-0.04751x +-1.00153y +-0.12108z + 11.02481
0 > 0.00323x^2 +-0.00046y^2 +-0.00276z^2 + 0.00209xy +-0.01145xz + 0.00273yz +-0.19156x +-0.92584y +-0.35667z +-40.49961
0 < 0.50007x^2 + 0.50004y^2 + 0.50003z^2 + 0.00009xy + 0.00002xz + 0.00004yz + 6.69291x +10.62269y +12.50413z +106.97040

Let D be the intersection of 10 quadratics:

From a picture, we can determine the
bounding box without trouble.

Not so easy for a collection of polynomials.

 6

Computing Bounding Boxes Is Difficult

Alg 1: Apply set operations to the bounding boxes of primitives.
“for difference and intersection operations this will hardly ever lead to an
optimal bounding box.”

 –POV-Ray documentation

Alg 2: Convert CSG to boundary rep.
“efficient, accurate, and robust computation of the boundary remains a hard
problem for CSG model described using curved primitives.”

 – Lin & Gottschalk [SG98]

More recent work indicates converting CSG to boundary rep is
still hard. [K00], [MTT05], [SW06], [DLL+08]

Computing an AABB

 8

Question: Given a domain D, compute the
optimal axis-aligned bounding box (AABB) of D?

Observation: To compute optimal AABB we compute
extremal points in each direction.

Ask an easier question

 9

Given ɛ > 0, ɛ-box for D is an axis-aligned bounding box
that is at most ɛ larger in each direction than the optimal
axis aligned bounding box for D.

We call an ɛ-box a numerically-optimal bounding box.

ɛ

Ask an easier question

 10

Question: Given a domain D, compute the ɛ-box of D?

ɛ

Observation: To compute ɛ-box for D we must
identify boxes of size ɛ containing an extremal point.

ɛ

Ask an easier question

 11

Question: Given a domain D, compute the ɛ-box of D?

Observation: To compute ɛ-box for D we must
identify boxes of size ɛ containing an extremal point.

 How do we identify boxes of size ɛ
 containing an extremal point?**

**In this talk, I describe a simpler version of our algorithm that is good in
practice but does not have provably tight bounds. See our paper for the gory
details of the full algorithm and the proofs!

Primitives:
Signed Quadratic Surfaces

 12

Model Representation
Component: Boolean Formula

A component defined by intersections and
unions of signed surfaces

 13

grey green orangeS S S∩ ∩−

Algorithm Overview (D&C)

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

Algorithm Overview (D&C)

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

Algorithm Overview (D&C)

O U

U U

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

Algorithm Overview (D&C)

O U

U U

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

Algorithm Overview (D&C)

O

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

O

Algorithm Overview (D&C)

O
B

B U

B

B

B O

O

U U

U

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

O

Algorithm Overview (D&C)

O
B

B U

B

B

B O

O

U U

U

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

O

Algorithm Overview (D&C)

O
B

B U

B

B

B O

O

U U

O

B B

U B U

O O

O

O O

O O

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

O

Algorithm Overview (D&C)

O
B

B U

B

B

B O

O

U U

O

B B

U B U

O O

O

O O

O O

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

Algorithm Overview (D&C)

O

O

O
O

O

O B

O

O

O

B

I B

B B

U

I

I B

B

O

O

B

U

B B

U B U

O

U O

O O

O

O

O O

O B

O O

O B

B

B O

O

O O

O O

(1) Given an initial (very large)
bounding box

(2) Traverse an octree:
 (a) Subdivide initial box
 into sub-boxes
 (b) For each sub-box:

 (i) classify sub-box as
 Inside, Outside,

 Boundary, or Unknown
 (ii) subdivide Unknown &
 Boundary sub-boxes
 …

(3) Terminates once
ɛ-box is found

Algorithm Overview (D&C)

O

O

O
O

O

O B

O

O

O

B

I B

B B

U

I

I B

B

O

O

B

U

B B

U B U

O

U O

O O

O

O

O O

O B

O O

O B

B

B O

O

O O

O O

The crux
of this algorithm is

the classify operation

The classify Operation Overview

 25

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside

n  Outside

n  Boundary

n  Unknown

The classify Operation Overview

 26

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside

n  Outside

n  Boundary

n  Unknown

The classify Operation Overview

 27

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside

n  Outside

n  Boundary

n  Unknown

The classify Operation Overview

 28

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside

n  Outside

n  Boundary

n  Unknown

The classify Operation

 29

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside

n  Outside

n  Boundary

n  Unknown

B C⇒ ⊆

B C⇒ ∩ =∅

 points p,q with p C and q CB⇒∃ ∈ ∈ ∈/

could not classify⇒

Operations used for classify

 30

Let b be an axis aligned box:
n  boxLabel – given a surface S,

return if the points of b are
inside, outside, or both with respect to S.

n  formulaRestriction – given a Boolean
formula G and the classification for all
surfaces of G for b, replace all surfaces of
G in which b is completely inside or
outside with T or F and simplify.

The boxLabel Operation [M12]

 32

Let b be an axis aligned box:
n  boxLabel – given a surface S,

return if the points of b are
inside, outside, or both with respect to S.

n  formulaRestriction – given a Boolean
formula G and the classification for all
surfaces of G for b, replace all surfaces of
G in which b is completely inside or
outside with T or F and simplify.

Operations used for classify

The formulaRestriction Operation

 33

grey green orangeS S S∩ ∩−

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 34

 T T T∧ ∧
grey green orangeS S S∩ ∩−

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 35

 T T T∧ ∧
grey green orangeS S S∩ ∩−

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 36

 T T T∧ ∧
grey green orangeS S S∩ ∩−

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 37

 T T T∧ ∧

 T

grey green orangeS S S∩ ∩−

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 38

grey green orangeS S S∩ ∩−

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 39

grey green orangeS S S∩ ∩−

 grey greenS S T∧ ∧

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The formulaRestriction Operation

 40

grey green orangeS S S∩ ∩−

 grey greenS S T∧ ∧

grey greenS S∩

Let b be an axis-aligned box,
given a Boolean formula G and
the classification for all surfaces of G for b,
replace all surfaces of G in which
 b is completely inside or outside with T or F and simplify.

formulaRestriction –

The classify Operation

 41

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside

n  Outside

n  Boundary

n  Unknown

B C⇒ ⊆

B C⇒ ∩ =∅

 points p,q with p C and q CB⇒∃ ∈ ∈ ∈/

could not classify⇒

The classify Operation

 42

Given comp C and axis-aligned box B,
classify(C,B), returns:

n  Inside Formula resolved to T

n  Outside Formula resolved to F

n  Boundary Formula resolved to 1 surface

n  Unknown could not classify

⇔

Using boxLabel and formulaRestriction we implement classify as:

⇔

⇔
(or strengthen by cherry picking special

 cases that are commonly modeled [NMGG13])

⇔

Experiment: Models

RotatedCube – a rotated cube inside of a sphere.
It is easy to verify that the computed box is actually
an epsilon box.

HelicalPipe20 – a helical section of piping.
A model with multiple levels of hierarchy.

 43

SpikeyBall – each spike is formed by the
intersection of three planes and two paraboloids.
The sharp features cause stochastic and sampling
based algorithms produce a box that is too tight.

Experiment: 1. Compute AABB

 44

Comp ID Time (s) for
ɛ = 0.5 ɛ = 0.05

SpikeyBall
C0 0.60 1.67

RotatedCube
C0 0.02 0.10

C1 <.01 <.01
Total 0.02 0.10

Initial bounding box:
 Min point: (-1000, -1000, -1000)
 Max point: (1000, 1000, 1000)

Experiment: 1. Compute AABB

 45

Comp ID Time (s) for
ɛ = 0.5 ɛ = 0.05

HelicalPipe20
C0 0.13 1.62

C1 0.02 0.25
C11 0.03 0.19

C2 0.02 0.39
C12 0.05 0.36

C3 0.02 0.63
C13 0.03 0.22

Total 0.75 8.53
 

What is time consuming:
n  The size of reducing from

the initial bounding box to a
tight bounding box.

n  Tightening to a smaller ɛ.

Experiment: 2. Initial AABB

 46
Computing the bounding box is practical
even if we must reduce by 4 orders of magnitude.

Experiment: 3. Tolerance

 47

Discontinuities are where a smaller
box is needed to achieve specified ɛ

Empirically, it takes O(1/ɛ) to compute an ɛ box.

Conclusion

 48

Described an operation for testing if an axis-aligned
box contains the boundary of a component

Described a divide-and-conquer framework for
computing numerically-optimal bounding boxes

Experiments suggest that algorithm could be routine
pre-processing for CSG components.
Extrapolating from experiments,
one million comps on 100 CPUs in about 5.5 min

Contact:
Author: David L. Millman
Email: david.millman@unnpp.gov

MC21MC21

Bibilography
[LG98] M. C. Lin and S. Gottschalk, “Collision Detection Between Geometric Models: A

Survey,” (1998).
[DLL+08] L. Dupont, D. Lazard, S. Lazard, and S. Petitjean, “Near-optimal parameterization

of the intersection of quadrics: I. The generic algorithm,” Journal of Symbolic
Computation, 43, 3, 168-191 (2008).

[SW06] E. Schömer and N. Wolpert, “An exact and ecient approach for computing a cell in
an arrangement of quadrics,” Computation Geometry Theory and Applications, 33, 1-2,
65-97 (2006).

[K00] J. Keyser, “Exact Boundary Evaluation for Curved Solids”, PhD thesis, University of
North Carolina-Chapel Hill, 2000.

[MTT05] B. Mourrain, J.-P. Técourt, and M. Teillaud, “On the Computation of an
Arrangement of Quadrics in 3d,” Computational Geometry Theory and Application, 30. 2,
145-164, 2005

[M12] D. L. Millman, “Degree-Driven Design of Geometric Algorithms for Point Location,
Proximity, and Volume Calculation”, PhD thesis, University of North Carolina–Chapel
Hill, 2012.

[NMGG13] B. R. Nease, D. L. Millman, D. P. Griesheimer, D. F. Gill, “Geometric Templates
for Improved Tracking Performance in Monte Carlo Codes”, SNA+MC 2013

