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The Problem

a

b

c
d e

f

Given n sites on a pixel grid,
what is the closest site to each pixel?

How much precision is need to
determine this?
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Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

o

v

q

U = {1, . . . ,U}2
o, v , q ∈ U
o = (ox , oy )
v = (vx , vy )
q = (qx , qy )

orientation(o, v , q)

=

∣∣∣∣∣∣
1 ox oy
1 vx vy
1 qx qy

∣∣∣∣∣∣
= vxqy − vxoy − oxqy + oxoy

−vyqx + vyox + qyqx − qyox
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Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

o

v

q

U = {1, . . . ,U}2
o, v , q ∈ U
o = (ox , oy )
v = (vx , vy )
q = (qx , qy )

orientation(o, v , q) = vxqy − vxoy − oxqy + oxoy

−vyqx + vyox + qyqx − qyox

degree [2]
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Other precision/robust approaches

Techniques for implementing geometric algorithms with finite
precision computer arithmetic:

Rely on machine precision (+epsilon)

Exact Geometric Computation Y97

Arithmetic Filters FW93,DP99

Adaptive Predicates P92,S97

Topological Consistency SI92

Degree-driven algorithm design LPT99
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Precision of Voronoi Diagram/Trapeziod Graph

a

b

c
d e

f

Voronoi diagram

region

edge

vertex

– rational: deg [3]/[2]

Trapezoid graph for proximity queries

x-node()

– deg [3]

y -node()

– deg [6]

Precision of -node test:
deg [3]/[2] ≷ deg [1]

orientation() =

∣∣∣∣∣∣
[2] [3] [3]
[2] [3] [3]
[0] [1] [1]

∣∣∣∣∣∣
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Precision of Voronoi Diagram/Trapeziod Graph

a

b

c
d e

f

q

Voronoi diagram

region

edge

vertex – rational: deg [3]/[2]

Trapezoid graph for proximity queries

x-node() – deg [1]

y -node() – deg [2]

This is a degree [2] trapezoid graph.
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Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

a

b

c
d e

f

vertices – degree [1]
Voronoi vertices
snapped to half grid points.

edges
pointers to the two sites
that define the bisector,
which the edge is a subset of.

How do we build
the Implicit Voronoi diagram
with low precision?
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Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

Sweepline[F87]
– degree [6]

Divide and Conquer[GS86]
– degree [4]

Tracing[SI92]
– degree [4]

How do we build a degree [2] trapezoid graph for proximity queries
when we can’t even construct a Voronoi vertex?
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Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

General Subdivisions and Voronoi Diagrams l 105 

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram 
(dashed). 

these facts see Lee’s thesis [13]. The following obvious lemma will be important 
in the sequel. 

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay 
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L. 

In other words, the addition of new points does not introduce new edges 
between the old points. 

7.1 Delaunay Triangulations 

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane 
whose vertices are the given sites and whose faces are all triangular except for 
one, which is the complement of the convex hull of the sites. It is easily shown 
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1) 
- k triangles and 3(n - 1) - k edges. 

If no four of the sites happen to be cocircular, then their Delaunay diagram is 
a triangulation; in any case, it can be made into one by introducing zero or more 
additional edges. The subdivisions obtained in this way are called Delaunay 
triangulations of the given sites. They are characterized by either of the following 
properties. 

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge 
has a point-free circle passing through its endpoints. 

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the 
circumcircle of every interior face (triangle) is point -free. 

We will say that an edge or triangle is Delaunay when there is a point-free 
circle passing through its vertices. We speak of that circle as being witness to the 

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 
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Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

111. DESIGN OF A ROBUST ALGORITHM 

Fig. 2. 
in the incremental construction of the Voronoi diagram. 

Topological inconsistency arising from numerical errors 

p i ;  in (b) the bisector is represented by a broken line. The 
bisector crosses the boundary of R ( p i )  at two points. Let 
one of them be q. At q the bisector enters the neighboring 
region R ( p j ) .  Next, we draw the bisector of p and p j  to 
find the point of intersection (other than q )  of the bisector 
with the boundary of R ( p j ) .  In this way, we construct a 
sequence of the bisectors between p and the neighboring 
generators until we return to the boundary of the starting 
region R ( p i ) .  Removing the points and edges enclosed by 
the closed sequence of part of the bisectors, we finally 
obtain the Voronoi region of the new generator p .  

A sophisticated data structure with a quarternary tree 
and with buckets enables us to find the starting generator 
pi in constant expected time, and to keep the average 
number of edges on the boundary of the new Voronoi region 
constant [ 151. Hence, the incremental method carries out 
the addition of one generator in constant expected time, 
so that it constructs the Voronoi diagram for n generators 
in O(n) expected time. This expected time complexity is 
theoretically ensured for randomly distributed generators, 
and empirically shown for a wide class of distributions [ 151. 

The incremental method is simple in principle, and it 
is usually said that this method is also robust against 
numerical errors; indeed, a computer program based on 
the incremental method has been used for a number of 
applications [8], [ l l ] ,  [15]. 

However, the incremental-type algorithm as well as other 
algorithms is unstable when degeneracy takes place. An ex- 
ample of a situation in which the conventional incremental- 
type algorithm fails is shown in Fig. 2, where the perpen- 
dicular bisectors between the new generator and the nearest 
old generator pass near a Voronoi point, and the boundary 
of the Voronoi region of the new generator does not form 
a closed cycle because of numerical error. 

Hence, the avoidance of inconsistency arising from nu- 
merical errors is an important problem for practical imple- 
mentation of the algorithm. 

A. Placing the Highest Priority on Topological Consistency 
A Voronoi diagram can be regarded as a planar graph 

embedded in a plane. Let Gi be the embedded graph 
associated with the Voronoi diagram for i generators p l ,  p2,  
. . . , p,. From a topological point of view, the addition of a 
new generator pl to the Voronoi diagram for 1 - 1 generators 
P I ,  p2, . . ' , p l - l  can be considered the task for changing 
G1-1 to GI. This task is done by the next procedure. 

Procedure A 
Al.  
A2. 

A3. 

A4. 

Select a subset, say T ,  of the vertex set of G1-1. 
For every edge connecting a vertex in T with a 
vertex not in T ,  generate a new vertex on it and 
thus divide the edge into two edges. 
Generate new edges connecting the vertices gener- 
ated in A2 in such a way that the new edges form a 
cycle that encloses the vertices in T and them only. 
Remove the vertices in T and the edges incident 
to them (and regard the interior of the cycle as 
the Voronoi region of p l ) ,  and let the resulting 
embedded graph be G1. 

An example of the behavior of this procedure is illus- 
trated in Fig. 3(a). Suppose that the solid lines represent a 
portion of the embedded graph Gl-1 and that the four solid 
circles represent the vertices in T chosen in step Al .  Then, 
the six vertices represented by hollow circles are generated 
in step A2, the cycle represented by the broken lines is 
generated in step A3, and the substructure enclosed by this 
cycle is removed in step A4. 

Note that Procedure A is described in purely combi- 
natorial terms, so that this procedure is not affected by 
numerical errors. However, there is an ambiguity in the 
choice of T in step Al .  Next, we consider what conditions 
should be satisfied by T in order for Procedure A to be the 
correct procedure for constructing the Voronoi diagram. 

Let us consider a triangle that is large enough to include 
all the generators and regard the three vertices of this 
triangle as the additional generators. We renumber the gen- 
erators in such a way that p l ,  p2,  and p3  are the additional 
generators and p4,  p 5 ,  . . . , p ,  the original generators (now, 
n is the number of the original generators plus 3), and try 
to construct the Voronoi diagram for P = {PI, p2,  . . . , p,}. 

The Voronoi diagram for the three generators p l ,  p2,  and 
p3  consists of three infinite edges, as shown in Fig. 4(a). To 
represent the topological structure of this Voronoi diagram 
we consider the embedded graph G3 shown in Fig. 4(b), 
where we introduce a sufficiently large closed curve and 
consider that the infinite Voronoi edges have their terminal 
points on this closed curve, as represented by the small 
solid triangles. With this convention, any Voronoi region is 
explicitly represented by a cycle of the embedded graph. We 
start with G3, and add the other generators p4, p 5 ,  9 . . , p ,  
one by one. 

SUGIHARA AND IRI: CONSTRUCTION OF THE VORONOI DIAGRAM 1473 
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portion of the embedded graph Gl-1 and that the four solid 
circles represent the vertices in T chosen in step Al .  Then, 
the six vertices represented by hollow circles are generated 
in step A2, the cycle represented by the broken lines is 
generated in step A3, and the substructure enclosed by this 
cycle is removed in step A4. 

Note that Procedure A is described in purely combi- 
natorial terms, so that this procedure is not affected by 
numerical errors. However, there is an ambiguity in the 
choice of T in step Al .  Next, we consider what conditions 
should be satisfied by T in order for Procedure A to be the 
correct procedure for constructing the Voronoi diagram. 

Let us consider a triangle that is large enough to include 
all the generators and regard the three vertices of this 
triangle as the additional generators. We renumber the gen- 
erators in such a way that p l ,  p2,  and p3  are the additional 
generators and p4,  p 5 ,  . . . , p ,  the original generators (now, 
n is the number of the original generators plus 3), and try 
to construct the Voronoi diagram for P = {PI, p2,  . . . , p,}. 

The Voronoi diagram for the three generators p l ,  p2,  and 
p3  consists of three infinite edges, as shown in Fig. 4(a). To 
represent the topological structure of this Voronoi diagram 
we consider the embedded graph G3 shown in Fig. 4(b), 
where we introduce a sufficiently large closed curve and 
consider that the infinite Voronoi edges have their terminal 
points on this closed curve, as represented by the small 
solid triangles. With this convention, any Voronoi region is 
explicitly represented by a cycle of the embedded graph. We 
start with G3, and add the other generators p4, p 5 ,  9 . . , p ,  
one by one. 
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Sweepline[F87]
– degree [6]

Divide and Conquer[GS86]
– degree [4]

Tracing[SI92]
– degree [4]

How do we build a degree [2] trapezoid graph for proximity queries
when we can’t even construct a Voronoi vertex?
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Implicit Voronoi diagram [LPT99]

a

b

c
d e

f

Implicit Voronoi diagram
is disconnected.

David L. Millman, Jack Snoeyink Planar Voronoi Diagrams in Double Precision 8 / 15



Voronoi Polygon Set

a

b

c
d e

f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.

Gaps

Total size Θ(n logU).
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Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons.

Proxy trapezoidation -
trapezoidation of the proxies.

Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.

Proxy Trapezoidation
is a degree [2] trapezoid graph.

How do we build a Proxy trapezoidation with degree [2]?
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Construction Sketch

τ

α1 α3

α2

Build the Proxy trapezoidation
with a randomized incremental
construction (RIC).

Each step creates and deletes
trapezoids and introduces
and modifies proxy segments.

Maintain a history of the
trapezoids created and deleted
in the RIC in a history DAG.

Suppose trap τ is deleted and replaced by traps α1, α2, α3.
The history DAG stores τ with pointers to αi .
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Construction Sketch

Insert site si :

1 Identify proxy segment for si
2 Add new proxy to the Proxy Trapezoidation

3 Update old proxy segments

4 Update history.
τ

α1 α3

α2

Analysis:
Use Mulmuley’s general framework of stoppers and triggers
(or definers and killers from the Dutch book) to show:

1 Expected size is O(n)

2 Expected time is O(n log n logU)
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HullVertices[KS99]

Given a new site si and a trapezoid τ with sold as closest neighbor.

Compute the convex hull of the grid points
in the intersection of the Voronoi polygon for si and τ .

o

v

A geometric interpretation
of Euclid’s GCD Algorithm
allows us, in degree [2],
to find increasingly better
rational approximations
to the slope of a line.
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Result

Given

sites S = {s1, . . . , sn} and query points on a U × U.

Proxy Trapezoidation construction

Time: O(n log n logU) expected

Space: O(n) expected

Precision: degree [2]

Queries on Proxy Trapezoidation

Time: O(log n)

Precision: degree [2]
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Conclusions and Open Problems

Conclusions
Building a point location data structure:

Degree [4], O(n log n) time.

Degree [3], O(n(log n + logU)) expected time.

Degree [2], O(n(log n logU)) expected time.

Open problems

Inherent loss of efficiency with restricted predicates?

Limited precision proximity queries in higher dimension?

What other problems have limited precision solutions?

Triangulations?
Voronoi generalizations?
Ray tracing?
Approximation algorithms?
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