Computing Planar Voronoi Diagrams in Double Precision:

A Further Example of Degree-driven Algorithm Design

David L. Millman Jack Snoeyink

University of North Carolina at Chapel Hill

June 16, 2010

The Problem

Given *n* sites on a pixel grid, what is the closest site to each pixel?

How much precision is need to determine this?

E.g., Precision of the orientation test:

orientation(o, v, q)

E.g., Precision of the orientation test:

$$\mathbb{U} = \{1, \dots, U\}^2$$

$$o, v, q \in \mathbb{U}$$

orientation(o, v, q)

E.g., Precision of the orientation test:

E.g., Precision of the orientation test:

 $-v_{v}q_{x}+v_{v}o_{x}+q_{v}q_{x}-q_{v}o_{x}$

E.g., Precision of the orientation test:

orientation
$$(o, v, q) = v_x q_y - v_x o_y - o_x q_y + o_x o_y$$

$$-v_y q_x + v_y o_x + q_y q_x - q_y o_x$$

degree [2]

Other precision/robust approaches

Techniques for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision (+epsilon)
- Exact Geometric Computation Y97
- Arithmetic Filters FW93.DP99
- Adaptive Predicates P92,S97
- Topological Consistency SI92
- Degree-driven algorithm design LPT99

Voronoi diagram

- region
- edge
- vertex

Voronoi diagram

- region
- edge
- vertex

- x-node()
- y-node()

Voronoi diagram

- region
- edge
- vertex

- x-node()
- y-node()

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

- x-node()
- y-node()

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node()
- y-node()

Precision of *x*-node test: deg $[3]/[2] \ge deg [1]$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node()

Precision of *x*-node test: deg $[3]/[2] \ge deg [1]$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

- x-node() deg [3]
- y-node()

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node()

Precision of *y*-node test:

$$\mathtt{orientation()} = \begin{vmatrix} [2] & [3] & [3] \\ [2] & [3] & [3] \\ [0] & [1] & [1] \end{vmatrix}$$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node() deg [6]

Precision of *y*-node test:

$$\mathtt{orientation()} = \begin{vmatrix} [2] & [3] & [3] \\ [2] & [3] & [3] \\ [0] & [1] & [1] \end{vmatrix}$$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node() deg [6]

Precision of y-node test:

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node() deg [6]

Precision of *y*-node test: deg $[2] \ge \text{deg } [2]$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node() deg [2]

Precision of *y*-node test: deg $[2] \ge \text{deg } [2]$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node() deg [2]

Precision of *x*-node test:

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [3]
- y-node() deg [2]

Precision of *x*-node test: deg $[1] \ge \text{deg } [1]$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [1]
- y-node() deg [2]

Precision of *x*-node test: $deg [1] \ge deg [1]$

Voronoi diagram

- region
- edge
- vertex rational: deg [3]/[2]

Trapezoid graph for proximity queries

- x-node() deg [1]
- y-node() deg [2]

This is a degree [2] trapezoid graph.

Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

- vertices degree [1]
 Voronoi vertices
 snapped to half grid points.
- edges
 pointers to the two sites
 that define the bisector,
 which the edge is a subset of.

Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

- vertices degree [1]
 Voronoi vertices
 snapped to half grid points.
- edges
 pointers to the two sites
 that define the bisector,
 which the edge is a subset of.

How do we build the Implicit Voronoi diagram with low precision?

Three well known ways to build the Voronoi diagram.

Sweepline[F87] – degree [6]

Divide and Conquer[GS86]
- degree [4]

Tracing[SI92]
- degree [4]

Three well known ways to build the Voronoi diagram.

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram (dashed).

Sweepline[F87]
- degree [6]

Divide and Conquer[GS86]
- degree [4]

Tracing[SI92]
- degree [4]

Three well known ways to build the Voronoi diagram.

Sweepline[F87]
- degree [6]

Divide and Conquer[GS86]

– degree [4]

Tracing[SI92]
- degree [4]

Three well known ways to build the Voronoi diagram.

How do we build a degree [2] trapezoid graph for proximity queries when we can't even construct a Voronoi vertex?

Implicit Voronoi diagram [LPT99]

Implicit Voronoi diagram is disconnected.

Voronoi Polygon Set

 Voronoi polygon is the convex hull of the grid points in a Voronoi cell.

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps

Voronoi Polygon Set

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- Total size $\Theta(n \log U)$.

Proxy Segments

 Proxy segment represent Voronoi polygons.

Proxy Segments

 Proxy segment represent Voronoi polygons.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Trapezoidation is a degree [2] trapezoid graph.

- Proxy segment represent Voronoi polygons.
- Proxy trapezoidation trapezoidation of the proxies.
- Voronoi Trapezoidation split the trapezoids of the Proxy trapezoidation with bisectors.

Proxy Trapezoidation is a degree [2] trapezoid graph.

How do we build a Proxy trapezoidation with degree [2]?

Construction Sketch

Build the Proxy trapezoidation with a randomized incremental construction (RIC).

Each step creates and deletes trapezoids and introduces and modifies proxy segments.

Maintain a history of the trapezoids created and deleted in the RIC in a history DAG.

Suppose trap τ is deleted and replaced by traps $\alpha_1, \alpha_2, \alpha_3$. The history DAG stores τ with pointers to α_i .

Construction Sketch

Insert site *s_i*:

- 1 Identify proxy segment for si
- Add new proxy to the Proxy Trapezoidation
- Update old proxy segments
- Update history.

Construction Sketch

Insert site s_i:

- 1 Identify proxy segment for si
- Add new proxy to the Proxy Trapezoidation
- Update old proxy segments
- Update history.

Analysis:

Use Mulmuley's general framework of stoppers and triggers (or definers and killers from the Dutch book) to show:

- Expected size is O(n)
- 2 Expected time is $O(n \log n \log U)$

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Given a new site s_i and a trapezoid τ with s_{old} as closest neighbor.

Compute the convex hull of the grid points in the intersection of the Voronoi polygon for s_i and τ .

Result

Given

sites $S = \{s_1, \dots, s_n\}$ and query points on a $U \times U$.

Proxy Trapezoidation construction

• Time: $O(n \log n \log U)$ expected

• Space: O(n) expected

• Precision: degree [2]

Queries on Proxy Trapezoidation

• Time: $O(\log n)$

• Precision: degree [2]

Conclusions and Open Problems

Conclusions

Building a point location data structure:

- Degree [4], $O(n \log n)$ time.
- Degree [3], $O(n(\log n + \log U))$ expected time.
- Degree [2], $O(n(\log n \log U))$ expected time.

Open problems

- Inherent loss of efficiency with restricted predicates?
- Limited precision proximity queries in higher dimension?
- What other problems have limited precision solutions?
 - Triangulations?
 - Voronoi generalizations?
 - Ray tracing?
 - Approximation algorithms?