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The Problem

) Given n sites on a pixel grid,
what is the closest site to each pixel?

e How much precision is need to
determine this?
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Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

orientation(o,v,q)
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e - v = (v, vy)
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1 o o
orientation(o,v,q) = |1 v v,
1 g« qy
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Analyzing Precision[LPT99]

E.g., Precision of the orientation test:

. v

U={1,...,U}?
o,v,ge U

" o = (ox, 0y)

e - v = (v, vy)
q = (ax, qy)

[0}
orientation(o,v,q) = vxq, — Vx0, — 0xqy + 0x0y

—VyQx + VyOx + qyqx — Gy Ox

degree [2]
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Other precision /robust approaches

Techniques for implementing geometric algorithms with finite
precision computer arithmetic:

@ Rely on machine precision (+epsilon)
Exact Geometric Computation Y97
Arithmetic Filters FW93,DP99
Adaptive Predicates P92,597
Topological Consistency SI192

Degree-driven algorithm design LPT99
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region
o edge
(% @ vertex
*h
de °

of
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region

o edge

@ vertex
Trapezoid graph for proximity queries

@ x-node()

e e y-node()
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Precision of Voronoi Diagram/Trapeziod Graph
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@ region

o edge
@ vertex — rational: deg [3]/[2]
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region

o edge
@ vertex — rational: deg [3]/[2]

Trapezoid graph for proximity queries

@ x-node()

e e y-node()

Precision of x-node test:
deg [3]/[2] = deg [1]

David L. Millman, Jack Snoeyink Planar Voronoi Diagrams in Double Precision 5/15



Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region

o edge
@ vertex — rational: deg [3]/[2]

Trapezoid graph for proximity queries

e x-node() — deg [3]
e e y-node()

Precision of x-node test:
deg [3]/[2] = deg [1]

David L. Millman, Jack Snoeyink Planar Voronoi Diagrams in Double Precision 5/15



Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region

o edge
@ vertex — rational: deg [3]/[2]

Trapezoid graph for proximity queries

e x-node() — deg [3]
e e y-node()

David L. Millman, Jack Snoeyink Planar Voronoi Diagrams in Double Precision 5/15



Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region

o edge
@ vertex — rational: deg [3]/[2]

Trapezoid graph for proximity queries

e x-node() — deg [3]
e e y-node()

Precision of y-node test:

[2] 3] [3]
orientation() = ([2] [3] [3]

o] 1] [
Planar Voronoi Diagrams in Double Precision 5/15




Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region

o edge
@ vertex — rational: deg [3]/[2]

Trapezoid graph for proximity queries

e x-node() — deg [3]
% e y-node() — deg [6]

Precision of y-node test:

[2] 3] [3]
orientation() = ([2] [3] [3]

o] 1] [
Planar Voronoi Diagrams in Double Precision 5/15




Precision of Voronoi Diagram/Trapeziod Graph
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region
o edge
Ue @ vertex — rational: deg [3]/[2]
/ ) Trapezoid graph for proximity queries
\) . \/
w4 : @ x-node() — deg [1]
® de® | % @ y-node() — deg [2]
‘e ®
This is a degree [2] trapezoid graph.
o o of
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Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

@ vertices — degree [1]
° Voronoi vertices
. snapped to half grid points.
/ *b @ edges
pointers to the two sites
\ that define the bisector,

o de® L) which the edge is a subset of.
‘e o
o o of
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Implicit Voronoi diagram [LPT99]

The implicit Voronoi diagram is a rounded Voronoi diagram.

@ vertices — degree [1]
° Voronoi vertices
. snapped to half grid points.
/ *b @ edges
pointers to the two sites
\ that define the bisector,
o de® L which the edge is a subset of.

How do we build
e o .f the Implicit V.o.ronoi diagram
with low precision?
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Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

Sweepline[F87]
— degree [6]

Divide and Conquer[GS86]
— degree [4]

Tracing[SI92]
— degree [4]
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Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

Sweepline[F87]
— degree [6]

Divide and Conquer[GS86]
— degree [4]

Tracing[S192]
— degree [4]

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram
(dashed).
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Precision of Constructing the Voronoi Diagram

Three well known ways to build the Voronoi diagram.

Sweepline[F87]
— degree [6]

Divide and Conquer[GS86]
— degree [4]

Tracing[S192]
— degree [4]

How do we build a degree [2] trapezoid graph for proximity queries
when we can't even construct a Voronoi vertex?
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Implicit Voronoi diagram [LPT99]

U
/ °
N Implicit Voronoi diagram
is disconnected.
o de® ‘6
‘e o
o o of
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Voronoi Polygon Set

' ° @ Voronoi polygon is
.- R o - the convex hull

s of the grid points
in a Voronoi cell.
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Voronoi Polygon Set

° @ Voronoi polygon is
the convex hull

of the grid points
in a Voronoi cell.

o Gaps
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Voronoi Polygon Set

° @ Voronoi polygon is
the convex hull

of the grid points
in a Voronoi cell.

o Gaps
e Total size ©(nlog U).
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Proxy Segments

o Proxy segment -
° represent Voronoi polygons.

)
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Proxy Segments

o Proxy segment -
represent Voronoi polygons.

- @ Proxy trapezoidation -
b trapezoidation of the proxies.
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Proxy Segments

o Proxy segment -
represent Voronoi polygons.

@ Proxy trapezoidation -
trapezoidation of the proxies.

@ Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.
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Proxy Segments

o Proxy segment -
represent Voronoi polygons.

@ Proxy trapezoidation -
trapezoidation of the proxies.

@ Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.

Proxy Trapezoidation
is a degree [2] trapezoid graph.
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Proxy Segments

o Proxy segment -
represent Voronoi polygons.

@ Proxy trapezoidation -
trapezoidation of the proxies.

@ Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.

Proxy Trapezoidation
is a degree [2] trapezoid graph.

How do we build a Proxy trapezoidation with degree [2]?
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Construction Sketch

Build the Proxy trapezoidation

with a randomized incremental

construction (RIC). d %
Each step creates and deletes &
trapezoids and introduces

and modifies proxy segments. @ D

J |

Maintain a history of the hi

trapezoids created and deleted
in the RIC in a history DAG.

Suppose trap 7 is deleted and replaced by traps a1, as, as.
The history DAG stores 7 with pointers to «;.
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Construction Sketch

Insert site s;:
© Identify proxy segment for s;
@ Add new proxy to the Proxy Trapezoidation
© Update old proxy segments
@ Update history.
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Construction Sketch

Insert site s;:
© Identify proxy segment for s;
@ Add new proxy to the Proxy Trapezoidation
© Update old proxy segments
@ Update history.

Analysis:
Use Mulmuley’s general framework of stoppers and triggers
(or definers and killers from the Dutch book) to show:

@ Expected size is O(n)
@ Expected time is O(nlog nlog U)
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HullVertices[KS99]

Given a new site s; and a trapezoid 7 with s,y as closest neighbor.

Compute the convex hull of the grid points
in the intersection of the Voronoi polygon for s; and 7.

v
A geometric interpretation
of Euclid’'s GCD Algorithm
allows us, in degree [2],
to find increasingly better
rational approximations
to the slope of a line.
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HullVertices[KS99]

Given a new site s; and a trapezoid 7 with s,y as closest neighbor.

Compute the convex hull of the grid points
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/JA geometric interpretation
of Euclid’'s GCD Algorithm
allows us, in degree [2],
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Result

Given
sites S = {s1,...,5n} and query points on a U x U.

Proxy Trapezoidation construction
e Time: O(nlognlog U) expected
@ Space: O(n) expected

@ Precision: degree [2]

Queries on Proxy Trapezoidation
e Time: O(log n)

@ Precision: degree [2]
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Conclusions and Open Problems

Conclusions
Building a point location data structure:

o Degree [4], O(nlog n) time.
o Degree [3], O(n(log n + log U)) expected time.
@ Degree [2], O(n(log nlog U)) expected time.
Open problems
@ Inherent loss of efficiency with restricted predicates?
@ Limited precision proximity queries in higher dimension?
@ What other problems have limited precision solutions?

Triangulations?

Voronoi generalizations?
Ray tracing?
Approximation algorithms?
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