Two examples of degree-driven algorithm design

David L. Millman

December 22, 2009

Examples:

1. Reduced Precision Voronoi w/ Jack Snoeyink
2. Discrete Voronoi w/ Timothy M. Chan and Jack Snoeyink
Goal

Given sites $S = \{s_1, \ldots, s_n\}$ and query points on a $U \times U$ grid U.

Compute a data structure supporting post office queries in $O(\log n)$ time and double precision.
Goal

Given
sites \(S = \{s_1, \ldots, s_n\} \) and query points
on a \(U \times U \) grid \(\mathbb{U} \).

Compute
using less than quadruple precision, a data structure
supporting post office queries in \(O(\log n) \) time
and double precision
Given sites \(S = \{s_1, \ldots, s_n\} \) and query points on a \(U \times U \) grid \(\mathbb{U} \).

Compute using less than quadruple precision, a data structure supporting post office queries in \(O(\log n) \) time and double precision.

Results, assuming \(O(n \log n) < O(U^2) \)

1. RP-Voronoi - 3\(\times \) precision, \(O(n \log Un) \) expected time
2. Discrete Voronoi - 2\(\times \) precision, \(O(U^2) \) expected time
Previous work on handling numerics in CG

Techniques for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision (+epsilon)
- Exact Geometric Computation [Y97]
- Arithmetic Filters [FW93][DP99]
- Adaptive Predicates [P92][S97]
- Topological Consistency [SI92]
- Degree-driven algorithm design [LPT99]
Is \(q \) closer to \(s_1 \)?

\[
\| q - s_1 \|^2 \geq \| q - s_2 \|^2
\]

\[
s_1, \quad s_2, \quad q \in \mathbb{U}
\]

\[
s_1 = (x_1, y_1)
\]

\[
s_2 = (x_2, y_2)
\]

\[
q = (x_q, y_q)
\]
Is q closer to s_1?

$s_1, s_2, q \in \mathbb{U}$

$s_1 = (x_1, y_1)$

$s_2 = (x_2, y_2)$

$q = (x_q, y_q)$

\[
\| q - s_1 \|^2 \geq \| q - s_2 \|^2
\]

\[
(x_q - x_1)^2 + (y_q - y_1)^2 \geq (x_q - x_2)^2 + (y_q - y_2)^2
\]

degree 2
Post Office Query

Which site is q closest to?

Given
Sites $S = \{s_1, \ldots, s_n\}$ and query point q with $s_i, q \in \mathbb{U}$

Determine
The site of S closest to q
Post Office Query

Which site is \(q \) closest to?

Given
Sites \(S = \{ s_1, \ldots, s_n \} \) and query point \(q \) with \(s_i, q \in \mathbb{U} \)

Determine
The site of \(S \) closest to \(q \)

<table>
<thead>
<tr>
<th>Preprocess</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Brute force</td>
<td></td>
</tr>
<tr>
<td>Alg</td>
<td>Time</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Voronoi diagram</td>
<td></td>
</tr>
<tr>
<td>deg 4</td>
<td>(O(n \log n))</td>
</tr>
<tr>
<td>Imp Voronoi [LPT99]</td>
<td></td>
</tr>
</tbody>
</table>
Voronoi Review

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation
Voronoi Review

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation
Voronoi Review

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation
Voronoi Review

- Voronoi vertices
- Voronoi edges
- **Voronoï cell**
- Voronoi diagram
- Trapezoidation
Voronoi Review

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation
Voronoi Review

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

Two examples of degree-driven algorithm design
Predicates and Their Precision

x-node:

Is x_q left/right of vertex x_v?
degree 3

y-node:

Is q above/below segment r?
degree 6
Predicates and Their Precision

x-node:

Is x_q left/right of vertex x_v?
degree 3

y-node:

Is q closer to s_2 or s_3?
degree 2
Predicates and Their Precision

x-node:

Is x_q left/right of g.c. containing v?

degree 1

y-node:

Is q closer to s_2 or s_3?

degree 2
Implicit Voronoi Diagram [LPT99]

Two examples of degree-driven algorithm design
Predicate Degree

InCrcle
- degree 4

Orient grid points
- degree 2

Order on a line
- degree 3

Bisector intersect. left of vertical
- degree 3
Predicate Degree

InCrcle
degree 4

Orient grid points
degree 2

Order on a line
degree 3

Bisector intersect.
left of vertical
degree 3

Left/right grid cell
degree 1

Side of a bisector
degree 2
Post Office Queries with Min Precision

Given
Sites \(S = \{s_1, s_2, \ldots, s_n\} \subset \mathbb{U} \)

Construct
Implicit Voronoi with minimum precision.

Note
Precision \(<\) degree 4 precludes computing the Voronoi diagram.
Replace connected subtrees of Voronoi edges inside a cell with their convex hulls.
Construction (preview)

Given n sites in \mathbb{U}.

RP-Voronoi

Rand incr construction of the RP-Voronoi of n sites in \mathbb{U}.
- Time: $O(n \log(Un))$ expected
- Space: $O(n)$ expected
- Precision: degree 3

Implicit Voronoi

Construct LPT’s implicit Voronoi from RP-Voronoi.
- Time: $O(n)$
- Space: $O(n)$ expected
- Precision: degree 3
Invariant: Maintain RP-Voronoi as each new site is added.

Update step: Extension of [SI92], walk the deleted tree.
Operations:

- identify the grid cell containing a bisector intersection.
- determine the next edge in the tree walk.
Given
Three sites \(s_1, s_2 \) and \(s_3 \).

Find
Grid cell containing
the intersection
of bisectors \(b_{12} \) and \(b_{13} \).

Time: \(O(\log U) \)
Precision: degree 3
Operations for RIC

Operations:

- identify the grid cell containing a bisector intersection.
 Time: $O(\log U)$
 Precision: degree 3
- determine the next edge in the tree walk.
Where do we walk once we have found an intersection?
Next Edge of the Tree Walk

Where do we walk once we have found an intersection?
Where do we walk once we have found an intersection?
Operations:
- identify the grid cell containing a bisector intersection.
 Time: $O(\log U)$
 Precision: degree 3
- determine the next edge in the tree walk.
 Time: $O(\log n)$
 Precision: degree 3
Update step to add a new site s_i

(1) Find cell containing s_i
(2) Identify bisectors and cells in the new cell of s_i
(3) Walk tree inside cell of s_i
 (a) Binary search bisector for crossing
 (b) Compute grid intersection with cell s_i
RIC Facts for Voronoi
- Creates $\Theta(n)$ vertices expected
- Point location takes $\Theta(n \log n)$ expected

Charging scheme
Binary searchers for (3a) $O(\log U)$ and (3b) $O(\log n)$
charged to vertex creation.

Therefore,
It takes $O(n)$ space and $O(n(\log n + \log U))$ time
to build the reduced-precision Voronoi diagram
of n sites on a grid of size U with degree 3.
Discrete Voronoi Diagram

Given
A grid of size U and
Sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Label
Each grid point of \mathbb{U} with the closest
site of S
Discrete Voronoi Diagram

Given
A grid of size U and
Sites $S = \{s_1, \ldots, s_n\} \subset U$

Label
Each grid point of U with the closest site of S

<table>
<thead>
<tr>
<th>Alg</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute Force</td>
<td>$O(nU^2)$</td>
</tr>
<tr>
<td>Query the Voronoi diagram</td>
<td>$O(U^2 \log n)$</td>
</tr>
<tr>
<td>Nearest Neighbor Trans.</td>
<td>$O(U^2)$</td>
</tr>
<tr>
<td>[B90]</td>
<td>$O(U^2)$</td>
</tr>
<tr>
<td>Discrete Voronoi diagram</td>
<td>$O(U^2)$</td>
</tr>
<tr>
<td>[C06]</td>
<td>$\Theta(nU^2)$</td>
</tr>
<tr>
<td>GPU Hardware</td>
<td>$-\Theta(nU^2)$</td>
</tr>
</tbody>
</table>
Voronoi Polygon Set

- Partition of \mathbb{U}
- n convex polygons
 \[\{C(s_1), \ldots, C(s_n)\} \]
Voronoi Polygon Set

- Partition of \(\mathbb{U} \)
- \(n \) convex polygons \(\{C(s_1), \ldots, C(s_n)\} \)
- Where \(C(s_i) \) is the convex hull of the grid points in the Voronoi cell of \(s_i \)
Voronoi Polygon Set

- Partition of \mathbb{U}
- n convex polygons $\{C(s_1), \ldots, C(s_n)\}$
- Where $C(s_i)$ is the convex hull of the grid points in the Voronoi cell of s_i
- Grey gaps
Voronoi Polygon Set

- Partition of \bigcup
- n convex polygons
 \{\(C(s_1), \ldots, C(s_n)\}\}
- Where \(C(s_i)\) is the convex hull of the grid points in the Voronoi cell of \(s_i\)
- Grey gaps
- Proxy segment
Construct and Query Post Office Structure

- Compute Voronoi Polygon Set
- Compute trapezoid graph of proxies
- Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set
- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set
- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set
- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set
- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies
- Time: $O(n \log n)$ expected
- Space: $O(n)$ expected
- Precision: degree 2

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies
- Time: $O(n \log n)$ expected
- Space: $O(n)$ expected
- Precision: degree 2

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies
- Time: $O(n \log n)$ expected
- Space: $O(n)$ expected
- Precision: degree 2

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies
- Time: $O(n \log n)$ expected
- Space: $O(n)$ expected
- Precision: degree 2

Query the post office structure
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

Query the post office structure
- Time: $O(\log n)$ expected
- Precision: degree 2
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

Query the post office structure

- Time: $O(\log n)$ expected
- Precision: degree 2
Construct and Query Post Office Structure

- Compute Voronoi Polygon Set
- Compute trapezoid graph of proxies
- Query the post office structure
 - Time: \(O(\log n)\) expected
 - Precision: degree 2
Construct and Query Post Office Structure

- Compute Voronoi Polygon Set

- Compute trapezoid graph of proxies

- Query the post office structure
 - Time: $O(\log n)$ expected
 - Precision: degree 2
Construct and Query Post Office Structure

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

Query the post office structure
- Time: $O(\log n)$ expected
- Precision: degree 2
Results

Assuming $O(n \log n) < O(U^2)$

Compute Voronoi Polygon Set
- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$ and $O(n)$ for proxies only
- Precision: degree 2

Query Post Office Structure
- Time: $O(\log n)$ expected
- Precision: degree 2

Compute 2D discrete Voronoi
- Time: $O(U^2)$ expected time
- Space: $O(n + U)$
- Precision: degree 2
Recent Results

Construct degree 2 post office query structure, called D2-Voronoi

- Time: $O(n \log n \log U)$ expected
- Space: $O(n)$ expected
- Precision: degree 2
- Query time: $O(\log n)$
- Query precision: degree 2
Open problems

Optimized implementations and experiments for . . .
- RP-Voronoi, Discrete Voronoi, D2-Voronoi

Can we . . .
- Remove additive log U factor in RP-Voronoi?
- Remove multiplicative log U factor in D2-Voronoi?
- Or, show some lower bound inherent in reduced precision?
- generalize to higher dimension?
- treat precision as a limited resource (like time and space) when solving other algorithmic problems?
Open problems

Optimized implementations and experiments for . . .

- RP-Voronoi, Discrete Voronoi, D2-Voronoi

Can we . . .

- Remove additive log U factor in RP-Voronoi?
- Remove multiplicative log U factor in D2-Voronoi?
- Or, show some lower bound inherent in reduced precision?
- generalize to higher dimension?
- treat precision as a limited resource (like time and space) when solving other algorithmic problems?
Thank you!

Contact information
name: David L. Millman
email: dave@cs.unc.edu
site: cs.unc.edu/~dave or millman.us