Two examples of degree-driven algorithm design

David L. Millman

December 22, 2009

Examples:

- Reduced Precision Voronoi w/ Jack Snoeyink
- Ø Discrete Voronoi w/ Timothy M. Chan and Jack Snoeyink

Goal

Given sites $S = \{s_1, \ldots, s_n\}$ and query points on a $U \times U$ grid U.

Compute

a data structure supporting post office queries in $O(\log n)$ time and double precision

Goal

Given sites $S = \{s_1, \ldots, s_n\}$ and query points on a $U \times U$ grid U.

Compute

using **less than** quadruple precision, a data structure supporting post office queries in $O(\log n)$ time and double precision

Examples

Given sites $S = \{s_1, \ldots, s_n\}$ and query points on a $U \times U$ grid U.

Compute

using **less than** quadruple precision, a data structure supporting post office queries in $O(\log n)$ time and double precision

Results, assuming $O(n \log n) < O(U^2)$

- RP-Voronoi 3x precision, O(n log Un) expected time
- 2 Discrete Voronoi 2x precision, $O(U^2)$ expected time

Techniques for implementing geometric algorithms with finite precision computer arithmetic:

- Rely on machine precision (+epsilon)
- Exact Geometric Computation [Y97]
- Arithmetic Filters [FW93][DP99]
- Adaptive Predicates [P92][S97]
- Topological Consistency [SI92]
- Degree-driven algorithm design [LPT99]

Analyzing Precision[LPT99]

Is q closer to s_1 ?

Analyzing Precision[LPT99]

Is q closer to s_1 ?

Post Office Query

Which site is q closest to?

Given Sites $S = \{s_1, \ldots, s_n\}$ and query point q with $s_i, q \in \mathbb{U}$

Determine The site of *S* closest to q

Post Office Query

Which site is q closest to?

Given Sites $S = \{s_1, \ldots, s_n\}$ and query point q with $s_i, q \in \mathbb{U}$

Determine The site of S closest to q

	Preprocess		Query	
	Alg	Time	Alg	Time
Brute force	-	-	deg 2	<i>O</i> (<i>n</i>)
Voronoi diagram	deg 4	$O(n \log n)$	deg 6	$O(\log n)$
Imp Voronoi [LPT99]	deg 5	$O(n \log n)$	deg 2	$O(\log n)$

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

- Voronoi vertices
- Voronoi edges
- Voronoi cell
- Voronoi diagram
- Trapezoidation

Predicates and Their Precision

x-node:

Is x_q left/right of vertex x_v ? degree 3 y-node:

Is q above/below segment r? degree 6

Predicates and Their Precision

x-node:

Is x_q left/right of vertex x_v ? degree 3 y-node:

Is q closer to s_2 or s_3 ? degree 2

Predicates and Their Precision

x-node:

ls x_q left/right of g.c. containing v? degree 1 y-node:

Is q closer to s_2 or s_3 ? degree 2

Implicit Voronoi Diagram[LPT99]

Predicate Degree

Predicate Degree

Post Office Queries with Min Precision

Given Sites $S = \{s_1, s_2, \dots, s_n\} \subset \mathbb{U}$

Construct

Implicit Voronoi with minimum precision.

Note

Precision < degree 4 precludes computing the Voronoi diagram. Replace connected subtrees of Voronoi edges inside a cell with their convex hulls.

Construction (preview)

Given *n* sites in \mathbb{U} .

RP-Voronoi

Rand inc construction of the RP-Voronoi of n sites in \mathbb{U} .

- Time: $O(n \log(Un))$ expected
- Space: O(n) expected
- Precision: degree 3

Implicit Voronoi

Construct LPT's implicit Voronoi from RP-Voronoi.

- Time: *O*(*n*)
- Space: O(n) expected
- Precision: degree 3

Rand Inc Construction

Invariant: Maintain RP-Voronoi as each new site is added. **Update step:** Extension of [SI92], walk the deleted tree.

Operations for RIC

Operations:

- identify the grid cell containing a bisector intersection.
- determine the next edge in the tree walk.

Bisector Intersection

Time: $O(\log U)$ Precision: degree 3

Given

Three sites s_1 , s_2 and s_3 .

Find

Grid cell containing the intersection of bisectors b_{12} and b_{13} .

Operations for RIC

Operations:

- identify the grid cell containing a bisector intersection.
 - Time: *O*(log *U*) Precision: degree 3
- determine the next edge in the tree walk.

Next Edge of the Tree Walk

Where do we walk once we have found an intersection?

Next Edge of the Tree Walk

Where do we walk once we have found an intersection?

Next Edge of the Tree Walk

Where do we walk once we have found an intersection?

Operations for RIC

Operations:

• identify the grid cell containing a bisector intersection.

Time: $O(\log U)$ Precision: degree 3

• determine the next edge in the tree walk.

Time: $O(\log n)$ Precision: degree 3 Update step to add a new site s_i

- (1) Find cell containing s_i
- (2) Identify bisectors and cells in the new cell of s_i
- (3) Walk tree inside cell of s_i
 - (a) Binary search bisector for crossing
 - (b) Compute grid intersection with cell s_i

RIC Facts for Voronoi

- Creates Θ(n) vertices expected
- Point location takes $\Theta(n \log n)$ expected

Charging scheme

Binary searchers for (3a) $O(\log U)$ and (3b) $O(\log n)$ charged to vertex creation.

Therefore, It takes O(n) space and $O(n(\log n + \log U))$ time to build the reduced-precision Voronoi diagram of *n* sites on a grid of size *U* with degree 3.

Discrete Voronoi Diagram

Given A grid of size U and Sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Discrete Voronoi Diagram

Given A grid of size U and Sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Label Each grid point of $\mathbb U$ with the closest site of S

	Alg	Time
Brute Force	deg 2	$O(nU^2)$
Query the Voronoi diagram	deg 4	$O(U^2 \log n)$
Nearest Neighbor Trans. [B90]	deg 4	$O(nU^2)$ $O(U^2 \log n)$ $O(U^2)$
Discrete Voronoi diagram [C06]	deg 3	$O(U^2)$
GPU Hardware [H99]	-	$\Theta(nU^2)$

- \bullet Partition of $\mathbb U$
- *n* convex polygons
 {C(s₁),...,C(s_n)}

- \bullet Partition of $\mathbb U$
- *n* convex polygons
 {C(s₁),...,C(s_n)}
- Where $C(s_i)$ is the convex hull of the grid points in the Voronoi cell of s_i

- \bullet Partition of $\mathbb U$
- *n* convex polygons
 {C(s₁),...,C(s_n)}
- Where C(s_i) is the convex hull of the grid points in the Voronoi cell of s_i

• Grey gaps

- \bullet Partition of $\mathbb U$
- *n* convex polygons
 {C(s₁),...,C(s_n)}
- Where C(s_i) is the convex hull of the grid points in the Voronoi cell of s_i
- Grey gaps
- Proxy segment

Compute trapezoid graph of proxies

Compute Voronoi Polygon Set

- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Compute Voronoi Polygon Set

- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Compute Voronoi Polygon Set

- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Compute Voronoi Polygon Set

- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$
- Precision: degree 2

Compute trapezoid graph of proxies

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(n \log n)$ expected
- Space: O(n) expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(n \log n)$ expected
- Space: O(n) expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(n \log n)$ expected
- Space: O(n) expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(n \log n)$ expected
- Space: O(n) expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(\log n)$ expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(\log n)$ expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(\log n)$ expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(\log n)$ expected
- Precision: degree 2

Compute Voronoi Polygon Set

Compute trapezoid graph of proxies

- Time: $O(\log n)$ expected
- Precision: degree 2

Results

Assuming $O(n \log n) < O(U^2)$

Compute Voronoi Polygon Set

- Time: $O(U^2)$ expected time
- Space: $O(n \log U)$ and O(n) for proxies only
- Precision: degree 2

Query Post Office Structure

- Time: $O(\log n)$ expected
- Precision: degree 2

Compute 2D discrete Voronoi

- Time: $O(U^2)$ expected time.
- Space: O(n+U)
- Precision: degree 2

Construct degree 2 post office query structure, called D2-Voronoi

- Time: $O(n \log n \log U)$ expected
- Space: O(n) expected
- Precision: degree 2
- Query time: $O(\log n)$
- Query precision: degree 2

Optimized implementations and experiments for ...

• RP-Voronoi, Discrete Voronoi, D2-Voronoi

Can we ...

- Remove additive log U factor in RP-Voronoi?
- Remove multiplicative log U factor in D2-Voronoi?
- Or, show some lower bound inherent in reduced precision?
- generalize to higher dimension?
- treat precision as a limited resource (like time and space) when solving other algorithmic problems?

Optimized implementations and experiments for ...

• RP-Voronoi, Discrete Voronoi, D2-Voronoi

Can we ...

- Remove additive log U factor in RP-Voronoi?
- Remove multiplicative log U factor in D2-Voronoi?
- Or, show some lower bound inherent in reduced precision?
- generalize to higher dimension?
- treat precision as a limited resource (like time and space) when solving other algorithmic problems?

Thank you!

Contact information

name: David L. Millman email: dave@cs.unc.edu site: cs.unc.edu/~dave or millman.us

