Streaming processing of spatial data

David Millman

joint work with

Martin Isenburg,
Shawn Brown and
Jack Snoeyink
Scanning Artifacts

scanning of “Michelangelo’s David” courtesy of Marc Levoy
Modeling & Games

screen shot of “The village of Gnisis”, The Elder Scrolls III
Geometry processing applications

- Computer-aided design (CAD): modeling
- Graphics/Games: level of detail rendering
- Finite element (FEM): analysis
- Robotics: path planning
- Geographic Information Systems (GIS): Terrain maps \([M01,vK97]\)
 - TIN triangulation \([PFLM76]\)
 - Contour lines
 - Raster DEM \([T90]\)
LIDAR to TIN to contour or raster

0.5 Billion raw points (11 GB) via Delaunay Triangulation (40 GB) rasterized onto Digital Elevation Grid
Pipes

data in \rightarrow filter \rightarrow results out

ps aux | grep oeyi > myprocs.txt

- Easy to combine simple tools
- Avoids writes to temporary files
- OS handles buffers & time, some apps have their own buffers
- Data must stream in a format that the application expects
Advantages of pipes

- **Composable** - string modules together to solve complex tasks with high throughput.
- **Low Latency** - Allow output from the last module in the string while the first is still reading its input.
- **Memory Coherence** - As data is finalized its memory may be released.
- **Parallelism** - The operating system does load balancing for additional processors or multi-core chips.
- **Modularity** - Prototype modules can be tested and later replaced with "better" techniques.
Spatial locality

• Waldo Tobler’s 1st Law of Geography:
 – “Everything is related to everything else, but near things are more related than distant things.”
 – This law affects how data is used and how it is collected.

• Finalization: document in the data format when an item is last used.
 – For meshes
 – For point sets
TIN format
List coords for verts & indices for \triangles

Batch: Must read all coords before processing any \triangle
Streaming Mesh [105]

- Interleave vertices & triangles
- **introduce** and **finalize** vertices

<table>
<thead>
<tr>
<th>v</th>
<th>1.32</th>
<th>0.12</th>
<th>0.23</th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>1.43</td>
<td>0.23</td>
<td>0.92</td>
</tr>
<tr>
<td>v</td>
<td>0.91</td>
<td>0.15</td>
<td>0.62</td>
</tr>
<tr>
<td>f</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>done</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>0.72</th>
<th>0.34</th>
<th>0.35</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>done</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Vertices introduced = vertices not used by preceding triangles
- Vertices finalized = vertices not used by subsequent triangles
St. Matthew Statue

- standard indexed format

186 million vertices
372 million triangles
St. Matthew Statue

- standard indexed format
- streaming format

6 GB

186 million vertices
372 million triangles
Advantages of finalization

- Can flush data no longer needed
- Pipeline geometry processing
- Simple API

- Disadvantage: can’t do everything... fixed traversal; not progressive
Stream Processing
with a small memory footprint

processed region
in-cache buffer
output boundary
input boundary
unprocessed region
Points to contours in 7 modules
Points to raster DEM (TO BE DELETED)

- Need the sort phase, but can at least produce raster in strips...
- Effectively produces rasters that are larger than memory size.
Thank you!