Degree-Driven Design of Geometric Algorithms for Point Location, Proximity, and Volume Calculation

David L. Millman

University of North Carolina at Chapel Hill

October 31, 2012

Numerical Computational Geometry [Y09]

Numerical Computational Geometry [Y09]

Numerical Computational Geometry [Y09]

Point location data structure

Overview

- Compute point location data structure with double & triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision

A Motivational Problem

DoSegsIntersect:

Given two segments, defined by their 2D endpoints, with no three endpoints collinear, do the segments intersect?

A Motivational Problem

DoSegsIntersect:

Given two segments, defined by their 2D endpoints, with no three endpoints collinear, do the segments intersect?

How much arithmetic precision is needed to determine this?

Input Representation

Input: Geometric configuration specified by single precision numerical coordinates and relationships between coordinates.

$$a = (0, 4)$$

$$b = (0, 3)$$

$$q = (\frac{1}{3}, \frac{8}{3})$$

$$d = (1, 2)$$

$$c = (1, 0)$$

E.g. DoSegsIntersect problem: Numerical coordinates: (0, 4, 0, 3, 1, 0, 1, 2)Relationships between coordinates: $a = (a_x, a_y) = (0, 4)$ $b = (b_x, b_y) = (0, 3)$ $c = (c_x, c_y) = (1, 0)$ $d = (d_x, d_y) = (1, 2)$ $\overline{ac} = (a, c)$ $\overline{bd} = (b, d)$

Solving DoSegsIntersect with Construction

InterByConstruction(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear 1: if $\overrightarrow{ac} \parallel \overrightarrow{bd}$ then return NOINTERSECT 2. 3: end if 4: Point $q = \overleftarrow{ac} \cap \overrightarrow{bd}$ 5: Real $t_1 = (q_x - a_x)/(c_x - a_x)$ 6: Real $t_2 = (q_x - b_x)/(d_x - b_x)$ 7: if $t_1 \in (0, 1)$ and $t_2 \in (0, 1)$ then return INTERSECT 8: 9: else 10: return NOINTERSECT 11: end if

Solving DoSegsIntersect with Construction

InterByConstruction(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear 1: if $\overrightarrow{ac} \parallel \overrightarrow{bd}$ then return NOINTERSECT 2. 3: end if 4: Point $q = \overleftarrow{ac} \cap \overrightarrow{bd}$ 5: Real $t_1 = (q_x - a_x)/(c_x - a_x)$ 6: Real $t_2 = (q_x - b_x)/(d_x - b_x)$ 7: if $t_1 \in (0, 1)$ and $t_2 \in (0, 1)$ then return INTERSECT 8: 9: else 10: return NOINTERSECT 11: end if

Geometry \rightarrow Algebra $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

Line 4: Point $q = \overleftarrow{ac} \cap \overrightarrow{bd}$ a = (0, 4) b = (0, 3) $q = (\frac{1}{3}, \frac{8}{3})$ d = (1, 2)c = (1,0)

Geometry \rightarrow **Algebra** $\rightarrow \mathbb{R}$ arithmetic \rightarrow IEEE-754

The Intersect(*a*, *c*, *b*, *d*) construction:

The Intersect(*a*, *c*, *b*, *d*) construction:

Input: single precision coordinates of *a*, *c*, *b* and *d* defining non-parallel lines \overleftarrow{ac} and \overleftarrow{bd} . **Construct**: the intersection *q* of \overleftarrow{ac} and \overrightarrow{bd} .

$$\begin{array}{rcl} q_x & = & 0.\overline{3} \\ q_y & = & 2.\overline{6} \end{array}$$

The Intersect(*a*, *c*, *b*, *d*) construction:

$$a = (0, 4)$$

$$b = (0, 3)$$

$$q = (\frac{1}{3}, \frac{8}{3})$$

$$d = (1, 2)$$

$$c = (1, 0)$$

Input: single precision coordinates of *a*, *c*, *b* and *d* defining non-parallel lines \overleftarrow{ac} and \overleftarrow{bd} . **Construct**: the intersection *q* of \overleftarrow{ac} and \overleftarrow{bd} . In Python with *numpy.float32* type^{*a*}:

$$\begin{array}{lll} \texttt{fl}(q_{x}) &\approx & \texttt{0.33333334} \\ \texttt{fl}(q_{y}) &\approx & \texttt{2.666666675} \\ \texttt{fl}(q) &\not \in & \texttt{fl}(\overline{ac}) \And \texttt{fl}(q) \not \in \overline{ac} \\ \texttt{fl}(q) &\not \in & \texttt{fl}(\overline{bd}) \And \texttt{fl}(q) \not \in \overline{bd} \end{array}$$

^aValues are the shortest decimal fraction that rounds correctly back to the true binary value.

Real-RAM has 3 unbounded quantities. The number of:

- steps an algorithm may take
- employed memory cells an algorithm may use
- bits for representing numbers in cells

Image from: http://en.wikipedia.org/wiki/File:Maquina.png

11/51

Real-RAM has 3 unbounded quantities. The number of:

- steps an algorithm may take
- employed memory cells an algorithm may use
- bits for representing numbers in cells

Image from: http://en.wikipedia.org/wiki/File:Maquina.png

11/51

Precision used by the isRightTurn:

Input: single precision coordinates of *a*, *b* and *q*. **Return**: whether the straight line path from *a* to *b* to *q* forms a right turn.

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, \dots, U\}^2$$

 $a, b, q \in \mathbb{U}$
 $a = (a_x, a_y)$
 $b = (b_x, b_y)$
 $q = (q_x, q_y)$

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, \dots, U\}^2$$

 $a, b, q \in \mathbb{U}$
 $a = (a_x, a_y)$
 $b = (b_x, b_y)$
 $q = (q_x, q_y)$

A *predicate* is a test of the sign of a multivariate polynomial with variables from the input coordinates.

Orientation $(a, b, q) = \operatorname{sign}(b_x q_y - b_x a_y - a_x q_y - q_x b_y + q_x a_y + a_x b_y)$

 $\begin{array}{l} \mbox{Orientation} < 0 \mbox{ Right turn} \\ \mbox{Orientation} > 0 \mbox{ Left turn} \\ \mbox{Orientation} = 0 \mbox{ Collinear} \end{array}$

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, \dots, U\}^2$$

 $a, b, q \in \mathbb{U}$
 $a = (a_x, a_y)$
 $b = (b_x, b_y)$
 $q = (q_x, q_y)$

A *predicate* is a test of the sign of a multivariate polynomial with variables from the input coordinates.

Orientation(a, b, q) = sign($b_x q_y - b_x a_y - a_x q_y - q_x b_y + q_x a_y + a_x b_y$) = sign(2)

 $\begin{array}{l} \mbox{Orientation} < 0 \mbox{ Right turn} \\ \mbox{Orientation} > 0 \mbox{ Left turn} \\ \mbox{Orientation} = 0 \mbox{ Collinear} \end{array}$

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, ..., U\}^2$$

 $a, b, q \in \mathbb{U}$
 $a = (a_x, a_y)$
 $b = (b_x, b_y)$
 $q = (q_x, q_y)$

Orientation is degree 2

A *predicate* is a test of the sign of a multivariate polynomial with variables from the input coordinates.

Orientation(a, b, q) = sign($b_x q_y - b_x a_y - a_x q_y - q_x b_y + q_x a_y + a_x b_y$) = sign((2))

 $\begin{array}{l} \mbox{Orientation} < 0 \mbox{ Right turn} \\ \mbox{Orientation} > 0 \mbox{ Left turn} \\ \mbox{Orientation} = 0 \mbox{ Collinear} \end{array}$

Consider multivariate poly $Q(x_1, ..., x_n)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1).

Consider multivariate poly $Q(x_1, ..., x_n)$ of deg *k* and *s* monomials (for simplicity, assume that coefficient of each monomial is 1). Let each x_i be an ℓ -bit integer $\implies x_i \in \{-2^{\ell}, ..., 2^{\ell}\}$.

Consider multivariate poly $Q(x_1, ..., x_n)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1). Let each x_i be an ℓ -bit integer $\implies x_i \in \{-2^{\ell}, ..., 2^{\ell}\}$. Each monomial is in $\{-2^{\ell k}, ..., 2^{\ell k}\}$.

Consider multivariate poly $Q(x_1, ..., x_n)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1). Let each x_i be an ℓ -bit integer $\implies x_i \in \{-2^{\ell}, ..., 2^{\ell}\}$. Each monomial is in $\{-2^{\ell k}, ..., 2^{\ell k}\}$. The value of $Q(x_1, ..., x_n)$ is in $\{-s2^{\ell k}, ..., s2^{\ell k}\}$.

Consider multivariate poly $Q(x_1, ..., x_n)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1). Let each x_i be an ℓ -bit integer $\implies x_i \in \{-2^\ell, ..., 2^\ell\}$. Each monomial is in $\{-2^{\ell k}, ..., 2^{\ell k}\}$. The value of $Q(x_1, ..., x_n)$ is in $\{-s2^{\ell k}, ..., s2^{\ell k}\}$. $\implies \ell k + \log(s) + O(1)$ bits are enough to evaluate Q.

Consider multivariate poly $Q(x_1, ..., x_n)$ of deg k and s monomials (for simplicity, assume that coefficient of each monomial is 1). Let each x_i be an ℓ -bit integer $\implies x_i \in \{-2^{\ell}, ..., 2^{\ell}\}$. Each monomial is in $\{-2^{\ell k}, ..., 2^{\ell k}\}$. The value of $Q(x_1, ..., x_n)$ is in $\{-s2^{\ell k}, ..., s2^{\ell k}\}$. $\implies \ell k + \log(s) + O(1)$ bits are enough to evaluate Q.

Note that ℓk bits is enough to evaluate the sign.

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, ..., U\}^2$$

 $a, b, q \in \mathbb{U}$
 $a = (a_x, a_y)$
 $b = (b_x, b_y)$
 $q = (q_x, q_y)$

Orientation is degree 2

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, \dots, U\}^2$$

 $a, b, q \in \mathbb{U}$
 $a = (a_x, a_y)$
 $b = (b_x, b_y)$
 $q = (q_x, q_y)$

Orientation is degree 2

isRightTurn(a, b, q):

- 1: if Orientation(a, b, q) < 0 then
- 2: return True
- 3: else
- 4: return FALSE
- 5: end if

Precision used by the isRightTurn:

$$\mathbb{U} = \{1, \dots, U\}^2$$

$$a, b, q \in \mathbb{U}$$

$$a = (a_x, a_y)$$

$$b = (b_x, b_y)$$

$$q = (q_x, q_y)$$

Orientation is degree 2 isRightTurn is degree 2

isRightTurn(a, b, q):

- 1: if Orientation(a, b, q) < 0 then
- 2: return True
- 3: else
- 4: return False
- 5: end if

Solving DoSegsIntersect without Construction

InterByOrientation(a, c, b, d): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

- 1: if Orientation(a, c, b) \neq Orientation(a, c, d) and Orientation(b, d, a) \neq Orientation(b, d, c) then
- 2: return Intersect
- 3: **else**
- 4: return NOINTERSECT
- 5: end if

Solving DoSegsIntersect without Construction

InterByOrientation(*a*, *c*, *b*, *d*): Determine if \overline{ac} and \overline{bd} intersect; if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

- 1: if Orientation $(a, c, b) \neq$ Orientation(a, c, d) and Orientation $(b, d, a) \neq$ Orientation(b, d, c) then
- 2: return INTERSECT

In summary:

Orientation predicate is degree 2 InterByOrientation algorithm is degree 2 InterByConstruction algorithm is degree 3

More Predicates

Some other well known predicates:

Techniques for implementing geometric algorithms using finite precision computer arithmetic:

- Rely on machine precision (+ ϵ) [NAT90,LTH86,KMP*08]
- Topological Consistency [S99, S01, SI90, SI92, SII*00]
- Exact Geometric Computation [Y97]
 - Software based arithmetic [CORE, LEDA, GMP, MPFR]
 - Predicate eval schemes [ABO*97, FW93, BBP01, S97]
 - Degree-driven algorithm design [LPT99] and [BP00,BS00,C00,MS01,MS09,MS10,MV11,MLC*12]

Overview

- Compute point location data structure with double & triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision

Point Location Data Structure

Given A grid of size U and sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Compute

A data structure capable of returning the closest $s_i \in S$ to a query point $q \in \mathbb{U}$ in $O(\log n)$ time
Voronoi diagram

region

Voronoi diagram

- region
- edge

Voronoi diagram

- region
- edge
- vertex

 d^{\bullet} С.

Voronoi diagram

- region
- edge
- vertex

Voronoi diagram

- region
- edge
- vertex

Voronoi diagram

- region
- edge
- vertex

- x-node() degree 3
- y-node() degree 6

Voronoi diagram

- region
- edge
- vertex

- x-node() degree 3
- y-node() degree 6

Voronoi diagram

- region
- edge
- vertex

Trapezoid graph for proximity queries [LPT99]

- x-node() degree 1
- y-node() degree 2

The *Implicit Voronoi diagram* is a degree 2 trapezoid graph.

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87] - degree 6

Divide and Conquer[GS86] - degree 4

Tracing[SI92] - degree 4

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Implicit Voronoi Diagram [LPT99]

Implicit Voronoi diagram is disconnected.

Reduced Precision Voronoi [MS09]

Given n sites in \mathbb{U}

RP-Voronoi randomized incremental construction

- Time: O(n log(Un)) expected
- Space: O(n) expected
- Precision: degree 3

LPT's Implicit Voronoi constructed from RP-Voronoi

- Time: *O*(*n*)
- Space: O(n)
- Precision: degree 3

Reduced Precision Voronoi [MS09]

 Voronoi polygon is the convex hull of the grid points in a Voronoi cell.

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- *Voronoi polygon set* is the collection of the *n* Voronoi polygons.

- Voronoi polygon is the convex hull of the grid points in a Voronoi cell.
- Gaps
- *Voronoi polygon set* is the collection of the *n* Voronoi polygons.
- Total size of the Voronoi polygon set is ⊖(n log U).

 Proxy segment represent Voronoi polygons

 Proxy segment represent Voronoi polygons

- Proxy segment represent Voronoi polygons
- Proxy trapezoidation trapezoidation of the proxies

- Proxy segment represent Voronoi polygons
- Proxy trapezoidation trapezoidation of the proxies
- Voronoi trapezoidation split the trapezoids of the proxy trapezoidation with bisectors

- Proxy segment represent Voronoi polygons
- Proxy trapezoidation trapezoidation of the proxies
- Voronoi trapezoidation split the trapezoids of the proxy trapezoidation with bisectors

Proxy trapezoidation is a degree 2 trapezoid graph supporting $O(\log n)$ time and degree 2 queries.

Point Location[MS09,MS10]

Given n sites in \mathbb{U}

RP-Voronoi randomized incremental construction

- Time: $O(n \log(Un))$ expected
- Space: O(n) expected
- Precision: degree 3

LPT's Implicit Voronoi constructed from RP-Voronoi

- Time: *O*(*n*)
- Space: O(n)
- Precision: degree 3

Queries on Proxy Trapezoidation

- Time: $O(\log n)$
- Precision: degree 2

Overview

- Compute point location data structure with double & triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision

Nearest Neighbor Transform

Given A grid of size U and Sites $S = \{s_1, \ldots, s_n\} \subset \mathbb{U}$

Label

Each grid point of $\mathbb U$ with the closest site of S

Nearest Neighbor Transform

Given A grid of size U and Sites $S = \{s_1, \dots, s_n\} \subset \mathbb{U}$

Label

Each grid point of $\mathbb U$ with the closest site of S

Algorithm	Precision	Time
Brute Force	degree 2	$O(nU^2)$
Nearest Neighbor Trans. [B90]	degree 5	$O(U^2)$
Discrete Voronoi diagram [C06, MQR03]	degree 3	$O(U^2)$
GPU Hardware [H99]	-	$\Theta(nU^2)$

Problem (NNTrans-min)

For each pixel $q \in U^2$, find the site with lowest index $s_i \in S$ minimizing $||q - s_i||$.

Problem (NNTrans-min)

For each pixel $q \in U^2$, find the site with lowest index $s_i \in S$ minimizing $||q - s_i||$.

$$\|q - s_i\|^2 < \|q - s_j\|^2$$

 $q \cdot q - 2q \cdot s_i + s_i \cdot s_i < q \cdot q - 2q \cdot s_j + s_j \cdot s_j$
 $2x_i x_q + 2y_i y_q - x_i^2 - y_i^2 > 2x_j x_q + 2y_j y_q - x_j^2 - y_j^2.$

Problem (NNTrans-min)

For each pixel $q \in U^2$, find the site with lowest index $s_i \in S$ minimizing $||q - s_i||$.

$$\|q-s_i\|^2 < \|q-s_j\|^2 \ q\cdot q - 2q\cdot s_i + s_i \cdot s_i < q\cdot q - 2q\cdot s_j + s_j \cdot s_j \ 2x_ix_q + 2y_iy_q - x_i^2 - y_i^2 > 2x_jx_q + 2y_jy_q - x_j^2 - y_j^2.$$

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_i \in S$ maximizing $2x_ix_q + 2y_iy_q - x_i^2 - y_i^2$.

Problem Transformations: Part 2

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_i \in S$ maximizing $2x_ix_q + 2y_iy_q - x_i^2 - y_i^2$.

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_i \in S$ maximizing $2x_ix_q + 2y_iy_q - x_i^2 - y_i^2$.

For a fixed, $y_q = Y$

$$2x_ix_q + 2y_iy_q - x_i^2 - y_i^2 > 2x_jx_q + 2y_jy_q - x_j^2 - y_j^2$$

$$2x_ix_q + (2y_iY - x_i^2 - y_i^2) > 2x_jx_q + (2y_jY - x_j^2 - y_j^2)$$

$$(1)x_q + (2) > (1)x_q + (2)$$

Problem (NNTrans-max)

For each pixel q, find the site with lowest index $s_i \in S$ maximizing $2x_ix_q + 2y_iy_q - x_i^2 - y_i^2$.

For a fixed, $y_q = Y$

$$2x_ix_q + 2y_iy_q - x_i^2 - y_i^2 > 2x_jx_q + 2y_jy_q - x_j^2 - y_j^2$$

$$2x_ix_q + (2y_iY - x_i^2 - y_i^2) > 2x_jx_q + (2y_jY - x_j^2 - y_j^2)$$

$$(1)x_q + (2) > (1)x_q + (2)$$

Problem (DUE-Y)

For a fixed $1 \le Y \le U$, and for each $1 \le X \le U$, find the smallest index of a line of L_Y with maximum y coordinate at x = X.

Problem Transformations: Part 2

Problem (DUE-Y)

For a fixed $1 \le Y \le U$, and for each $1 \le X \le U$, find the smallest index of a line of L_Y with maximum y coordinate at x = X.

Sketch of NNTransform Algorithm

Three Algorithms for Computing the DUE [MLCS12]

Given *m* lines of the form y = (1)x + (2)

Discrete Upper Envelope construction

- DUE-DEG3: O(m + U) time and degree 3
- DUE-ULgU: $O(m + U \log U)$ time and degree 2
- DUE-U:O(m + U) expected time and degree 2

Three Algorithms for Computing the DUE [MLCS12]

Given *m* lines of the form y = (1)x + (2)

Discrete Upper Envelope construction

- DUE-DEG3: O(m + U) time and degree 3
- DUE-ULgU: $O(m + U \log U)$ time and degree 2
- DUE-U:O(m + U) expected time and degree 2

For each algorithm:

- Reduce to at most O(U) lines.
- Compute DUE of lines.

Three Algs for Computing the NNTransform [MLCS12]

Given n sites from \mathbb{U}

Nearest Neighbor Transform construction

- Deg3: $O(U^2)$ time and degree 3
- UsqLgU: $O(U^2 \log U)$ time and degree 2
- Usq: $O(U^2)$ expected time and degree 2

Three Algs for Computing the NNTransform [MLCS12]

Given n sites from \mathbb{U}

Nearest Neighbor Transform construction

- Deg3: $O(U^2)$ time and degree 3
- UsqLgU: $O(U^2 \log U)$ time and degree 2
- Usq: $O(U^2)$ expected time and degree 2

Boundaries extracted from 120 images of the MPEG 7 CE Shape-1 Part B data set.

NNTransform [MLCS12]

Given *m* lines of the form y = (1)x + (2)

Discrete Upper Envelope construction

- DUE-DEG3: O(m + U) time and degree 3
- DUE-ULgU: $O(m + U \log U)$ time and degree 2
- DUE-U:O(m + U) expected time and degree 2

Given *n* sites from \mathbb{U}

Nearest Neighbor Transform construction

- Deg3: $O(U^2)$ time and degree 3
- UsqLgU: $O(U^2 \log U)$ time and degree 2
- Usq: $O(U^2)$ expected time and degree 2

Overview

- Compute point location data structure with double & triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision

Motivation and Background

Image from Idaho National Lab, Flickr

Image from: T.M. Sutton, et al., The MC21 Monte Carlo Transport Code, Proceedings of M&C + SNA 2007

Primitives: Signed Quadratic Surfaces

$$f(x, y, z) < A_1 x^2 + A_2 y^2 + A_3 z^2 + A_4 xy + A_5 xz + A_6 yz + A_7 x + A_8 y + A_9 z + A_{10}$$

Model Representation Basic Component: Boolean Formula

A *basic component* defined by intersections and unions of signed surfaces.

Basic comp: B(N), \cup and \cap of signed surfaces

Basic comp: B(N), \cup and \cap of signed surfaces Restricted comp: $R(N) = B(N) \cap R(N_p)$

Basic comp: B(N), \cup and \cap of signed surfaces Restricted comp: $R(N) = B(N) \cap R(N_p)$ Hierarchical comp: $H(N) = R(N) \setminus (\bigcup_i R(N_{ci}))$

Basic comp: B(N), \cup and \cap of signed surfaces Restricted comp: $R(N) = B(N) \cap R(N_p)$ Hierarchical comp: $H(N) = R(N) \setminus (\bigcup_i R(N_{ci}))$

Volume Calculation

Given

A component hierarchy and an accuracy

Compute

The volume of each hierarchical component to accuracy Operations on signed surfaces *s* with a query point *q* or an axis-aligned box *b*:

• Inside(s, q) - return if q is inside s.

 Classify(s, b) – return if the points in b are inside, outside or both with respect to s.

• Integrate(s, b) – return the volume of $s \cap b$.

Inside(s, q) - return if query point q is inside signed surface s.

$$egin{aligned} q &= (q_1, q_2, q_3) \ s &= (s_1, s_2, \dots, s_{10}) \ p_i, s_i \in \{-U, \dots, U\} \end{aligned}$$

$$\begin{array}{l} \texttt{PointInside}(s,q) = s_1 q_1^2 + s_2 q_2^2 + s_3 q_3^2 \\ + s_4 q_1 q_2 + s_5 q_1 q_3 + s_6 q_2 q_3 \\ + s_7 q_1 + s_8 q_2 + s_9 q_3 + s_{10} \\ = \operatorname{sign}(\mathfrak{(3)}) \end{array}$$

Classify **Test**

Classify(s, q) – return if the points in axis-aligned box b are inside, outside or both with respect to signed surface s.

$$egin{aligned} b &= (b_1, b_2, \dots, b_6) \ s &= (s_1, s_2, \dots, s_{10}) \ b_i, s_i \in \{-U, \dots, U\} \end{aligned}$$

Classify(*s*, *b*), check if:

- any Vertices of b are on different sides of s. Degree 3
- any Edge of b intersects s. Degree 4
- any Face b intersects s. Degree 5

Classify **Test**

Classify(s, q) – return if the points in axis-aligned box b are inside, outside or both with respect to signed surface s.

$$egin{aligned} b &= (b_1, b_2, \dots, b_6) \ s &= (s_1, s_2, \dots, s_{10}) \ b_i, s_i \in \{-U, \dots, U\} \end{aligned}$$

Classify(*s*, *b*), check if:

- any Vertices of b are on different sides of s. Degree 3
- any Edge of b intersects s. Degree 4
- any Face b intersects s. Degree 5

Face **Test**

Test if a face *f* intersects *s*.

Let *c* be the intersection curve of the plane *P* containing *f* and *s*.

$$c(x,y) = \begin{pmatrix} x & y & 1 \end{pmatrix} \begin{pmatrix} (1) & (1) & (2) \\ (1) & (1) & (2) \\ (2) & (2) & (3) \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

Face **Test**

Test if a face *f* intersects *s*.

Let *c* be the intersection curve of the plane *P* containing *f* and *s*.

$$c(x,y) = \begin{pmatrix} x & y & 1 \end{pmatrix} \begin{pmatrix} (1) & (1) & (2) \\ (1) & (1) & (2) \\ (2) & (2) & (3) \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

To determine if s intersects f, test properties of the matrix.

Test if *c* is an ellipse:
$$\operatorname{sign} \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} \end{pmatrix} = \operatorname{sign}(2)$$

Test if *c* is real or img: $\operatorname{sign} \begin{pmatrix} \begin{vmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 2 & 2 & 3 \end{vmatrix} \end{pmatrix} = \operatorname{sign}(5)$

Experiments: Models

L-Pipe12, L-Pipe100, and L-Pipe10k

Experiments: Accuracy and Time for L-Pipe100

Algorithm	Requested Accuracy	Error	Time (sec)
MC	1e-4	<1e-4	790.28
New	1e-4	<1e-6	1.41

Experiments: Accuracy and Time for L-Pipe100

Algorithm	Requested Accuracy	Error	Time (sec)
MC	1e-4	<1e-4	790.28
New	1e-4	<1e-6	1.41

Experiments: Larger Model for L-Pipe10k

L-Pipe10k is similar to L-Pipe100 but defined by over 40k surfaces.

Algorithm	Requested Accuracy	Error	Time
MC	1e-4	-	$> 12.00h^{*}$
New	1e-4	<1e-6	9.43 s

*Halted after 12 hours. Extrapolating from other experiments, 76 hours.
Overview

- Compute point location data structure with double & triple precision
- Compute nearest neighbor transform with double precision
- Compute volumes of CSG models with five-fold precision

David L. Millman dave@cs.unc.edu http://cs.unc.edu/~dave

