
Degree-Driven Design of Geometric Algorithms for
Point Location, Proximity, and Volume Calculation

David L. Millman

University of North Carolina at Chapel Hill

October 31, 2012

David L. Millman Degree-Driven Geometric Algorithms 1 / 51

Numerical Computational Geometry [Y09]

a

b

c
d e

f

Point location data structure

David L. Millman Degree-Driven Geometric Algorithms 2 / 51

Numerical Computational Geometry [Y09]

q

a

b

c
d e

f

Point location data structure

David L. Millman Degree-Driven Geometric Algorithms 2 / 51

Numerical Computational Geometry [Y09]

q

a

b

c
d e

f

q

a

b

c
d e

f

Point location data structure

David L. Millman Degree-Driven Geometric Algorithms 2 / 51

Overview

David L. Millman Degree-Driven Geometric Algorithms 3 / 51

a

b

c
d e

f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision

A Motivational Problem

DoSegsIntersect:
Given two segments,
defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?

How much arithmetic precision is
needed to determine this?

David L. Millman Degree-Driven Geometric Algorithms 4 / 51

A Motivational Problem

DoSegsIntersect:
Given two segments,
defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?

How much arithmetic precision is
needed to determine this?

David L. Millman Degree-Driven Geometric Algorithms 4 / 51

Input Representation

Input: Geometric configuration specified by
single precision numerical coordinates and
relationships between coordinates.

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4) E.g. DoSegsIntersect problem:
Numerical coordinates:

(0,4,0,3,1,0,1,2)
Relationships between coordinates:

a = (ax ,ay) = (0,4)
b = (bx ,by) = (0,3)
c = (cx , cy) = (1,0)
d = (dx ,dy) = (1,2)
ac = (a, c)
bd = (b,d)

David L. Millman Degree-Driven Geometric Algorithms 5 / 51

Solving DoSegsIntersect with Construction

InterByConstruction(a, c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if←→ac ‖

←→
bd then

2: return NOINTERSECT
3: end if
4: Point q =

←→ac ∩
←→
bd

5: Real t1 = (qx − ax)/(cx − ax)
6: Real t2 = (qx − bx)/(dx − bx)
7: if t1 ∈ (0,1) and t2 ∈ (0,1) then
8: return INTERSECT
9: else

10: return NOINTERSECT
11: end if

David L. Millman Degree-Driven Geometric Algorithms 6 / 51

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

Solving DoSegsIntersect with Construction

InterByConstruction(a, c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if←→ac ‖

←→
bd then

2: return NOINTERSECT
3: end if
4: Point q =

←→ac ∩
←→
bd

5: Real t1 = (qx − ax)/(cx − ax)
6: Real t2 = (qx − bx)/(dx − bx)
7: if t1 ∈ (0,1) and t2 ∈ (0,1) then
8: return INTERSECT
9: else

10: return NOINTERSECT
11: end if

David L. Millman Degree-Driven Geometric Algorithms 6 / 51

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

Geometry→ Algebra→ R arithmetic→ IEEE-754

Line 4: Point q =
←→ac ∩

←→
bd

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

David L. Millman Degree-Driven Geometric Algorithms 7 / 51

Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

Input: single precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q
of←→ac and

←→
bd .

qx =

∣∣∣∣axcy − cxay ax − cx
bxdy − dxby bx − dx

∣∣∣∣∣∣∣∣ax − cx ay − cy
bx − dx by − dy

∣∣∣∣ ,qy =

∣∣∣∣axcy − cxay ay − cy
bxdy − dxby by − dy

∣∣∣∣∣∣∣∣ax − cx ay − cy
bx − dx by − dy

∣∣∣∣
David L. Millman Degree-Driven Geometric Algorithms 8 / 51

Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4) Input: single precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q
of←→ac and

←→
bd .

qx = 0.3
qy = 2.6

David L. Millman Degree-Driven Geometric Algorithms 9 / 51

Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

Input: single precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q
of←→ac and

←→
bd .

In Python with numpy.float32 typea:

fl(qx) ≈ 0.33333334
fl(qy) ≈ 2.66666675
fl(q) 6∈ fl(ac) & fl(q) 6∈ ac
fl(q) 6∈ fl(bd) & fl(q) 6∈ bd

a
Values are the shortest decimal fraction that rounds

correctly back to the true binary value.

David L. Millman Degree-Driven Geometric Algorithms 10 / 51

Real-RAM

Real-RAM has 3 unbounded quantities.
The number of:

1 steps an algorithm may take
2 memory cells an algorithm may use
3 bits for representing numbers in cells

David L. Millman Degree-Driven Geometric Algorithms 11 / 51
Image from: http://en.wikipedia.org/wiki/File:Maquina.png

http://en.wikipedia.org/wiki/File:Maquina.png

Real-RAM

Real-RAM has 3 unbounded quantities.
The number of:

1 steps an algorithm may take
2 memory cells an algorithm may use
3 bits for representing numbers in cells

David L. Millman Degree-Driven Geometric Algorithms 11 / 51
Image from: http://en.wikipedia.org/wiki/File:Maquina.png

http://en.wikipedia.org/wiki/File:Maquina.png

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

Input: single precision coordinates
of a, b and q.
Return: whether the straight line
path from a to b to q forms a right
turn.

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Orientation(a, b, q) = sign(bx qy − bx ay − ax qy − qx by + qx ay + ax by)

= sign(2©)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2
isRightTurn is degree 2

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Orientation(a, b, q) = sign(bx qy − bx ay − ax qy − qx by + qx ay + ax by)

= sign(2©)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2
isRightTurn is degree 2

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Orientation(a, b, q) = sign(bx qy − bx ay − ax qy − qx by + qx ay + ax by)

= sign(2©)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2
isRightTurn is degree 2

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Orientation(a, b, q) = sign(bx qy − bx ay − ax qy − qx by + qx ay + ax by)

= sign(2©)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Orientation(a, b, q) = sign(bx qy − bx ay − ax qy − qx by + qx ay + ax by)

= sign(2©)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .
Each monomial is in {−2`k , . . . ,2`k}.
The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.
=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .

Each monomial is in {−2`k , . . . ,2`k}.
The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.
=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .
Each monomial is in {−2`k , . . . ,2`k}.

The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.
=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .
Each monomial is in {−2`k , . . . ,2`k}.
The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.

=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .
Each monomial is in {−2`k , . . . ,2`k}.
The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.
=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .
Each monomial is in {−2`k , . . . ,2`k}.
The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.
=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

isRightTurn(a, b, q):
1: if Orientation(a, b, q) < 0 then
2: return TRUE
3: else
4: return FALSE
5: end if

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2

isRightTurn is degree 2

isRightTurn(a, b, q):
1: if Orientation(a, b, q) < 0 then
2: return TRUE
3: else
4: return FALSE
5: end if

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

U = {1, . . . ,U}2
a,b,q ∈ U
a = (ax ,ay)
b = (bx ,by)
q = (qx ,qy)

Orientation is degree 2
isRightTurn is degree 2

isRightTurn(a, b, q):
1: if Orientation(a, b, q) < 0 then
2: return TRUE
3: else
4: return FALSE
5: end if

David L. Millman Degree-Driven Geometric Algorithms 12 / 51

Solving DoSegsIntersect without Construction
InterByOrientation(a, c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if Orientation(a, c,b) 6= Orientation(a, c,d) and
Orientation(b,d ,a) 6= Orientation(b,d , c) then

2: return INTERSECT

3: else
4: return NOINTERSECT

5: end if

David L. Millman Degree-Driven Geometric Algorithms 13 / 51

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

Solving DoSegsIntersect without Construction
InterByOrientation(a, c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if Orientation(a, c,b) 6= Orientation(a, c,d) and
Orientation(b,d ,a) 6= Orientation(b,d , c) then

2: return INTERSECT

3: else
4: return NOINTERSECT

5: end if

David L. Millman Degree-Driven Geometric Algorithms 13 / 51

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = (13 ,
8
3)

a = (0, 4)

In summary:
Orientation predicate is degree 2
InterByOrientation algorithm is degree 2
InterByConstruction algorithm is degree 3

More Predicates

Some other well known predicates:

q

ab

Orientation(a, b, q)
degree 2

q

a

bBab

SideOfBisector(Bab, q)
degree 2

q

a

b

c

InCircle(a, b, c, q)
degree 4

a

bBab

d c

Bcd

`

OrderOnLine(Bab,Bcd , `)

degree 3

David L. Millman Degree-Driven Geometric Algorithms 14 / 51

Precision/Robust Techniques

Techniques for implementing geometric algorithms
using finite precision computer arithmetic:

Rely on machine precision (+ε) [NAT90,LTH86,KMP*08]
Topological Consistency [S99, S01, SI90, SI92, SII*00]
Exact Geometric Computation [Y97]

Software based arithmetic [CORE, LEDA, GMP, MPFR]
Predicate eval schemes [ABO*97, FW93, BBP01, S97]
Degree-driven algorithm design [LPT99]

and [BP00,BS00,C00,MS01,MS09,MS10,MV11,MLC*12]

David L. Millman Degree-Driven Geometric Algorithms 15 / 51

Overview

David L. Millman Degree-Driven Geometric Algorithms 16 / 51

a

b

c
d e

f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision

Point Location Data Structure

a

b

c
d e

f

Given
A grid of size U and
sites S = {s1, . . . , sn} ⊂ U

Compute
A data structure capable of
returning the closest si ∈ S to a
query point q ∈ U in O(log n) time

David L. Millman Degree-Driven Geometric Algorithms 17 / 51

Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region

edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree
y -node() – degree

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region
edge

vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree
y -node() – degree

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree
y -node() – degree

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

q

a

b

c
d e

f

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]
x-node() – degree 3
y -node() – degree

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

q

a

b

c
d e

f

v1

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree 3

y -node() – degree 6

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

q

v2

a

b

c
d e

f

v1

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree 3
y -node() – degree 6

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree 3
y -node() – degree 6

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries [LPT99]

x-node() – degree 1
y -node() – degree 2

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.

David L. Millman Degree-Driven Geometric Algorithms 18 / 51

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
– degree 6

General Subdivisions and Voronoi Diagrams l 105

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram
(dashed).

these facts see Lee’s thesis [13]. The following obvious lemma will be important
in the sequel.

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L.

In other words, the addition of new points does not introduce new edges
between the old points.

7.1 Delaunay Triangulations

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane
whose vertices are the given sites and whose faces are all triangular except for
one, which is the complement of the convex hull of the sites. It is easily shown
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1)
- k triangles and 3(n - 1) - k edges.

If no four of the sites happen to be cocircular, then their Delaunay diagram is
a triangulation; in any case, it can be made into one by introducing zero or more
additional edges. The subdivisions obtained in this way are called Delaunay
triangulations of the given sites. They are characterized by either of the following
properties.

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge
has a point-free circle passing through its endpoints.

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the
circumcircle of every interior face (triangle) is point -free.

We will say that an edge or triangle is Delaunay when there is a point-free
circle passing through its vertices. We speak of that circle as being witness to the

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

Divide and Conquer[GS86]
– degree 4

111. DESIGN OF A ROBUST ALGORITHM

Fig. 2.
in the incremental construction of the Voronoi diagram.

Topological inconsistency arising from numerical errors

p i ; in (b) the bisector is represented by a broken line. The
bisector crosses the boundary of R (p i) at two points. Let
one of them be q. At q the bisector enters the neighboring
region R (p j) . Next, we draw the bisector of p and p j to
find the point of intersection (other than q) of the bisector
with the boundary of R (p j) . In this way, we construct a
sequence of the bisectors between p and the neighboring
generators until we return to the boundary of the starting
region R (p i) . Removing the points and edges enclosed by
the closed sequence of part of the bisectors, we finally
obtain the Voronoi region of the new generator p .

A sophisticated data structure with a quarternary tree
and with buckets enables us to find the starting generator
pi in constant expected time, and to keep the average
number of edges on the boundary of the new Voronoi region
constant [151. Hence, the incremental method carries out
the addition of one generator in constant expected time,
so that it constructs the Voronoi diagram for n generators
in O(n) expected time. This expected time complexity is
theoretically ensured for randomly distributed generators,
and empirically shown for a wide class of distributions [151.

The incremental method is simple in principle, and it
is usually said that this method is also robust against
numerical errors; indeed, a computer program based on
the incremental method has been used for a number of
applications [8], [l l] , [15].

However, the incremental-type algorithm as well as other
algorithms is unstable when degeneracy takes place. An ex-
ample of a situation in which the conventional incremental-
type algorithm fails is shown in Fig. 2, where the perpen-
dicular bisectors between the new generator and the nearest
old generator pass near a Voronoi point, and the boundary
of the Voronoi region of the new generator does not form
a closed cycle because of numerical error.

Hence, the avoidance of inconsistency arising from nu-
merical errors is an important problem for practical imple-
mentation of the algorithm.

A. Placing the Highest Priority on Topological Consistency
A Voronoi diagram can be regarded as a planar graph

embedded in a plane. Let Gi be the embedded graph
associated with the Voronoi diagram for i generators p l , p2,
. . . , p,. From a topological point of view, the addition of a
new generator pl to the Voronoi diagram for 1 - 1 generators
P I , p2, . . ' , p l - l can be considered the task for changing
G1-1 to GI. This task is done by the next procedure.

Procedure A
Al.
A2.

A3.

A4.

Select a subset, say T , of the vertex set of G1-1.
For every edge connecting a vertex in T with a
vertex not in T , generate a new vertex on it and
thus divide the edge into two edges.
Generate new edges connecting the vertices gener-
ated in A2 in such a way that the new edges form a
cycle that encloses the vertices in T and them only.
Remove the vertices in T and the edges incident
to them (and regard the interior of the cycle as
the Voronoi region of p l) , and let the resulting
embedded graph be G1.

An example of the behavior of this procedure is illus-
trated in Fig. 3(a). Suppose that the solid lines represent a
portion of the embedded graph Gl-1 and that the four solid
circles represent the vertices in T chosen in step Al . Then,
the six vertices represented by hollow circles are generated
in step A2, the cycle represented by the broken lines is
generated in step A3, and the substructure enclosed by this
cycle is removed in step A4.

Note that Procedure A is described in purely combi-
natorial terms, so that this procedure is not affected by
numerical errors. However, there is an ambiguity in the
choice of T in step Al . Next, we consider what conditions
should be satisfied by T in order for Procedure A to be the
correct procedure for constructing the Voronoi diagram.

Let us consider a triangle that is large enough to include
all the generators and regard the three vertices of this
triangle as the additional generators. We renumber the gen-
erators in such a way that p l , p2, and p3 are the additional
generators and p4, p 5 , . . . , p , the original generators (now,
n is the number of the original generators plus 3), and try
to construct the Voronoi diagram for P = {PI, p2, . . . , p,}.

The Voronoi diagram for the three generators p l , p2, and
p3 consists of three infinite edges, as shown in Fig. 4(a). To
represent the topological structure of this Voronoi diagram
we consider the embedded graph G3 shown in Fig. 4(b),
where we introduce a sufficiently large closed curve and
consider that the infinite Voronoi edges have their terminal
points on this closed curve, as represented by the small
solid triangles. With this convention, any Voronoi region is
explicitly represented by a cycle of the embedded graph. We
start with G3, and add the other generators p4, p 5 , 9 . . , p ,
one by one.

SUGIHARA AND IRI: CONSTRUCTION OF THE VORONOI DIAGRAM 1473

Tracing[SI92]
– degree 4

David L. Millman Degree-Driven Geometric Algorithms 19 / 51

Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
– degree 6

General Subdivisions and Voronoi Diagrams l 105

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram
(dashed).

these facts see Lee’s thesis [13]. The following obvious lemma will be important
in the sequel.

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L.

In other words, the addition of new points does not introduce new edges
between the old points.

7.1 Delaunay Triangulations

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane
whose vertices are the given sites and whose faces are all triangular except for
one, which is the complement of the convex hull of the sites. It is easily shown
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1)
- k triangles and 3(n - 1) - k edges.

If no four of the sites happen to be cocircular, then their Delaunay diagram is
a triangulation; in any case, it can be made into one by introducing zero or more
additional edges. The subdivisions obtained in this way are called Delaunay
triangulations of the given sites. They are characterized by either of the following
properties.

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge
has a point-free circle passing through its endpoints.

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the
circumcircle of every interior face (triangle) is point -free.

We will say that an edge or triangle is Delaunay when there is a point-free
circle passing through its vertices. We speak of that circle as being witness to the

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985.

Divide and Conquer[GS86]
– degree 4

111. DESIGN OF A ROBUST ALGORITHM

Fig. 2.
in the incremental construction of the Voronoi diagram.

Topological inconsistency arising from numerical errors

p i ; in (b) the bisector is represented by a broken line. The
bisector crosses the boundary of R (p i) at two points. Let
one of them be q. At q the bisector enters the neighboring
region R (p j) . Next, we draw the bisector of p and p j to
find the point of intersection (other than q) of the bisector
with the boundary of R (p j) . In this way, we construct a
sequence of the bisectors between p and the neighboring
generators until we return to the boundary of the starting
region R (p i) . Removing the points and edges enclosed by
the closed sequence of part of the bisectors, we finally
obtain the Voronoi region of the new generator p .

A sophisticated data structure with a quarternary tree
and with buckets enables us to find the starting generator
pi in constant expected time, and to keep the average
number of edges on the boundary of the new Voronoi region
constant [151. Hence, the incremental method carries out
the addition of one generator in constant expected time,
so that it constructs the Voronoi diagram for n generators
in O(n) expected time. This expected time complexity is
theoretically ensured for randomly distributed generators,
and empirically shown for a wide class of distributions [151.

The incremental method is simple in principle, and it
is usually said that this method is also robust against
numerical errors; indeed, a computer program based on
the incremental method has been used for a number of
applications [8], [l l] , [15].

However, the incremental-type algorithm as well as other
algorithms is unstable when degeneracy takes place. An ex-
ample of a situation in which the conventional incremental-
type algorithm fails is shown in Fig. 2, where the perpen-
dicular bisectors between the new generator and the nearest
old generator pass near a Voronoi point, and the boundary
of the Voronoi region of the new generator does not form
a closed cycle because of numerical error.

Hence, the avoidance of inconsistency arising from nu-
merical errors is an important problem for practical imple-
mentation of the algorithm.

A. Placing the Highest Priority on Topological Consistency
A Voronoi diagram can be regarded as a planar graph

embedded in a plane. Let Gi be the embedded graph
associated with the Voronoi diagram for i generators p l , p2,
. . . , p,. From a topological point of view, the addition of a
new generator pl to the Voronoi diagram for 1 - 1 generators
P I , p2, . . ' , p l - l can be considered the task for changing
G1-1 to GI. This task is done by the next procedure.

Procedure A
Al.
A2.

A3.

A4.

Select a subset, say T , of the vertex set of G1-1.
For every edge connecting a vertex in T with a
vertex not in T , generate a new vertex on it and
thus divide the edge into two edges.
Generate new edges connecting the vertices gener-
ated in A2 in such a way that the new edges form a
cycle that encloses the vertices in T and them only.
Remove the vertices in T and the edges incident
to them (and regard the interior of the cycle as
the Voronoi region of p l) , and let the resulting
embedded graph be G1.

An example of the behavior of this procedure is illus-
trated in Fig. 3(a). Suppose that the solid lines represent a
portion of the embedded graph Gl-1 and that the four solid
circles represent the vertices in T chosen in step Al . Then,
the six vertices represented by hollow circles are generated
in step A2, the cycle represented by the broken lines is
generated in step A3, and the substructure enclosed by this
cycle is removed in step A4.

Note that Procedure A is described in purely combi-
natorial terms, so that this procedure is not affected by
numerical errors. However, there is an ambiguity in the
choice of T in step Al . Next, we consider what conditions
should be satisfied by T in order for Procedure A to be the
correct procedure for constructing the Voronoi diagram.

Let us consider a triangle that is large enough to include
all the generators and regard the three vertices of this
triangle as the additional generators. We renumber the gen-
erators in such a way that p l , p2, and p3 are the additional
generators and p4, p 5 , . . . , p , the original generators (now,
n is the number of the original generators plus 3), and try
to construct the Voronoi diagram for P = {PI, p2, . . . , p,}.

The Voronoi diagram for the three generators p l , p2, and
p3 consists of three infinite edges, as shown in Fig. 4(a). To
represent the topological structure of this Voronoi diagram
we consider the embedded graph G3 shown in Fig. 4(b),
where we introduce a sufficiently large closed curve and
consider that the infinite Voronoi edges have their terminal
points on this closed curve, as represented by the small
solid triangles. With this convention, any Voronoi region is
explicitly represented by a cycle of the embedded graph. We
start with G3, and add the other generators p4, p 5 , 9 . . , p ,
one by one.

SUGIHARA AND IRI: CONSTRUCTION OF THE VORONOI DIAGRAM 1473

Tracing[SI92]
– degree 4

David L. Millman Degree-Driven Geometric Algorithms 19 / 51

How do we build
a degree 2 trapezoid graph
for proximity queries
when we can’t even construct
a Voronoi vertex?

Implicit Voronoi Diagram [LPT99]

a

b

c
d e

f

Implicit Voronoi diagram
is disconnected.

David L. Millman Degree-Driven Geometric Algorithms 20 / 51

Reduced Precision Voronoi [MS09]

Given n sites in U

RP-Voronoi randomized incremental construction
Time: O(n log(Un)) expected
Space: O(n) expected
Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi

Time: O(n)

Space: O(n)

Precision: degree 3

David L. Millman Degree-Driven Geometric Algorithms 21 / 51

Reduced Precision Voronoi [MS09]

Given n sites in U

RP-Voronoi randomized incremental construction
Time: O(n log(Un)) expected
Space: O(n) expected
Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi

Time: O(n)

Space: O(n)

Precision: degree 3

David L. Millman Degree-Driven Geometric Algorithms 21 / 51

	

Contract trees of Voronoi vertices
that occur in the same grid cell
into an rp-vertex.

Voronoi Polygon Set

a

b

c
d e

f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.

Gaps
Voronoi polygon set is
the collection of the n
Voronoi polygons.
Total size of the
Voronoi polygon set
is Θ(n log U).

David L. Millman Degree-Driven Geometric Algorithms 22 / 51

Voronoi Polygon Set

a

b

c
d e

f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.
Gaps

Voronoi polygon set is
the collection of the n
Voronoi polygons.
Total size of the
Voronoi polygon set
is Θ(n log U).

David L. Millman Degree-Driven Geometric Algorithms 22 / 51

Voronoi Polygon Set

a

b

c
d e

f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.
Gaps
Voronoi polygon set is
the collection of the n
Voronoi polygons.

Total size of the
Voronoi polygon set
is Θ(n log U).

David L. Millman Degree-Driven Geometric Algorithms 22 / 51

Voronoi Polygon Set

a

b

c
d e

f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.
Gaps
Voronoi polygon set is
the collection of the n
Voronoi polygons.
Total size of the
Voronoi polygon set
is Θ(n log U).

David L. Millman Degree-Driven Geometric Algorithms 22 / 51

Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons

Proxy trapezoidation -
trapezoidation of the proxies

Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.

David L. Millman Degree-Driven Geometric Algorithms 23 / 51

Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons

Proxy trapezoidation -
trapezoidation of the proxies

Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.

David L. Millman Degree-Driven Geometric Algorithms 23 / 51

Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons

Proxy trapezoidation -
trapezoidation of the proxies

Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.

David L. Millman Degree-Driven Geometric Algorithms 23 / 51

Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons

Proxy trapezoidation -
trapezoidation of the proxies

Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.

David L. Millman Degree-Driven Geometric Algorithms 23 / 51

Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons

Proxy trapezoidation -
trapezoidation of the proxies

Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.

David L. Millman Degree-Driven Geometric Algorithms 23 / 51

Point Location[MS09,MS10]

Given n sites in U

RP-Voronoi randomized incremental construction
Time: O(n log(Un)) expected
Space: O(n) expected
Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi

Time: O(n)

Space: O(n)

Precision: degree 3

Queries on Proxy Trapezoidation

Time: O(log n)

Precision: degree 2

David L. Millman Degree-Driven Geometric Algorithms 24 / 51

Overview

David L. Millman Degree-Driven Geometric Algorithms 25 / 51

a

b

c
d e

f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision

Nearest Neighbor Transform

s3

s4

s7s2

s1

s6

s5

Given
A grid of size U and
Sites S = {s1, . . . , sn} ⊂ U

Label
Each grid point of U with the
closest site of S

Algorithm Precision Time
Brute Force degree 2 O(nU2)
Nearest Neighbor Trans. [B90] degree 5 O(U2)
Discrete Voronoi diagram [C06, MQR03] degree 3 O(U2)
GPU Hardware [H99] - Θ(nU2)

David L. Millman Degree-Driven Geometric Algorithms 26 / 51

Nearest Neighbor Transform

s3

s4

s7s2

s1

s6

s5

Given
A grid of size U and
Sites S = {s1, . . . , sn} ⊂ U

Label
Each grid point of U with the
closest site of S

Algorithm Precision Time
Brute Force degree 2 O(nU2)
Nearest Neighbor Trans. [B90] degree 5 O(U2)
Discrete Voronoi diagram [C06, MQR03] degree 3 O(U2)
GPU Hardware [H99] - Θ(nU2)

David L. Millman Degree-Driven Geometric Algorithms 26 / 51

Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q ∈ U2, find the site with lowest index si ∈ S
minimizing ‖q − si‖.

‖q − si‖2 < ‖q − sj‖2

q · q − 2q · si + si · si < q · q − 2q · sj + sj · sj

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j .

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

David L. Millman Degree-Driven Geometric Algorithms 27 / 51

Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q ∈ U2, find the site with lowest index si ∈ S
minimizing ‖q − si‖.

‖q − si‖2 < ‖q − sj‖2

q · q − 2q · si + si · si < q · q − 2q · sj + sj · sj

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j .

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

David L. Millman Degree-Driven Geometric Algorithms 27 / 51

Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q ∈ U2, find the site with lowest index si ∈ S
minimizing ‖q − si‖.

‖q − si‖2 < ‖q − sj‖2

q · q − 2q · si + si · si < q · q − 2q · sj + sj · sj

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j .

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

David L. Millman Degree-Driven Geometric Algorithms 27 / 51

Problem Transformations: Part 2

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

For a fixed, yq = Y

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j

2xixq + (2yiY − x2
i − y2

i) > 2xjxq + (2yjY − x2
j − y2

j)

1©xq + 2© > 1©xq + 2©

Problem (DUE-Y)
For a fixed 1 ≤ Y ≤ U, and for each 1 ≤ X ≤ U,
find the smallest index of a line of LY with
maximum y coordinate at x = X.

David L. Millman Degree-Driven Geometric Algorithms 28 / 51

Problem Transformations: Part 2

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

For a fixed, yq = Y

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j

2xixq + (2yiY − x2
i − y2

i) > 2xjxq + (2yjY − x2
j − y2

j)

1©xq + 2© > 1©xq + 2©

Problem (DUE-Y)
For a fixed 1 ≤ Y ≤ U, and for each 1 ≤ X ≤ U,
find the smallest index of a line of LY with
maximum y coordinate at x = X.

David L. Millman Degree-Driven Geometric Algorithms 28 / 51

Problem Transformations: Part 2

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

For a fixed, yq = Y

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j

2xixq + (2yiY − x2
i − y2

i) > 2xjxq + (2yjY − x2
j − y2

j)

1©xq + 2© > 1©xq + 2©

Problem (DUE-Y)
For a fixed 1 ≤ Y ≤ U, and for each 1 ≤ X ≤ U,
find the smallest index of a line of LY with
maximum y coordinate at x = X.

David L. Millman Degree-Driven Geometric Algorithms 28 / 51

Problem Transformations: Part 2

Problem (DUE-Y)
For a fixed 1 ≤ Y ≤ U, and for each 1 ≤ X ≤ U,
find the smallest index of a line of LY with
maximum y coordinate at x = X.

s1

s2

s3

s4

`71

`73

`72

`74
Y = 7

David L. Millman Degree-Driven Geometric Algorithms 29 / 51

Sketch of NNTransform Algorithm

s3

s4

s6

s7

Y = 7

`73

`76

`74

`77
s3

s4

s7s2

s1

Y = 7s6

s5

David L. Millman Degree-Driven Geometric Algorithms 30 / 51

Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form y = 1©x + 2©

Discrete Upper Envelope construction

DUE-DEG3: O(m + U) time and degree 3
DUE-ULgU: O(m + U log U) time and degree 2
DUE-U:O(m + U) expected time and degree 2

For each algorithm:
1 Reduce to at most O(U) lines.
2 Compute DUE of lines.

David L. Millman Degree-Driven Geometric Algorithms 31 / 51

Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form y = 1©x + 2©

Discrete Upper Envelope construction

DUE-DEG3: O(m + U) time and degree 3
DUE-ULgU: O(m + U log U) time and degree 2
DUE-U:O(m + U) expected time and degree 2

For each algorithm:
1 Reduce to at most O(U) lines.
2 Compute DUE of lines.

David L. Millman Degree-Driven Geometric Algorithms 31 / 51

Three Algs for Computing the NNTransform [MLCS12]

Given n sites from U

Nearest Neighbor Transform construction

Deg3: O(U2) time and degree 3
UsqLgU: O(U2 log U) time and degree 2
Usq: O(U2) expected time and degree 2

s3

s4

s6

s7

Y = 7

`73

`76

`74

`77
s3

s4

s7s2

s1

Y = 7s6

s5

David L. Millman Degree-Driven Geometric Algorithms 32 / 51

Three Algs for Computing the NNTransform [MLCS12]

Given n sites from U

Nearest Neighbor Transform construction

Deg3: O(U2) time and degree 3
UsqLgU: O(U2 log U) time and degree 2
Usq: O(U2) expected time and degree 2

s3

s4

s6

s7

Y = 7

`73

`76

`74

`77
s3

s4

s7s2

s1

Y = 7s6

s5

David L. Millman Degree-Driven Geometric Algorithms 32 / 51

Experiments: Part 1

Maurer

Usq

UsqLgU

Deg3

David L. Millman Degree-Driven Geometric Algorithms 33 / 51

Experiments: Part 2

Boundaries extracted
from 120 images of the
MPEG 7 CE Shape-1
Part B data set.

David L. Millman Degree-Driven Geometric Algorithms 34 / 51

Experiments: Part 2

David L. Millman Degree-Driven Geometric Algorithms 34 / 51

Experiments: Part 2

UsqLgUUsq

Time per pixel

David L. Millman Degree-Driven Geometric Algorithms 34 / 51

NNTransform [MLCS12]

Given m lines of the form y = 1©x + 2©

Discrete Upper Envelope construction

DUE-DEG3: O(m + U) time and degree 3
DUE-ULgU: O(m + U log U) time and degree 2
DUE-U:O(m + U) expected time and degree 2

Given n sites from U

Nearest Neighbor Transform construction

Deg3: O(U2) time and degree 3
UsqLgU: O(U2 log U) time and degree 2
Usq: O(U2) expected time and degree 2

David L. Millman Degree-Driven Geometric Algorithms 35 / 51

Overview

David L. Millman Degree-Driven Geometric Algorithms 36 / 51

a

b

c
d e

f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision

Motivation and Background

Image from Idaho National Lab, Flickr Image from: T.M. Sutton, et al.,
The MC21 Monte Carlo Transport Code,
Proceedings of M&C + SNA 2007

David L. Millman Degree-Driven Geometric Algorithms 37 / 51

Primitives: Signed Quadratic Surfaces

f (x , y , z) < A1x2 + A2y2 + A3z2

+ A4xy + A5xz + A6yz
+ A7x + A8y + A9z + A10

David L. Millman Degree-Driven Geometric Algorithms 38 / 51

Model Representation
Basic Component: Boolean Formula

A basic component defined by
intersections and unions of signed surfaces.

(−sblue ∩ sgrey ∩ sgreen ∩ −sorange) ∪ −syellow

David L. Millman Degree-Driven Geometric Algorithms 39 / 51

Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), ∪ and ∩ of signed surfaces

Restricted comp: R(N) = B(N) ∩ R(Np)
Hierarchical comp: H(N) = R(N) \ (

⋃
i R(Nci))

Np

Nc4Nc3Nc2Nc1

N

N

David L. Millman Degree-Driven Geometric Algorithms 40 / 51

Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), ∪ and ∩ of signed surfaces
Restricted comp: R(N) = B(N) ∩ R(Np)

Hierarchical comp: H(N) = R(N) \ (
⋃

i R(Nci))

Np

Np

Nc4Nc3Nc2Nc1

N

N

David L. Millman Degree-Driven Geometric Algorithms 40 / 51

Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), ∪ and ∩ of signed surfaces
Restricted comp: R(N) = B(N) ∩ R(Np)
Hierarchical comp: H(N) = R(N) \ (

⋃
i R(Nci))

Np

Np

Nc4Nc3Nc2Nc1

N
Nci

N

David L. Millman Degree-Driven Geometric Algorithms 40 / 51

Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), ∪ and ∩ of signed surfaces
Restricted comp: R(N) = B(N) ∩ R(Np)
Hierarchical comp: H(N) = R(N) \ (

⋃
i R(Nci))

Np

Nci

N

H(N)

David L. Millman Degree-Driven Geometric Algorithms 40 / 51

Volume Calculation

Np

Np

Nc4Nc3Nc2Nc1

N
Nci

N
Given
A component hierarchy
and an accuracy

Compute
The volume of each
hierarchical component
to accuracy

David L. Millman Degree-Driven Geometric Algorithms 41 / 51

Operations on Surfaces

Operations on signed surfaces s with a
query point q or an axis-aligned box b:

Inside(s,q) – return if q is inside s.

Classify(s,b) – return if the points in b are
inside, outside or both with respect to s.

Integrate(s,b) – return the volume of s ∩ b.
.

David L. Millman Degree-Driven Geometric Algorithms 42 / 51

Inside Test

Inside(s,q) – return if query point q is inside signed surface s.

s q
q = (q1,q2,q3)
s = (s1, s2, . . . , s10)
pi , si ∈ {−U, . . . ,U}

PointInside(s,q) = s1q2
1 + s2q2

2 + s3q2
3

+ s4q1q2 + s5q1q3 + s6q2q3

+ s7q1 + s8q2 + s9q3 + s10

= sign(3©)

David L. Millman Degree-Driven Geometric Algorithms 43 / 51

Classify Test

Classify(s,q) – return if the points in axis-aligned box b are
inside, outside or both with respect to signed surface s.

s qs

b

b = (b1,b2, . . . ,b6)
s = (s1, s2, . . . , s10)
bi , si ∈ {−U, . . . ,U}

Classify(s,b), check if:
1 any Vertices of b are on different sides of s. – Degree 3
2 any Edge of b intersects s. – Degree 4
3 any Face b intersects s. – Degree 5

David L. Millman Degree-Driven Geometric Algorithms 44 / 51

Classify Test

Classify(s,q) – return if the points in axis-aligned box b are
inside, outside or both with respect to signed surface s.

s q
b

b = (b1,b2, . . . ,b6)
s = (s1, s2, . . . , s10)
bi , si ∈ {−U, . . . ,U}

Classify(s,b), check if:
1 any Vertices of b are on different sides of s. – Degree 3
2 any Edge of b intersects s. – Degree 4
3 any Face b intersects s. – Degree 5

David L. Millman Degree-Driven Geometric Algorithms 44 / 51

Face Test

Test if a face f intersects s.

Let c be the intersection curve of
the plane P containing f and s.

c(x , y) =
(
x y 1

) 1© 1© 2©
1© 1© 2©
2© 2© 3©

x
y
1

To determine if s intersects f , test properties of the matrix.

Test if c is an ellipse: sign
(∣∣∣∣ 1© 1©

1© 1©

∣∣∣∣) = sign(2©)

Test if c is real or img: sign

∣∣∣∣∣∣
1© 1© 2©
1© 1© 2©
2© 2© 3©

∣∣∣∣∣∣
 = sign(5©)

David L. Millman Degree-Driven Geometric Algorithms 45 / 51

Face Test

Test if a face f intersects s.

Let c be the intersection curve of
the plane P containing f and s.

c(x , y) =
(
x y 1

) 1© 1© 2©
1© 1© 2©
2© 2© 3©

x
y
1

To determine if s intersects f , test properties of the matrix.

Test if c is an ellipse: sign
(∣∣∣∣ 1© 1©

1© 1©

∣∣∣∣) = sign(2©)

Test if c is real or img: sign

∣∣∣∣∣∣
1© 1© 2©
1© 1© 2©
2© 2© 3©

∣∣∣∣∣∣
 = sign(5©)

David L. Millman Degree-Driven Geometric Algorithms 45 / 51

Algorithm Animation

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

BoxBox

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

Box

Cyl

Box

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

Box

Cyl

Box

MC

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

Box

Cyl

Box

MC

2Plane

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

Box

Cyl

Box

MC

2Plane

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

Box

Cyl

Box

MC

BunCyl

2Plane

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Algorithm Animation

Box

Cyl

Box

MC

BunCyl

2Plane

MC

2Plane 1Plane

Cyl

Box2Plane

MC

David L. Millman Degree-Driven Geometric Algorithms 46 / 51

Experiments: Models

Cube

L-Pipe12,
L-Pipe100, and L-Pipe10k

DrillCyl

David L. Millman Degree-Driven Geometric Algorithms 47 / 51

Experiments: Accuracy and Time for L-Pipe100

Algorithm Requested Error Time
Accuracy (sec)

MC 1e-4 <1e-4 790.28
New 1e-4 <1e-6 1.41

David L. Millman Degree-Driven Geometric Algorithms 48 / 51

Experiments: Accuracy and Time for L-Pipe100

Algorithm Requested Error Time
Accuracy (sec)

MC 1e-4 <1e-4 790.28
New 1e-4 <1e-6 1.41

David L. Millman Degree-Driven Geometric Algorithms 48 / 51

Experiments: Larger Model for L-Pipe10k

L-Pipe10k is similar to L-Pipe100 but
defined by over 40k surfaces.

Algorithm Requested Error Time
Accuracy

MC 1e-4 - > 12.00h∗

New 1e-4 <1e-6 9.43s

*Halted after 12 hours. Extrapolating from other experiments, 76 hours.

David L. Millman Degree-Driven Geometric Algorithms 49 / 51

Overview

David L. Millman Degree-Driven Geometric Algorithms 50 / 51

a

b

c
d e

f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision

Contact

David L. Millman
dave@cs.unc.edu

http://cs.unc.edu/˜dave

David L. Millman Degree-Driven Geometric Algorithms 51 / 51

http://cs.unc.edu/~dave

