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Overview
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Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision



A Motivational Problem

DoSegsIntersect:
Given two segments,
defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?

How much arithmetic precision is
needed to determine this?
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Input Representation

Input: Geometric configuration specified by
single precision numerical coordinates and
relationships between coordinates.

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4) E.g. DoSegsIntersect problem:
Numerical coordinates:

(0,4,0,3,1,0,1,2)
Relationships between coordinates:

a = (ax ,ay ) = (0,4)
b = (bx ,by ) = (0,3)
c = (cx , cy ) = (1,0)
d = (dx ,dy ) = (1,2)
ac = (a, c)
bd = (b,d)
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Solving DoSegsIntersect with Construction

InterByConstruction(a, c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if←→ac ‖

←→
bd then

2: return NOINTERSECT
3: end if
4: Point q =

←→ac ∩
←→
bd

5: Real t1 = (qx − ax )/(cx − ax )
6: Real t2 = (qx − bx )/(dx − bx )
7: if t1 ∈ (0,1) and t2 ∈ (0,1) then
8: return INTERSECT
9: else

10: return NOINTERSECT
11: end if
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Geometry→ Algebra→ R arithmetic→ IEEE-754

Line 4: Point q =
←→ac ∩

←→
bd

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)
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Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

Input: single precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q
of←→ac and

←→
bd .

qx =

∣∣∣∣axcy − cxay ax − cx
bxdy − dxby bx − dx

∣∣∣∣∣∣∣∣ax − cx ay − cy
bx − dx by − dy

∣∣∣∣ ,qy =

∣∣∣∣axcy − cxay ay − cy
bxdy − dxby by − dy

∣∣∣∣∣∣∣∣ax − cx ay − cy
bx − dx by − dy

∣∣∣∣
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Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4) Input: single precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q
of←→ac and

←→
bd .

qx = 0.3
qy = 2.6
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Geometry→ Algebra→ R arithmetic→ IEEE-754

The Intersect(a, c,b,d) construction:

c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

Input: single precision coordinates
of a, c,b and d defining
non-parallel lines←→ac and

←→
bd .

Construct: the intersection q
of←→ac and

←→
bd .

In Python with numpy.float32 typea:

fl(qx ) ≈ 0.33333334
fl(qy ) ≈ 2.66666675
fl(q) 6∈ fl(ac) & fl(q) 6∈ ac
fl(q) 6∈ fl(bd) & fl(q) 6∈ bd

a
Values are the shortest decimal fraction that rounds

correctly back to the true binary value.
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Real-RAM

Real-RAM has 3 unbounded quantities.
The number of:

1 steps an algorithm may take
2 memory cells an algorithm may use
3 bits for representing numbers in cells

David L. Millman Degree-Driven Geometric Algorithms 11 / 51
Image from: http://en.wikipedia.org/wiki/File:Maquina.png

http://en.wikipedia.org/wiki/File:Maquina.png


Real-RAM

Real-RAM has 3 unbounded quantities.
The number of:

1 steps an algorithm may take
2 memory cells an algorithm may use
3 bits for representing numbers in cells

David L. Millman Degree-Driven Geometric Algorithms 11 / 51
Image from: http://en.wikipedia.org/wiki/File:Maquina.png

http://en.wikipedia.org/wiki/File:Maquina.png


Analyzing Precision [LPT99]

Precision used by the isRightTurn:

q

ab

Input: single precision coordinates
of a, b and q.
Return: whether the straight line
path from a to b to q forms a right
turn.

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Orientation(a, b, q) = sign(bx qy − bx ay − ax qy − qx by + qx ay + ax by )

= sign( 2©)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear
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How the degree relates to precision:

Consider multivariate poly Q(x1, . . . , xn) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each xi be an `-bit integer =⇒ xi ∈ {−2`, . . . ,2`} .
Each monomial is in {−2`k , . . . ,2`k}.
The value of Q(x1, . . . , xn) is in {−s2`k , . . . , s2`k}.
=⇒ `k + log(s) + O(1) bits are enough to evaluate Q.

Note that `k bits is enough to evaluate the sign.
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ab
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Solving DoSegsIntersect without Construction
InterByOrientation(a, c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear
1: if Orientation(a, c,b) 6= Orientation(a, c,d) and
Orientation(b,d ,a) 6= Orientation(b,d , c) then

2: return INTERSECT

3: else
4: return NOINTERSECT

5: end if
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c = (1, 0)

d = (1, 2)

b = (0, 3)

q = ( 13 ,
8
3 )

a = (0, 4)

In summary:
Orientation predicate is degree 2
InterByOrientation algorithm is degree 2
InterByConstruction algorithm is degree 3



More Predicates

Some other well known predicates:

q

ab

Orientation(a, b, q)
degree 2

q

a

bBab

SideOfBisector(Bab, q)
degree 2

q

a

b

c

InCircle(a, b, c, q)
degree 4

a

bBab

d c

Bcd

`

OrderOnLine(Bab,Bcd , `)

degree 3

David L. Millman Degree-Driven Geometric Algorithms 14 / 51



Precision/Robust Techniques

Techniques for implementing geometric algorithms
using finite precision computer arithmetic:

Rely on machine precision (+ε) [NAT90,LTH86,KMP*08]
Topological Consistency [S99, S01, SI90, SI92, SII*00]
Exact Geometric Computation [Y97]

Software based arithmetic [ CORE, LEDA, GMP, MPFR ]
Predicate eval schemes [ ABO*97, FW93, BBP01, S97 ]
Degree-driven algorithm design [LPT99]

and [BP00,BS00,C00,MS01,MS09,MS10,MV11,MLC*12]
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Overview
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Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision



Point Location Data Structure

a

b

c
d e

f

Given
A grid of size U and
sites S = {s1, . . . , sn} ⊂ U

Compute
A data structure capable of
returning the closest si ∈ S to a
query point q ∈ U in O(log n) time
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Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region

edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree
y -node() – degree

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.
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Precision of Voronoi Diagram/Trapezoid Graph

q

a

b

c
d e

f

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]
x-node() – degree 3
y -node() – degree

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.
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Precision of Voronoi Diagram/Trapezoid Graph

q

a

b

c
d e

f

v1

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]

x-node() – degree 3

y -node() – degree 6

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.
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Precision of Voronoi Diagram/Trapezoid Graph

q

v2

a

b

c
d e

f

v1

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries

[LPT99]
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Precision of Voronoi Diagram/Trapezoid Graph

a

b

c
d e

f

Voronoi diagram
region
edge
vertex

Trapezoid graph for
proximity queries [LPT99]

x-node() – degree 1
y -node() – degree 2

The Implicit Voronoi diagram
is a degree 2 trapezoid graph.
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Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
– degree 6

General Subdivisions and Voronoi Diagrams l 105 

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram 
(dashed). 

these facts see Lee’s thesis [13]. The following obvious lemma will be important 
in the sequel. 

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay 
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L. 

In other words, the addition of new points does not introduce new edges 
between the old points. 

7.1 Delaunay Triangulations 

A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane 
whose vertices are the given sites and whose faces are all triangular except for 
one, which is the complement of the convex hull of the sites. It is easily shown 
that any triangulation of n sites, of which k lie on the convex hull, has 2(n - 1) 
- k triangles and 3(n - 1) - k edges. 

If no four of the sites happen to be cocircular, then their Delaunay diagram is 
a triangulation; in any case, it can be made into one by introducing zero or more 
additional edges. The subdivisions obtained in this way are called Delaunay 
triangulations of the given sites. They are characterized by either of the following 
properties. 

LEMMA 7.2. A triangulation of n 2 2 sites is Delaunay if and only if every edge 
has a point-free circle passing through its endpoints. 

LEMMA 7.3. A triangulation of n 2 2 sites is Delaunay if and only if the 
circumcircle of every interior face (triangle) is point -free. 

We will say that an edge or triangle is Delaunay when there is a point-free 
circle passing through its vertices. We speak of that circle as being witness to the 

ACM Transactions on Graphics, Vol. 4, No. 2, April 1985. 

Divide and Conquer[GS86]
– degree 4

111. DESIGN OF A ROBUST ALGORITHM 

Fig. 2. 
in the incremental construction of the Voronoi diagram. 

Topological inconsistency arising from numerical errors 

p i ;  in (b) the bisector is represented by a broken line. The 
bisector crosses the boundary of R ( p i )  at two points. Let 
one of them be q. At q the bisector enters the neighboring 
region R ( p j ) .  Next, we draw the bisector of p and p j  to 
find the point of intersection (other than q )  of the bisector 
with the boundary of R ( p j ) .  In this way, we construct a 
sequence of the bisectors between p and the neighboring 
generators until we return to the boundary of the starting 
region R ( p i ) .  Removing the points and edges enclosed by 
the closed sequence of part of the bisectors, we finally 
obtain the Voronoi region of the new generator p .  

A sophisticated data structure with a quarternary tree 
and with buckets enables us to find the starting generator 
pi in constant expected time, and to keep the average 
number of edges on the boundary of the new Voronoi region 
constant [ 151. Hence, the incremental method carries out 
the addition of one generator in constant expected time, 
so that it constructs the Voronoi diagram for n generators 
in O(n) expected time. This expected time complexity is 
theoretically ensured for randomly distributed generators, 
and empirically shown for a wide class of distributions [ 151. 

The incremental method is simple in principle, and it 
is usually said that this method is also robust against 
numerical errors; indeed, a computer program based on 
the incremental method has been used for a number of 
applications [8], [ l l ] ,  [15]. 

However, the incremental-type algorithm as well as other 
algorithms is unstable when degeneracy takes place. An ex- 
ample of a situation in which the conventional incremental- 
type algorithm fails is shown in Fig. 2, where the perpen- 
dicular bisectors between the new generator and the nearest 
old generator pass near a Voronoi point, and the boundary 
of the Voronoi region of the new generator does not form 
a closed cycle because of numerical error. 

Hence, the avoidance of inconsistency arising from nu- 
merical errors is an important problem for practical imple- 
mentation of the algorithm. 

A. Placing the Highest Priority on Topological Consistency 
A Voronoi diagram can be regarded as a planar graph 

embedded in a plane. Let Gi be the embedded graph 
associated with the Voronoi diagram for i generators p l ,  p2,  
. . . , p,. From a topological point of view, the addition of a 
new generator pl to the Voronoi diagram for 1 - 1 generators 
P I ,  p2, . . ' , p l - l  can be considered the task for changing 
G1-1 to GI. This task is done by the next procedure. 

Procedure A 
Al.  
A2. 

A3. 

A4. 

Select a subset, say T ,  of the vertex set of G1-1. 
For every edge connecting a vertex in T with a 
vertex not in T ,  generate a new vertex on it and 
thus divide the edge into two edges. 
Generate new edges connecting the vertices gener- 
ated in A2 in such a way that the new edges form a 
cycle that encloses the vertices in T and them only. 
Remove the vertices in T and the edges incident 
to them (and regard the interior of the cycle as 
the Voronoi region of p l ) ,  and let the resulting 
embedded graph be G1. 

An example of the behavior of this procedure is illus- 
trated in Fig. 3(a). Suppose that the solid lines represent a 
portion of the embedded graph Gl-1 and that the four solid 
circles represent the vertices in T chosen in step Al .  Then, 
the six vertices represented by hollow circles are generated 
in step A2, the cycle represented by the broken lines is 
generated in step A3, and the substructure enclosed by this 
cycle is removed in step A4. 

Note that Procedure A is described in purely combi- 
natorial terms, so that this procedure is not affected by 
numerical errors. However, there is an ambiguity in the 
choice of T in step Al .  Next, we consider what conditions 
should be satisfied by T in order for Procedure A to be the 
correct procedure for constructing the Voronoi diagram. 

Let us consider a triangle that is large enough to include 
all the generators and regard the three vertices of this 
triangle as the additional generators. We renumber the gen- 
erators in such a way that p l ,  p2,  and p3  are the additional 
generators and p4,  p 5 ,  . . . , p ,  the original generators (now, 
n is the number of the original generators plus 3), and try 
to construct the Voronoi diagram for P = {PI, p2,  . . . , p,}. 

The Voronoi diagram for the three generators p l ,  p2,  and 
p3  consists of three infinite edges, as shown in Fig. 4(a). To 
represent the topological structure of this Voronoi diagram 
we consider the embedded graph G3 shown in Fig. 4(b), 
where we introduce a sufficiently large closed curve and 
consider that the infinite Voronoi edges have their terminal 
points on this closed curve, as represented by the small 
solid triangles. With this convention, any Voronoi region is 
explicitly represented by a cycle of the embedded graph. We 
start with G3, and add the other generators p4, p 5 ,  9 . . , p ,  
one by one. 
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Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
– degree 6

General Subdivisions and Voronoi Diagrams l 105 

Fig. 15. The Voronoi diagram (solid) and the Delaunay diagram 
(dashed). 

these facts see Lee’s thesis [13]. The following obvious lemma will be important 
in the sequel. 

LEMMA 7.1. Let L and R be two sets of points. Any edge of the Delaunay 
diagram of L U R whose endpoints are both in L is in the Delaunay diagram of L. 
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A triangulation of n 1 2 sites is a straight-line subdivision of the extended plane 
whose vertices are the given sites and whose faces are all triangular except for 
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How do we build
a degree 2 trapezoid graph
for proximity queries
when we can’t even construct
a Voronoi vertex?



Implicit Voronoi Diagram [LPT99]
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c
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f

Implicit Voronoi diagram
is disconnected.
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Reduced Precision Voronoi [MS09]

Given n sites in U

RP-Voronoi randomized incremental construction
Time: O(n log(Un)) expected
Space: O(n) expected
Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi

Time: O(n)

Space: O(n)

Precision: degree 3
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Contract trees of Voronoi vertices
that occur in the same grid cell
into an rp-vertex.



Voronoi Polygon Set

a

b
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f

Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.

Gaps
Voronoi polygon set is
the collection of the n
Voronoi polygons.
Total size of the
Voronoi polygon set
is Θ(n log U).
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Proxy Segments

a

b

c
d e

f

Proxy segment -
represent Voronoi polygons

Proxy trapezoidation -
trapezoidation of the proxies

Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
with bisectors

Proxy trapezoidation
is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.
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Point Location[MS09,MS10]

Given n sites in U

RP-Voronoi randomized incremental construction
Time: O(n log(Un)) expected
Space: O(n) expected
Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi

Time: O(n)

Space: O(n)

Precision: degree 3

Queries on Proxy Trapezoidation

Time: O(log n)

Precision: degree 2
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Overview
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f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision



Nearest Neighbor Transform

s3

s4

s7s2

s1

s6

s5

Given
A grid of size U and
Sites S = {s1, . . . , sn} ⊂ U

Label
Each grid point of U with the
closest site of S

Algorithm Precision Time
Brute Force degree 2 O(nU2)
Nearest Neighbor Trans. [B90] degree 5 O(U2)
Discrete Voronoi diagram [C06, MQR03] degree 3 O(U2)
GPU Hardware [H99] - Θ(nU2)
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Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q ∈ U2, find the site with lowest index si ∈ S
minimizing ‖q − si‖.

‖q − si‖2 < ‖q − sj‖2

q · q − 2q · si + si · si < q · q − 2q · sj + sj · sj

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j .

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .
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Problem Transformations: Part 2

Problem (NNTrans-max)
For each pixel q, find the site with lowest index si ∈ S
maximizing 2xixq + 2yiyq − x2

i − y2
i .

For a fixed, yq = Y

2xixq + 2yiyq − x2
i − y2

i > 2xjxq + 2yjyq − x2
j − y2

j

2xixq + (2yiY − x2
i − y2

i ) > 2xjxq + (2yjY − x2
j − y2

j )

1©xq + 2© > 1©xq + 2©

Problem (DUE-Y)
For a fixed 1 ≤ Y ≤ U, and for each 1 ≤ X ≤ U,
find the smallest index of a line of LY with
maximum y coordinate at x = X.
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Problem Transformations: Part 2

Problem (DUE-Y)
For a fixed 1 ≤ Y ≤ U, and for each 1 ≤ X ≤ U,
find the smallest index of a line of LY with
maximum y coordinate at x = X.

s1

s2

s3

s4

`71

`73

`72

`74
Y = 7
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Sketch of NNTransform Algorithm

s3

s4

s6

s7

Y = 7

`73

`76

`74

`77
s3

s4

s7s2

s1

Y = 7s6

s5
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Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form y = 1©x + 2©

Discrete Upper Envelope construction

DUE-DEG3: O(m + U) time and degree 3
DUE-ULgU: O(m + U log U) time and degree 2
DUE-U:O(m + U) expected time and degree 2

For each algorithm:
1 Reduce to at most O(U) lines.
2 Compute DUE of lines.
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Three Algs for Computing the NNTransform [MLCS12]

Given n sites from U

Nearest Neighbor Transform construction

Deg3: O(U2) time and degree 3
UsqLgU: O(U2 log U) time and degree 2
Usq: O(U2) expected time and degree 2
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Experiments: Part 1

Maurer

Usq

UsqLgU

Deg3
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Experiments: Part 2

Boundaries extracted
from 120 images of the
MPEG 7 CE Shape-1
Part B data set.
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Experiments: Part 2
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Experiments: Part 2

UsqLgUUsq

Time per pixel
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NNTransform [MLCS12]

Given m lines of the form y = 1©x + 2©

Discrete Upper Envelope construction

DUE-DEG3: O(m + U) time and degree 3
DUE-ULgU: O(m + U log U) time and degree 2
DUE-U:O(m + U) expected time and degree 2

Given n sites from U

Nearest Neighbor Transform construction

Deg3: O(U2) time and degree 3
UsqLgU: O(U2 log U) time and degree 2
Usq: O(U2) expected time and degree 2
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Overview
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Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision



Motivation and Background

Image from Idaho National Lab, Flickr Image from: T.M. Sutton, et al.,
The MC21 Monte Carlo Transport Code,
Proceedings of M&C + SNA 2007
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Primitives: Signed Quadratic Surfaces

f (x , y , z) < A1x2 + A2y2 + A3z2

+ A4xy + A5xz + A6yz
+ A7x + A8y + A9z + A10
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Model Representation
Basic Component: Boolean Formula

A basic component defined by
intersections and unions of signed surfaces.

(−sblue ∩ sgrey ∩ sgreen ∩ −sorange) ∪ −syellow
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Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), ∪ and ∩ of signed surfaces

Restricted comp: R(N) = B(N) ∩ R(Np)
Hierarchical comp: H(N) = R(N) \ (

⋃
i R(Nci))

Np

Nc4Nc3Nc2Nc1

N

N
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Volume Calculation

Np

Np

Nc4Nc3Nc2Nc1

N
Nci

N
Given
A component hierarchy
and an accuracy

Compute
The volume of each
hierarchical component
to accuracy
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Operations on Surfaces

Operations on signed surfaces s with a
query point q or an axis-aligned box b:

Inside(s,q) – return if q is inside s.

Classify(s,b) – return if the points in b are
inside, outside or both with respect to s.

Integrate(s,b) – return the volume of s ∩ b.
.
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Inside Test

Inside(s,q) – return if query point q is inside signed surface s.

s q
q = (q1,q2,q3)
s = (s1, s2, . . . , s10)
pi , si ∈ {−U, . . . ,U}

PointInside(s,q) = s1q2
1 + s2q2

2 + s3q2
3

+ s4q1q2 + s5q1q3 + s6q2q3

+ s7q1 + s8q2 + s9q3 + s10

= sign( 3©)
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Classify Test

Classify(s,q) – return if the points in axis-aligned box b are
inside, outside or both with respect to signed surface s.

s qs

b

b = (b1,b2, . . . ,b6)
s = (s1, s2, . . . , s10)
bi , si ∈ {−U, . . . ,U}

Classify(s,b), check if:
1 any Vertices of b are on different sides of s. – Degree 3
2 any Edge of b intersects s. – Degree 4
3 any Face b intersects s. – Degree 5
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Face Test

Test if a face f intersects s.

Let c be the intersection curve of
the plane P containing f and s.

c(x , y) =
(
x y 1

) 1© 1© 2©
1© 1© 2©
2© 2© 3©

x
y
1



To determine if s intersects f , test properties of the matrix.

Test if c is an ellipse: sign
(∣∣∣∣ 1© 1©

1© 1©

∣∣∣∣) = sign( 2©)

Test if c is real or img: sign

∣∣∣∣∣∣
1© 1© 2©
1© 1© 2©
2© 2© 3©

∣∣∣∣∣∣
 = sign( 5©)
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Algorithm Animation
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Algorithm Animation
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Experiments: Models

Cube

L-Pipe12,
L-Pipe100, and L-Pipe10k

DrillCyl
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Experiments: Accuracy and Time for L-Pipe100

Algorithm Requested Error Time
Accuracy (sec)

MC 1e-4 <1e-4 790.28
New 1e-4 <1e-6 1.41
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Experiments: Larger Model for L-Pipe10k

L-Pipe10k is similar to L-Pipe100 but
defined by over 40k surfaces.

Algorithm Requested Error Time
Accuracy

MC 1e-4 - > 12.00h∗

New 1e-4 <1e-6 9.43s

*Halted after 12 hours. Extrapolating from other experiments, 76 hours.
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Overview
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a

b

c
d e

f

Compute point location data structure
with double & triple precision

s3

s4

s7s2

s6

s5
Compute nearest neighbor transform
with double precision

MC

MC2Plane

BunCyl Compute volumes of CSG models
with five-fold precision



Contact

David L. Millman
dave@cs.unc.edu

http://cs.unc.edu/˜dave
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