Degree-Driven Design of Geometric Algorithms for

Point Location, Proximity, and Volume Calculation
PhD Defense

David L. Millman

University of North Carolina at Chapel Hill

October 10, 2012

David L. Millman PhD Defense: Degree-Driven Geometric Algorithms 1/53



Geometric Algorithms

*b

d. .e

David L. Millman PhD Defense: Degree-Driven Geometric Algorithms 2/53



Geometric Algorithms

*b

David L. Millman PhD Defense: Degree-Driven Geometric Algorithms 2/53



Geometric Algorithms

*b

Point location data structure
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Overview

2| @ Derive & upper bdd precision of many common preds
\ | @ Show the polys in the common preds are irreducible
% \'\

\\,xw " @ Compute point location data structure

\o
o ”‘\ "] with double & triple precision

@ Compute nearest neighbor transform
with double precision

@ Compute volumes of CSG models
with five-fold precision

@ Compute Gabriel graph
with double precision
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A Motivational Problem

DoSegsintersect:

Given two segments,

defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?
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A Motivational Problem

DoSegsintersect:

Given two segments,

defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?

How much arithmetic precision is
needed to determine this?
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Input Representation

Input: Geometric configuration specified by
single precision numerical coordinates and
relationships between coordinates.

E.g. DoSegslntersect problem:
Numerical coordinates:
(0,4,0,3,1,0,1,2)
Relationships between coordinates:
a=(ax,ay) =(0,4)

= (bx, by) = (0,3)
= (e, ¢y) = (1,0)
= (dx,dy) = (1,2)
ac=(a,c)
bd = (b, d)
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Solving DoSegslntersect with Construction

InterByConstruction(a,c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

it 8 || bd then
return NOINTERSECT
end if
Point g = ¢ n E)j
Real i = (gx — ax)/(cx — ax)
Real t = (gx — bx)/(dx — by)
if t; € (0,1) and £ € (0, 1) then
return INTERSECT
else
return NOINTERSECT
: end if

SO NO RN

—_
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Geometry — Algebra — R arithmetic — IEEE-754

Line 4: Point g = ¢ ;?j
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Geometry — Algebra — R arithmetic — IEEE-754

The Intersect(a,c, b, d) construction:

Input: single precision coordinates
of a, ¢, b and d defining
non-parallel lines 8¢ and E;
Construct: the intersection g

of & and ﬁ)’

axCy — Cxay ax — Cx
bed, — dib, by — dy

axCy — Cxay ay —Cy
bed, — dib, b, — d,

ax—Cx ay—Cy ax—Cx ay—Cy
by —dy b, —d, by —dy b, —d,
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Geometry — Algebra — R arithmetic — IEEE-754

The Intersect(a,c, b, d) construction:

Input: single precision coordinates
of a, ¢, b and d defining
non-parallel lines 8¢ and E;
Construct: the intersection g

of 8¢ and E;’
qX - Oé
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Geometry — Algebra — R arithmetic — IEEE-754

The Intersect(a,c, b, d) construction:

Input: single precision coordinates
of a, ¢, b and d defining
non-parallel lines 5¢ and g}d
Construct: the intersection q

of &¢ and (b_>d

In Python with numpy.float32 type?:

£1(qy) ~ 0.33333334

£1(g,) ~ 2.66666675

fl(q) ¢ fl(ac)&fl(q) ¢ac
£1(q) ¢ £1(bd)&£1(q) ¢ bd

aVaIues are the shortest decimal fraction that rounds
correctly back to the true binary value.
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Thesis Statement

Real-RAM has 3 unbounded quantities.
i A The number of:
i e @ steps an algorithm may take
-EplN -
=

© memory cells an algorithm may use
© bits for representing numbers in cells

Image from: http://en.wikipedia.org/wiki/File:Maquina.png
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Thesis Statement

Real-RAM has 3 unbounded quantities.
: f‘ _ The number of.I o )
-5, _! = @ steps an algorithm maly take
= P - © memory cells an algorithm may use
- © bits for representing numbers in cells
Thesis Statement:

Degree-driven design supports the development of
new and robust geometric algorithms.
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

Input: single precision coordinates
D of a, band q.

Return: whether the straight line
path from ato b to q forms a right

/
/
/
/
b‘\.a turn.
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

U={1,...,U}?
o ab,gel
o - - - a=(ax, ay)

b:(bx,by)

q = (9x, qy)

L
/
ol . . .
/
bt\;a.
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

U={1,...,U}?
o ab,gel
o - - - a=(ax, ay)

b:(bx,by)

q = (9x, qy)

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Oriel’ltation(a, b7 q) = Sign(bqu — b)(ay — aqu — qxby + q)(ay + axby)

Orientation < 0 Right turn
Orientation > 0 Left turn
Orientation = 0 Collinear
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

U={1,...,U}?
o abqel
o - - - a=(ax, ay)

b:(bx,by)

q = (9x, qy)

RN . . . .
/

ol . . . . .
/

b‘\;a S Orientation is degree 2

A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

Oriel’ltation(a, b7 q) = Sign(bqu — b)(ay — aqu — qxby + q)(ay + axby)
= sign(@)
Orientation < 0 Right turn

Orientation > 0 Left turn
Orientation = 0 Collinear
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Analyzing Precision [LPT99]

How the degree relates to precision:

Consider multivariate poly Q(xi, ..., x,) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).
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How the degree relates to precision:
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Let each x; be an ¢-bit integer — x; € {-2¢,...,2} .
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Analyzing Precision [LPT99]

How the degree relates to precision:

Consider multivariate poly Q(xi, ..., x,) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each x; be an ¢-bit integer — x; € {-2¢,...,2} .

Each monomial is in {—2% ... 2%},

The value of Q(Xy,. .., X,) isin {—s2% ... s2tk},

— (k +log(s) + O(1) bits are enough to evaluate Q.
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Analyzing Precision [LPT99]

How the degree relates to precision:

Consider multivariate poly Q(xi, ..., x,) of deg k and s monomials
(for simplicity, assume that coefficient of each monomial is 1).

Let each x; be an ¢-bit integer — x; € {-2¢,...,2} .

Each monomial is in {—2% ... 2%},

The value of Q(Xy,. .., X,) isin {—s2% ... s2tk},

— (k +log(s) + O(1) bits are enough to evaluate Q.

Note that ¢k bits is enough to evaluate the sign.
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

U={1,...,U}?
ab,qel

o - a=(ax,ay)

‘ b:(bx,by)

q = (9x, qy)

. . . .
/
o/ . . . . .
/
b‘\.a o Orientation is degree 2
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

U={1,...,U}?
o ab,qel
o - - - - a=(ax, ay)
‘ b:(bx,by)

'// e e e q:(qxvq}/)
b‘\.a Orientation is degree 2

isRightTurn(a, b, q):

if orientation(a, b,q) < 0 then
return TRUE

. else

return FALSE

: end if

AN
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Analyzing Precision [LPT99]

Precision used by the i sRightTurn:

U={1,...,U}?
o ab,qel
o - - - - a=(ax, ay)
‘ b:(bx,by)

q = (9x, qy)

RN . . . .
/
o/ . . . . .
/
b‘\.a o Orientation is degree 2

isRightTurn is degree 2

isRightTurn(a, b, q):

if orientation(a, b,q) < 0 then
return TRUE

. else

return FALSE

: end if

AN
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Solving DoSegslntersect without Construction

InterByOrientation(a,c,b,d):
Determine if ac and bd intersect;
if so return INTERSECT, if not return NOINTERSECT

Require: no three points are collinear

: if orientation(a, ¢, b) # Orientation(a,c,d) and

Orientation(b,d,a) # Orientation(b,d,c) then
return INTERSECT

: else

return NOINTERSECT

: end if

—_

oA wN
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Solving DoSegslntersect without Construction

In summary:
Orientation predicate is degree 2
InterByOrientation algorithm is degree 2
InterByConstruction algorithm is degree 3
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More Predicates

Some other well known predicates:

Orientation(a, b, q)
degree 2

InCircle(a,b,c,q)
degree 4

SideOfBisector(Bap, q)
degree 2

OrderOnLine(Bap, Bea, £)
degree 3
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Precision/Robust Techniques

Techniques for implementing geometric algorithms
using finite precision computer arithmetic:

@ Rely on machine precision (+¢) [NAT90,LTH86,KMP*08]
@ Topological Consistency [S99, S01, SI90, S192, SI1*00]

@ Exact Geometric Computation [Y97]

e Software based arithmetic [ CORE, LEDA, GMP, MPFR ]
e Predicate eval schemes [ ABO*97, FW93, BBP01, S97 ]
e Degree-driven algorithm design [LPT99]
and [BP00,BS00,C00,MS01,MS09,MS10,MV11,MLC*12]
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Overview

) o a el '
\\,—4\:';,, @ Compute point location data structure
. “‘\\\\ with double & triple precision
| of! \\\
"o | e Compute nearest neighbor transform
with double precision

@ Compute volumes of CSG models
with five-fold precision
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Point Location Data Structure

e Given
o - A grid of size U and
b sites S={s1,...,8,} CU
Compute
a | % A data structure capable of

returning the closest s; € Sto a
query point g € U in O(log n) time
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Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram
@ region

*b
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Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram
@ region
@ edge

*b
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Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram

@ region
@ edge
@ vertex
- = —ab N
\
A .b
ol
I
ol %
7
of
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Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram
@ region
@ edge
@ vertex

Trapezoid graph for
proximity queries
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Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram
@ region
@ edge
@ vertex

Trapezoid graph for
proximity queries

@ x-node() —degree 3
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Precision of Voronoi Diagram/Trapezoid Graph
Voronoi diagram

@ region

@ edge

@ vertex

Trapezoid graph for
proximity queries

@ x-node() —degree 3
@ y-node() —degree 6
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Precision of Voronoi Diagram/Trapezoid Graph

Voronoi diagram
@ region

@ edge
g / @ vertex

°) Trapezoid graph for

/ proximity queries [LPT99]

N @ x-node() —degree 1
® Jde® ° @ y-node() —degree 2

The Implicit Voronoi diagram
® o e f is a degree 2 trapezoid graph.
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Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
—degree 6

Divide and Conquer[GS86]
—degree 4

Tracing[S192]
— degree 4
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Precision of Constructing the Voronoi Diagram

How do we build

a degree 2 trapezoid graph
for proximity queries

when we can’t even construct
a Voronoi vertex?

David L. Millman PhD Defense: Degree-Driven Geometric Algorithms ~ 19/53



Implicit Voronoi Diagram [LPT99]

/ "

[ de °

Implicit Voronoi diagram
is disconnected.

‘e @
CI ) of
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Reduced Precision Voronoi [MS09]

Given nsitesin U

RP-Voronoi randomized incremental construction
@ Time: O(nlog(Un)) expected
@ Space: O(n) expected
@ Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi
@ Time: O(n)
@ Space: O(n)
@ Precision: degree 3
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Reduced Precision Voronoi [MS09]

Contract trees of Voronoi vertices

that occur in the same grid cell
into an rp-vertex.
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Voronoi Polygon Set

/ @ Voronoi polygon is
Ug ,' the convex hull

, of the grid points
in a Voronoi cell.
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Voronoi Polygon Set

@ Voronoi polygon is
Ug the convex hull

of the grid points
*) in a Voronoi cell.

o Gaps
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Voronoi Polygon Set

@ Voronoi polygon is
Ug the convex hull

of the grid points
L) in a Voronoi cell.

o Gaps

@ Voronoi polygon set is
the collection of the n
Voronoi polygons.
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Voronoi Polygon Set

@ Voronoi polygon is

Ug the convex hull

of the grid points

L) in a Voronoi cell.

o Gaps

@ Voronoi polygon set is
the collection of the n
Voronoi polygons.

@ Total size of the

Voronoi polygon set
is ©(nlog V).
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons

)

‘®
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons

)
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons

@ Proxy trapezoidation -
! trapezoidation of the proxies
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons

@ Proxy trapezoidation -
! trapezoidation of the proxies

@ Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
\ with bisectors
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons

@ Proxy trapezoidation -
! trapezoidation of the proxies

@ Voronoi trapezoidation -
split the trapezoids
of the proxy trapezoidation
\ with bisectors

Proxy trapezoidation

is a degree 2 trapezoid graph
supporting O(log n) time and
degree 2 queries.
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Point Location[MS09,MS10]

Given nsites in U

RP-Voronoi randomized incremental construction
@ Time: O(nlog(Un)) expected
@ Space: O(n) expected
@ Precision: degree 3

LPT’s Implicit Voronoi constructed from RP-Voronoi
@ Time: O(n)
@ Space: O(n)
@ Precision: degree 3

Queries on Proxy Trapezoidation
@ Time: O(log n)
@ Precision: degree 2
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Overview

) o a el '
\\,xw\:ﬁ, @ Compute point location data structure
o ”‘\\ ‘ with double & triple precision
N
@ Compute nearest neighbor transform
with double precision

@ Compute volumes of CSG models
with five-fold precision
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Nearest Neighbor Transform

3 [ % Given
% A grid of size U and
% % Sites S={s1,...,8,} CU
B Label
Each grid point of U with the
%, closest site of S
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Nearest Neighbor Transform

%3 186 Given
% A grid of size U and
%, o Sites S={s1,...,8,} CU
2 Label
Each grid point of U with the
% closest site of S
Algorithm Precision Time

Brute Force
Nearest Neighbor Trans. [B90]

GPU Hardware [H99]

(
Discrete Voronoi diagram [C06, MQRO03] || degree 3 O(U?)
] o

degree 2 O(nU?)
degree 5 O(U?)
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Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q € U?, find the site with lowest index s; € S
minimizing ||q — s;l|.
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Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q € U?, find the site with lowest index s; € S
minimizing ||q — s;l|.

2 2
| I

lg—sill© <llg—s;
4-q-2q-5i+8-5<q-q-2q-5+5-8

2XiXq + 2YiYq — XF — yF > 2XjXq + 2YjYq — X/'2 - y/'z'
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Problem Transformations: Part 1

Problem (NNTrans-min)

For each pixel q € U?, find the site with lowest index s; € S
minimizing ||q — s;l|.

lg - sill* < g - sl
q:G-29:Si+5S°S1<q-q-2q-5+5"5

2XiXq + 2YiYq — XF — yE > 2XjXq + 2YjYq — X/'2 - y/'z'

Problem (NNTrans-max)

For each pixel q, find the site with lowest index s; € S
maximizing 2x;Xq + 2y;yq — X2 — y2.
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Problem Transformations: Part 2
Problem (NNTrans-max)

For each pixel q, find the site with lowest index s; € S
maximizing 2x;Xq + 2y;yq — X2 — y?.
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Problem Transformations: Part 2

Problem (NNTrans-max)

For each pixel q, find the site with lowest index s; € S
maximizing 2x;Xq + 2y;yq — X2 — y?.

Forafixed, yg =Y

2XiXq + 2YiYq — XF — YF > 2XiXq + 2Yjyq — X7 — JF
2xiXq + (2y;Y — xF — y7) > 2xixq + (2y;Y — xF — y7)
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Problem Transformations: Part 2

Problem (NNTrans-max)

For each pixel q, find the site with lowest index s; € S
maximizing 2x;Xq + 2y;yq — X2 — y?.

Forafixed, yg =Y

2XiXq + 2YiYq — XF — YF > 2XiXq + 2Yjyq — X7 — JF
2xiXq + (2y;Y — xF — y7) > 2xixq + (2y;Y — xF — y7)
®Xq +@ > @Xq +®@

Problem (DUE-Y)

Forafixed1 <Y < U, andforeach1 < X < U,
find the smallest index of a line of Ly with
maximum y coordinate at x = X.
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Problem Transformations: Part 2

Problem (DUE-Y)

Forafixed1 <Y < U, and foreach1 < X < U,
find the smallest index of a line of Ly with
maximum y coordinate at x = X.
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Sketch of NNTransform Algorithm
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Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form y = Mx + @

Discrete Upper Envelope construction
@ DUE-DEG3: O(m + U) time and degree 3
@ DUE-ULgU: O(m+ Ulog U) time and degree 2
@ DUE-U:O(m + U) expected time and degree 2
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Three Algorithms for Computing the DUE [MLCS12]

Given m lines of the form y = Mx + @

Discrete Upper Envelope construction
@ DUE-DEG3: O(m + U) time and degree 3
@ DUE-ULgU: O(m+ Ulog U) time and degree 2
@ DUE-U:O(m + U) expected time and degree 2

’

For each algorithm:
@ Reduce to at most O(U) lines.
@ Compute DUE of lines.

d
e
A
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Three Algs for Computing the NNTransform [MLCS12]

Given n sites from U

Nearest Neighbor Transform construction
@ Deg3: O(U?) time and degree 3
@ UsqLgU: O(U?log U) time and degree 2
@ Usq: O(U?) expected time and degree 2
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Experiments: Part 1

Time per pixel
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Experiments: Part 2

Boundaries extracted
from 120 images of the
MPEG 7 CE Shape-1
Part B data set.
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Experiments: Part 2
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Experiments: Part 2

Time per image
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NNTransform [MLCS12]

Given m lines of the form y = Mx + @

Discrete Upper Envelope construction
@ DUE-DEG3: O(m+ U) time and degree 3
@ DUE-ULgU: O(m+ Ulog U) time and degree 2
@ DUE-U:O(m + U) expected time and degree 2

Given n sites from U

Nearest Neighbor Transform construction
@ Deg3: O(U?) time and degree 3
@ UsgLgU: O(U? log U) time and degree 2
@ Usq: O(U?) expected time and degree 2
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Overview

) o a el '
\\,xw\:ﬁ, @ Compute point location data structure
o ”‘\\ ‘ with double & triple precision
N
@ Compute nearest neighbor transform
with double precision

@ Compute volumes of CSG models
with five-fold precision
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Motivation and Background

Image from Idaho National Lab, Flickr Image from: T.M. Sutton, et al.,
The MC21 Monte Carlo Transport Code,

Proceedings of M&C + SNA 2007
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Primitives: Signed Quadratic Surfaces

f(x,y,2) < Aix® + Apy? + AsZ?
+ Agxy + Asxz + AsyZz
+ A7x + Agy + A9z + A1
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Model Representation
Basic Component: Boolean Formula

A basic component defined by
intersections and unions of signed surfaces.

(—Sbie N Sgrey M Sgreen N —Sorange) U —Syeliow

* *
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Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), U and N of signed surfaces
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Model Representation
Component Hierarchy: Boolean Formulae

Basic comp: B(N), U and N of signed surfaces
Restricted comp: R(N) = B(N) N R(Np)
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Model Representation
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Volume Calculation

Given
A component hierarchy
and an accuracy

Compute

The volume of each
hierarchical component
to accuracy

David L. Millman PhD Defense: Degree-Driven Geometric Algorithms ~ 41/53



Operations on Surfaces

Operations on signed surfaces s with a
query point g or an axis-aligned box b:

@ Inside(s,q) —returnif qis inside s.

E@
2 g8

@ Classify(s, b) —return if the points in b are
inside, outside or both with respect to s.

2 S

@ Integrate(s,b) —return the volume of s b.

U
2 g8
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Inside Test

Inside(s, q) —return if query point q is inside signed surface s.

A

q= (Q17QZ7QS)
s =(s1,82,...,510)
p/vsi € {_U77U}

2 N

PointInside(s,q) = S1GF + $205 + S3q5

+ 84G1Q2 + S541Q3 + S6G2Q3
+ 5701 + SsQ2 + S9Qg3 + S10

= sign(®)
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Classify Test

Classify(s, q) —return if the points in axis-aligned box b are
inside, outside or both with respect to signed surface s.

K A

s ‘ b= (by,bo,...,bs)
S =(S1,82,..-,810)
bi,SjE{*U,...,U}

b\iz\ &

Classify(s,b), check if:
@ any vertices of b are on different sides of s. — Degree 3
@ any Edge of b intersects s. — Degree 4
© any Face bintersects s. — Degree 5
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Face Test

Test if a face f intersects s.

Let ¢ be the intersection curve of
the plane P containing f and s.

fzv ONON®) X
c(x.y)=(x y 1)(@ @ @) (}/)
@ @ ©®/ \1
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Face Test

Test if a face f intersects s.

Let ¢ be the intersection curve of
P the plane P containing f and s.
C ———————

D D @\ [x
cx,y)=x y )OO ® @] |y
s @ @ ©®/ \1

To determine if s intersects f, test properties of the matrix.

Test if cis an ellipse:  sign < % % > = sign(@)

e
Testif cisrealorimg: sign | (D @ @) | = sign(®)
@ @ ©
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Algorithm Animation
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Algorithm Animation

Box Box
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Algorithm Animation

Box Box
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Algorithm Animation

2Plane | 1Plane

2Plane Box

Box
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Experiments: Models

Cube DrillCyl

L-Pipei2,
L-Pipe100, and L-Pipe10k
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Experiments: Accuracy and Time for L-Pipe100

Algorithm Requested  Error Time

Accuracy (sec)
MC 1le-4 <le-4 790.28
New 1e-4 <le-6 1.41
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Experiments: Larger Model for L-Pipe10k

L-Pipe10k is similar to L-Pipe100 but
defined by over 40k surfaces.

Algorithm Requested  Error Time
Accuracy

MC 1e-4 - > 12.00n*

New 1le-4 <1e-6 9.43s

*Halted after 12 hours. Extrapolating from other experiments, 76 hours.
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Overview

aa
\\/\w\:ﬁ, @ Compute point location data structure
o ”‘\\ ‘ with double & triple precision
| Al
@ Compute nearest neighbor transform
with double precision

@ Compute volumes of CSG models
with five-fold precision
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Contributions

2| @ Derive & upper bdd precision of many common preds
\ | @ Show the polys in the common preds are irreducible
4% \'\

\\,xw " @ Compute point location data structure

\o
o ”‘\ "| with double & triple precision

@ Compute nearest neighbor transform
with double precision

@ Compute volumes of CSG models
with five-fold precision

@ Compute Gabriel graph
with double precision
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Contact

David L. Millman
dave@cs.unc.edu
http://cs.unc.edu/~dave
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