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A Motivational Problem

IsSeglnter: Given two segments,
defined by their 2D endpoints,
with no three endpoints collinear,
do the segments intersect?

How much precision is needed to
determine this?

Thesis Statement: Degree-driven analysis supports the
development of new, robust geometric algorithms, as | have
demonstrated for computing Post-office query search
structures, Nearest Neighbor Transforms, and Triangulations.
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Input Representation

Input: Geometric configuration specified by numerical coords.

E.g. IsSeginter problem:
Numerical Coords: (0,4,0,3,1,0,1,2)
Geometric interpretations:
a= (3.2 = (0.4),

= (bx, by) = (0,3),
c=(cx,cy) =(1,0),
d = (dy, dy) = (1,2),
ac = (a,c), and
bd = (b, d).
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lllustration of an Algorithm that solves IsSeglnter

IsSegInterByConstruction(a,c,b,d): Determine if ac
and bd intersect; if so return INTERSECT, if not return
NOINTERSECT

Require: no three points are collinear
if 5 || bd then

return NOINTERSECT
end if
Point g = ¢ m
Real t; = (gx — ax)/(cx — ax)
Real b, = (gx — bx)/(dx — bx)
ift;, b € [O, 1] then

return INTERSECT
else

return NOINTERSECT
end if

—_

TN AR ON 2

—_
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Geometry — Algebra — R arithmetic — IEEE-754

Line 4: Point g = ¢ ;?j
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Geometry — Algebra — R arithmetic — IEEE-754

The Intersect(a,c, b, d) construction:

Input: single-precision coordinates
of a, ¢, b and d defining
non-parallel lines 8¢ and ;71
Construct: the intersection g of 5¢
mdm.

axCy — Cxay ax — Cx
bed, — diby by — d
ax—Cx ay—¢y
by —dy by —d,

axCy — Cxay ay — ¢y
bed, — db, by, —d,
ax—Cx ay—¢y
by —dy by —d,

qx = , Qy =
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Geometry — Algebra — R arithmetic — IEEE-754

The Intersect(a,c, b, d) construction:

Input: single-precision coordinates
of a, ¢, b and d defining
non-parallel lines 8¢ and E;
Construct: the intersection g of 8¢
and ﬁd

qx =

3

N
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Geometry — Algebra — R arithmetic — IEEE-754

The Intersect(a,c, b, d) construction:

Input: single-precision coordinates
of a, ¢, b and d defining
non-parallel lines 8¢ and E;
Construct: the intersection g of 8¢
and 278/

In Python with numpy.float32 type:

£1(gy) ~ 0.33333334
£1(qy) ~ 2.6666667
£1(q) ¢ fl(ac)
£1(q) ¢ f1(bd)
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Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

Input: single-precision
coordinates of o, v and q.

4 Return: whether the straight line
N path from o to v to g forms a right
L.,\. turn, left turn or follows a straight
line.
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Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the 0rientation operation:

U={1,...,U}?
. o,v,qeU
. @q - - - - 0:(0)(70}’)
4 v = (v, Vy)
./// . . P q: (CIX7Qy)
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U={1,...,U}?
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A predicate is a test of the sign of a multivariate polynomial with
variables from the input coordinates.

= 0e vy =0y
Qx —Ox Qy — Oy
= sign(VxQy — VxOy — OxQy + 0xOy — VyQx + VyOx + GyQx — QyOx)

P(o,v,q) = sign(
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Predicates and Operations; Analyzing Precision [LPT99]

How the degree of a predicate relates to precision.

Consider multivariate polynomial Q(x) of degree k and a monomials.
The coordinates of x are b-bit integers.

Each monomial is in {—20% ... 25} (ignoring mult by a constant).
The value of Q(x) is in {—a20k ... a2bky.

— Values of Q(x) are represented with kb + log(a) + O(1) bits.

David L. Millman Degree-driven Geometric Algorithm Design 9/37



Predicates and Operations; Analyzing Precision [LPT99]

How the degree of a predicate relates to precision.

Consider multivariate polynomial Q(x) of degree k and a monomials.
The coordinates of x are b-bit integers.

Each monomial is in {—20% ... 25} (ignoring mult by a constant).
The value of Q(x) is in {—a20k ... a2bky.

— Values of Q(x) are represented with kb + log(a) + O(1) bits.

Note that kb bits is enough to evaluate the sign.

David L. Millman Degree-driven Geometric Algorithm Design 9/37



Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

U={1,..., U2
S o,v,qeU
. .(1 . . . . 0 = (OX, Oy)
N v = (Vx, V)
.//l . . ... q = (qX7 CIy)
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Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

U={1,..., U2
S o,v,qeU
. .(1 . . . . 0 = (OX, Oy)
N v = (Vx, V)
.l/l . . ... q = (qX7 CIy)
U\O P(o, v, q) is degree 2

Operation:
Orientation(o,V,Qq):
: Sign eval = P(o, v, q)
. if eval > 0 then
return LEFT
: else if eval < 0 then
return RIGHT
else
return STRAIGHT
: end if
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Predicates and Operations; Analyzing Precision [LPT99]

Precision used by the Orientation operation:

U=1{1,...,U}?
S o,v,qeU
. .(1 . . . . 0 = (OX, Oy)
A v = (Vx, V)
.l/l . . ... q = (qX7 CIy)
U\.{) o P(o, v, q) is degree 2
Orientation is degree 2

Operation:
Orientation(o,V,Qq):
: Sign eval = P(o, v, q)
. if eval > 0 then
return LEFT
: else if eval < 0 then
return RIGHT
else
return STRAIGHT
: end if
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lllustration of an Alg. that solves IsSeglnter w/o construction

IsSeglInterByOrientation(a,c, b, d): Determine if ac and
bd intersect; if so return INTERSECT, if not return
NOINTERSECT
Require: no three points are collinear
1: if Orientation(a,c,b) # Orientation(a,c,d) and
Orientation(b,d,a) # Orientation(b,d,c) then
return INTERSECT
. else
return NOINTERSECT
: end if

a AN
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lllustration of an Alg. that solves IsSeglnter w/o construction

IsSeglInterByOrientation(a,c, b, d): Determine if ac and
bd intersect; if so return INTERSECT, if not return
NOINTERSECT
Require: no three points are collinear
1: if Orientation(a,c,b) # Orientation(a,c,d) and
Orientation(b,d,a) # Orientation(b,d,c) then

2:  return INTERSECT
3: else

In summary:
P predicate is degree 2
Orientation Operation is degree 2
Intersect construction is degree 3/2
IsSegInterByOrientation algorithm is degree 2
IsSegInterByConstruction algorithm is degree 3

David L. Millman Degree-driven Geometric Algorithm Design

10/37



Other precision approaches

Approaches for implementing geometric algorithms with finite
precision computer arithmetic:

@ Rely on machine precision (+¢) [NAT90,LTH86,KMP*08]
Exact Geometric Computation [Y97,C92,ABO*97,BEP*97]
Arithmetic Filters [FW93,FW96,BBP01,DP98,DP99]
Adaptive Predicates [P92,597,BF09]

Topological Consistency [S99,501,S190,S192,SI1*00]

Degree-driven algorithm design
[LPT99,BP00,BS00,C00,MS01,MS09,CMS09,MS10]
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Ch. 2: Primitives

Goal: Descriptions, precision analysis and book-quality code
for all predicates, operations and constructions, discussed in
the thesis. This chapter conclude with results on lower bounds

on degree and irreducibility.

Simple Examples:

Orientation

degree 2

OrderOnLine
degree 3

InCircle
degree 4

SideOfBisector
degree 2
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Ch. 3: Post-office Queries for Some Pts. in the Plane

Goal: Compute a PO Query
o - search structure with degree 2.
| propose to provide:

@ degree 2 algorithm

e |- o @ analysis and implementation
@ book-quality code

@ experimental results
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Post-office Query structure

a,
® Given
o A grid of size U and
sites S={sy,...,8,} CU
Compute

d* - % A data structure capable of
returning the closet s; € Sto a
query point g € U in O(log n) time
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region
@ edge
E— . | . . @ vertex — rational degree 3/2
.b . . L

Trapezoid graph for proximity

queries
@ x-node() —degree 3

a | % @ y-node() — degree 6
of
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram

@ region
@ edge
Ue @ vertex — rational degree 3/2
*D Trapezoid graph for proximity
queries

@ x-node() —degree 3

o de® ® @ y-node() — degree 6

‘@ ¢
® o of
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram
@ region

@ edge
Ue @ vertex — rational degree 3/2

/ *D Trapezoid graph for proximity
queries [LPT99]

@ x-node() —degree 1

® dae e @ y-node() —degree 2
‘e o
(I ) of
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Precision of Voronoi Diagram/Trapeziod Graph

Voronoi diagram
@ region

@ edge
Ue @ vertex — rational degree 3/2

/ *D Trapezoid graph for proximity
queries [LPT99]

@ x-node() —degree 1
L de® ® @ y-node() —degree 2

This is a degree 2 trapezoid graph.
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Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

Sweepline[F87]
—degree 6

Divide and Conquer[GS86]
—degree 4

Tracing[S192]
— degree 4
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Precision of Constructing the Voronoi Diagram

Three well-known Voronoi diagram constructions.

repline[F87]
degree 6
How do we build
a degree 2 trapezoid graph d de and (ionquer[GSSG]
for proximity queries egree
when we can’t even construct
a Voronoi vertex?
ing[S192]
degree 4
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Implicit Voronoi diagram [LPT99]

/ "

[ de °

Implicit Voronoi diagram
is disconnected.

‘e @
CI ) of
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RP-Voronoi [MS09]

Given nsites in U.

RP-Voronoi

Rand inc construction of the RP-Voronoi of n sites in U.
@ Time: O(nlog(Un)) expected
@ Space: O(n) expected
@ Precision: degree 3

Implicit Voronoi

Construct LPT’s implicit Voronoi from RP-Voronoi.
@ Time: O(n)
@ Space: O(n) expected
@ Precision: degree 3
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RP-Voronoi [MS09]

Given n sites in U.

Contract trees of Voronoi vertices

that occur in the same grid cell
into an rp-vertex.

@ Precision: degree 3
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Voronoi Polygon Set

) @ \Voronoi polygon is
T -7 the convex hull
of the grid points
in a Voronoi cell.
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Voronoi Polygon Set

°) @ Voronoi polygon is
the convex hull

of the grid points
in a Voronoi cell.

o Gaps
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Voronoi Polygon Set

*D

@ Voronoi polygon is
the convex hull
of the grid points
in a Voronoi cell.

o Gaps

@ Total size ©(nlog U).
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Proxy Segments

@ Proxy segment -
a represent Voronoi polygons.

*d
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Proxy Segments

@ Proxy segment -

represent Voronoi polygons.
@ Proxy trapezoidation -
®) trapezoidation of the proxies.
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons.

@ Proxy trapezoidation -
trapezoidation of the proxies.

@ Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.
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Proxy Segments

@ Proxy segment -
represent Voronoi polygons.

@ Proxy trapezoidation -
trapezoidation of the proxies.

@ Voronoi Trapezoidation -
split the trapezoids
of the Proxy trapezoidation
with bisectors.

Proxy Trapezoidation
is a degree 2 trapezoid graph.
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Proxy Trapezoidation [MS10]

Given n sites in U.

Proxy Trapezoidation construction
@ Time: O(nlog nlog U) expected*
@ Space: O(n) expected
@ Precision: degree 2

Queries on Proxy Trapezoidation
@ Time: O(log n)
@ Precision: degree 2

* Analysis of [MS10] is incomplete.
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Completing the analysis of [MS10]

Proxy trapezoidation is built with a randomized incremental
construction (RIC).

Analysis of [MS10] used the RIC construction framework from
the dutch book.

Define: For a grid point g, a set of sites R certifies that g is the
right end point for the proxy of s if all grid points right g are
closer to a site in R than s.

To complete Analysis of [MS10], | need to prove:

Lemma

The maximum number of sites of S required to certify that a
grid point is a right end point of a proxy segment is constant.
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Ch. 3: Post-office Queries for Some Pts. in the Plane

Goals: Complete the analysis of [MS10], describe the
algorithm, provide an implementation, book-quality code and
experimental results.

Should | be unable to complete the analysis, | will explore
whether a divide-and-conquer algorithm can yield a
sub-quadratic time degree 2 construction.

Should that be unsuccessful, | will implement our RIC degree 2
algorithm and observe the experimental running time,
implement the degree 3 solution, and provide book-quality code
and experimental results for both.
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Ch. 4: Nearest Neighbor Transform

a Goal: Compute Nearest Neighbor
¢ Transform with degree 2.
* | propose to provide:
I @ degree 2 algorithm
) o de . @ analysis and implementation
) ‘@ @ @ book-quality code
) o o of @ experimental results
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Nearest Neighbor Transform

*b

W W W
Q)

® o ¢
k)

» ©
[
[ ]
~

Given
A grid of size U and
Sites S={sy,...,8,} CU

Label
Each grid point of U with the
closest site of S
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Nearest Neighbor Transform

*b

W W W
Q)

» ©
[
[ ]
~

Given
A grid of size U and
Sites S={sy,...,8,} CU

Label
Each grid point of U with the
closest site of S

Alg Time

Brute Force
Query the Voronoi diagram

(
Nearest Neighbor Trans. [B90] || deg 4 O(
Dim. Reduction [C06,MQRO03] | deg3 O(U?)
GPU Cone Rendering [H99] - (
GPU Dim Reduction [CTM*10] || deg3 O(U?)

deg2 O(nU?)
deg4 O

David L. Millman
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Dimensional Reduction

Example of processing one row

b e
b o de .
)

b o o of
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Dimensional Reduction

/ ’ v .
RO Example of processing one row
> Go
)
b o
. . . d. . . .6
b ‘@ @ .
b @ @ - of -
of -
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Dimensional Reduction

/ ’ v
. Cq G . . V.

Example of processing one row

code - ©oe -

of -
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Dimensional Reduction

*)

Example of processing one row

Two steps:

| (1) Reduce to at most 2U sites.

of -

(2) Compute the intersection
of the Voronoi diagram of the
reduced set of sites
with a line though the row.
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Dimensional Reduction
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Dimensional Reduction
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Dimensional Reduction

Predicates:

[MQRO3, CTM*10]:
Above(v123, h) deg 3
OrderOnLine(byo, byz, h) deg 3

[CO6]:
oi=y=0x+@
of =(D,Q)

Orient_dl.d2(o1,02,03) deg 3

[CMS09]:
oi=y=0x+@

OrderOnLine_dl.d2(o1,02,¢) deg 2

PS.

he
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Nearest Neighbor Transform [CMS09]

Compute 2D Nearest Neighbor Transform
@ Time: O(U?) expected time.
@ Space: O(n+ U)
@ Precision: degree 2

Assuming O(nlog n) < O(U?)

Compute Voronoi Polygon Set
@ Time: O(U?) expected time
@ Space: O(nlog U) and O(n) for proxies only
@ Precision: degree 2

Query Post Office Structure
@ Time: O(log n) expected
@ Precision: degree 2
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Ch. 4: Nearest Neighbor Transform

Goal: Our solution, written up in [CMS09], only contains a
sketch of the construction, without analysis. In this chapter |
propose to provide the details of the construction, analysis,
book-quality code, and experimental results for our
implementation.
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Ch. 5: Triangulations

Goals: Compute Triangulation with
degree 2 or degree 3.
| propose to provide:

@ deg 2 or deg 3 algorithm

@ analysis and implementation
@ book-quality code

@ experimental results
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Triangulations

Given

A grid of size U and

sites S={s1,...,s} CU
Compute

A planar subdivision with

vertices in S and

edges such that no more edges
can be added without causing the
subdivision to become non-planar
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Delaunay Triangulation

InCircle

} Q() = sign

CICIC)
CICIC)
SIS
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Delaunay Triangulation

InCircle

- Q() = sign(

CICIC)
SIS

CICIC)

degree 4

How can we compute
a triangulation with
less than degree 4,
and what are some properties
of this triangulation?
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|deas for Computing a Triangulation

Use low degree algorithms
to compute a subset of known Delaunay edges.

Then, complete add edges to complete a triangulation.
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|deas for Computing a Triangulation

Convex Hull w/ h hull vertices:
Melkman[M87], O(nlog n), deg 2
Chan [C96], O(nlog h), deg 2

oq

Orientation deg 2
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Gabriel Graph

Defn: An edge pq is in the
Gabriel graph of S if the

closed disk centered at the
midpoint of pg with diameter |pq|
contains no points other

than p and q.
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Gabriel Graph

Defn: An edge pq is in the
Gabriel graph of S if the

closed disk centered at the
midpoint of pg with diameter |pq|
contains no points other

than p and q.

Proposed by:
Gabriel and Sokal [GS69]

Compute Gabriel from Delaunay:
[MS80] O(n) time, degree 6
[L96] O(n) time, degree 2

Directly compute Gabriel graph:
Brute force, O(n3) time, degree 2
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rp-Voronoi [MS09]

Defn: Replace connected subtrees
of Voronoi edges inside a cell with
their convex hulls
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Ch. 5: Triangulations

Goals: Describe a triangulation that can be computed
sub-quadratic time with two- or three-fold precision, provide
book-quality code and experiments for an implementation and
some of the properties that the proposed triangulation
possesses. Some properties may include angle bounds of the
triangulation, or how far it is in the flip graph from the Delaunay.

Should these properties be too difficult to discover,
experimental results may be supplied.
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Timeline

@ June 1, 2011 Draft chapters of:

e Ch. 2: Geometric Primitives

@ Ch. 4: Nearest Neighbor Transform
@ Sept 1, 2011 Implementation of:

e degree 2 and/or degree 3 Voronoi construction.
e adegree 2 or degree 3 triangulation.

Teach in the Fall: Teach in the Spring:
@ Jan 1, 2012 Drafts of: @ Oct 15, 2012 Draft of:
e Ch. 3: PO Queries e Ch. 3: PO Queries
o (status) Ch. 5: @ Dec 15, 2012 Draft of:

Triangulations
@ March 1, 2012 Draft of:
e Ch. 5: Triangulations

@ ~April 1, 2012 Defense.

e Ch. 5: Triangulations
@ ~March 1, 2012 Defense
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Conclusion

Thesis Statement: Degree-driven analysis supports the
development of new, robust geometric algorithms, as | have
demonstrated for computing Post-office query search
structures, Nearest Neighbor Transforms, and Triangulations.
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