Comp 734 - Assignment 3:

Extendible and Multi-Platform Object (De)Serialization
Date Assigned: October 31, 2011
First Submission Date: Nov 7, 2011

Second Completion Date: Wed Nov 16, 2011
In your last assignment, you learnt how to send and receive byte buffers. You will now learn how to send and receive objects . The new GIPC release has a facility to do so, which depends on Java serialization. You will build an alternative to Java serialization . Like your socket implementation, it will be chosen by implementing a new factory and registering it with the corresponding abstract factory.

 The assignment is divided into two parts. In the first part, you will build an extensible (de) serialization mechanism, which requires you to set up a complex recursive scheme involving objects of different classes. The second part will allow non-tree data structures to be serialized and de-serialized. In addition, it will support a reflection-based scheme that is more flexible than Java’s and can support heterogenous-platforms. Only the reflection-based scheme requires you to learn material – the remaining components can be done on your own. I will advise you to shoot for doing the remaining components by the first deadline.
Serializer Interface, Factory and Interface
In this part you will define a class that implements the following GIPC interface:

package serialization;
import java.nio.ByteBuffer;
public interface Serializer {

public ByteBuffer outputBufferFromObject(Object object);

public Object objectFromInputBuffer(ByteBuffer inputBuffer) ;
}
The first method serializes an object into a byte buffer, and the second does the reverse.

You should also define a factory that instantiates your class and implements the following interface:

package serialization;
public interface SerializerFactory {

Serializer createSerializer();
}

Your serializer will be used by GIPC when you register an instance of this factory by calling the setter method of serialization. SerializerSelector
Initial Serializable Objects
You will not be able to serialize (and deserialize) arbitrary objects. The objects you can handle will be called serializable objects.

For part 1, serializable objects include the following base objects:

Integer, Double, String, null
In other they include the null value and the Integer, Double and String objects.
In addition to these based types serializable objects include the following composite objects:

java.util.Collection whose elements are (base or composite) serializable objects

java.util.Map whose key and values are (base or composite) serializable objects

As Java automatically converts between primitive and wrapper values, you will also be able to handle int and double values.
Full and Value Serialization

To serialize a non null serializable object of class C, you will need to send the name of the class in a byte buffer followed by a byte buffer representing the object value. Thus the full serialization of an object consists of its class name serialization and its value serialization. To deserialize an object you will convert the class name to a class and then instantiate the class based on the value serialization. For a null value you will need some variation of this scheme.
The method getClass() can be invoked on any object to get the class of an object, and the method getName() can be invoked on a class to get its name. The static method Class.forName(String) can be used to convert a class name to a class, and the method newInstance() can be invoked on a class to create a new instance of the class. The instantiated class must have a null constructor, which will be assumed for classes of all composite objects. ByteBuffer provides putInt(), getInt(), putDouble(), getDouble() for encoding and decoding value serializations of base integer and double values, and we have seen methods for doing the same for String values.
Extendible Full Serializer and External Value Serializers
To send and receive the class name and null value, you can hardwire some scheme for serializing and deserializing these values. For other values, you must allow external serializers to be registered, which encode and decode value serializations of these objects. You must write a full serializer that calls (and is called by) the registered value serializers.

The exact form of the registration scheme is up to you. It should allow the programmer to associate a class with an object that creates a value serialization of the class. Multiple classes can be associated with an instance of the same serializer class or even the same instance.

In addition, you must register value serializers for the three base classes (String, Integer, Double), three implementations of java.util.Colllection (java.util.HashSet, java.util.ArrayList, and java.util.Vector) two implementations of java.util.Map (java.util.Hashtable, java.util.Hashmap). To illustrate, you must support equivalents of the following registrations supported by my implementation:
ACustomSerializer.registerSerializer(Integer.class,

new AnIntegerSerializer());
ACustomSerializer.registerSerializer(Double.class,

new ADoubleSerializer());
ACustomSerializer.registerSerializer(String.class,

new AStringSerializer());
ACustomSerializer.registerSerializer(HashSet.class,

new ACollectionSerializer());
ACustomSerializer.registerSerializer(ArrayList.class,

new ACollectionSerializer());
ACustomSerializer.registerSerializer(Vector.class,

new ACollectionSerializer());
ACustomSerializer.registerSerializer(HashMap.class,

new AMapSerializer());
ACustomSerializer.registerSerializer(Hashtable.class,

new AMapSerializer());
Alternate Serialization

Allow an object implementing an interface to be desereialized as an instance of another class that implements the same interface. For instance, allow an ArrayList to be deserialized as a Vector. The alternate class is registered by giving the classes of the serialized and deserialized objects, as in:

ACustomSerializer.registerDeserializingClass(ArrayList.class, Vector.class)
Non Tree Data Structures

Using the composite types it is possible to create structures that are general graphs rather than trees. In a tree, a node has a single parent, while a graph allows multiple parents. This means that in a graph the same node may be visited multiple times in a descent through the serialized/deserialized structure. The deserialized object should be isomorphic to the serialized object. This means that the serialization should contain a reference rather than a value when a component is visited again, and this reference should be converted to a memory address at the destination. If you ensure that the serialization and deserialization tarversals serialize and deserialize corresponding objects in the same order, this scheme can be easily and efficiently implemented .
Arrays, List Patterns, and Beans
The scheme, as described above, does not extend to classes for which serializers have not been registered and for a sefrializer to handle types about which it does not know. Extend this scheme to support serialization of arrays, and objects that follow the Bean and list patterns described in class. We will refer to these serializers as type-independent serializers.
You must define three new registration methods to handle these three kinds of objects, as illustrated below:
ACustomSerializer.registerArraySerializer(new AnArraySerializer());
ACustomSerializer.registerBeanSerializer(new ABeanSerializer());
ACustomSerializer.registerListPatternSerializer(

 new AListPatternSerializer());
In addition, you should implement these three serializers.

It is possible for an object to be serialized both by a type-dependent serializer and a type-dependent one. Your serializers should allow only instances of java.io.Serializer are serialized. Encountering some other kind of object should throw the exception java.io.NotSerializableException.
You can call the isArray() method on the class of an object to determine if it is an array. You can call Array.newInstance(componentClass, size) to instantiate a new array.

To handle beans, you should use the java.beans.BeanInfo class and invoke the invoke the getPropertyDescriptors() method in it to get each property and its read and write method. It is possible to get the BeanInfo of a class, invoke the method Introspector.getBeanInfo(class) method.
To support list pattern, use the GIPC class common. ReflectionUtlity. The methods isList(), listGet(), listAdd(), and listSize() methods.

Alternate serialization along with type-independent serializers makes your scheme multi platform.

Transients and Init Serialized Objects

You should not serializes objects whose read methods are associated with the Transient annotation, which checked by invoking ReflectionUtility.isTransient(Method) call. After an object is serialized, invoke the method initSerializedObject() in it, if such a method exists, which can be done by invoking ReflectionUtility. invokeInitSerializedObject(Object)
Part 1 vs. 2

Part 1 includes all components except non tree data structures and arrays, list patterns and beans. The GIPC class serialization.examples.ASerializationTester included a main method that has test cases with a comment delineating the two parts.
Part 1 vs. 2 Submission

For part 1 submit a document describing how you handle serialization and de-serialization of various kinds of objects including the null value. Also describe the interface of registered serializers. For part 2 extend the document to describe how you handle graph data structures and type-independent serializers. Be sure to describe any modifications to the interface of the registered serializers. As always include traces proving your program works. The tester is sufficient to test some but not all cases. In particular, it does not test alternate serialization.
