Comp 734 - Assignment 4:

Synchronous Receive and RPC
Date Assigned: Nov 14, 2011
Part 1 Submission Date: Nov 21, 2011

Part 1 and 2 Completion Date: Wed Nov 28, 2011
In the last two assignments, you learnt how to communicate byte buffers and objects. In this assignment you will add synchronous receive and use it to implement synchronous function and procedure calls. As before, the first submission date is for your pacing, it will not be graded.
Part 1: Synchronous Explicit and Synchronous Receive
Create extensions of the client and duplex object ports that provide an explicit synchronous blocking receive. It takes as an argument the name of the sender, waits until a message from that sender arrives, and returns the object received.

It should be possible for multiple threads to concurrently perform receive operations. When a message arrives, it should go to the first synchronous receive waiting for it, and also all listeners registered to receive the message.

Provide also an implicit synchronous receive, which calls the explicit receive with the sender name returned by getLastSender(), which in the case of a client port always returns the server.

You do not have to but are free to implement a factory to create the two ports.

This part essentially involves using monitors, bounded buffers (implementations of Java BlocikngQueue such as ArrayBlockingQueue), and GIPC Duplex Object ports to implement your new abstraction.

Part 2.1: Synchronous Remote Function Call

Create a new implementation of a duplex rpc input port that provides an alternative implementation of the remote function call object. You do not have to create a new class for the rpc port. Instead, you have to define only a new factory for such a port that uses your implementation of the duplex object port of part 1, and the remote call completer (executing at the local site) described below.

The current implementation of a remote function call uses monitors to wait for the returned value. Provide an alternative implementation of the interface

 inputport.rpc.duplex.DuplexSentCallCompleter
 to use sync receive calls to do the waiting. You will have to define a factory to instantiate your implementation of this object. The factory for this object is selected by the abstract factory

 inputport.rpc.duplex.DuplexSentCallCompleterSelector
You can simply extend the GIPC duplex sent call completer class. If you do so, your responsibility is to override the constructor and one or more of the methods isReturnValue(), processReturnValue() and returnValueOfRemoteFunctionCall(). As its name indicates, returnValueOfRemoteFunctionCall, is called by GIPC to make the caller block until the return value is received. This means, that, in general, a sent call completer must have a chance to process messages received from the remote site. The method processReturnValue() must be overridden to do this extra processing, which can involve doing nothing. The method isReturnValue() determines if a message is a return value. The constructor takes as an argument, a DuplexRPCInputPort. Such a port provides the method getDuplexInputPort() for returning your implementation of the duplex object port of part 1.
Part 2: Synchronous Procedure Call

Again, you will create a new implementation of the duplex rpc input port by defining a new factory that creates a new composition of objects. Currently, while a remote function call is synchronous, a remote procedure call is asynchronous.Your new implementation of a duplex rpc input port will support synchronous procedure (and function) calls.

This time you will provide an alternative implementation of both the sent call completer (executing at the local site) and the received call invoker (executing at the remote site).

As mentioned above, you will have to provide yet another implementation of
 inputport.rpc.duplex.DuplexSentCallCompleter,

which can be an extension of the one you created above. This time, you will have to override, the method returnValueOfRemoteProcedureCall()
which is called by the local site to wait for the procedure call to complete.

To support synchronous procedure calls you will have to trap the invocation of the call at the remote site. You can do so by providing an alternative implementation of the interface

 inputport.rpc.ReceivedCallInvoker

selected by the abstract factory

 inputport.rpc.duplex.DuplexReceivedCallInvokerSelector
You can simply extend the existing class
 inputport.rpc.duplex.ADuplexReceivedCallInvoker .
 You will have to override the constructor of course and the method handleProcedureReturn() by taking an appropriate action. The method handleFunctionReturn() (which you do not have to modify) of ADuplexReceivedCallInvoker shows how function returns are handled.
Testing

The package inputport.rpc.duplex.example can be used to test all parts. To test part 1, you will need to create your own tests.

Configuring previous implementations
Use your implementations of the driver and serializer in your testing so that these parts get exercised.
Submission Part 1

Explain how you handle blocking and unblocking of a receive. In particular, explain how your code handles a received message. Show test cases.
Submission Part 2.1 and 2.2
1. Explain how your implementations of the two subparts work.

2. Explain why your implementations rely on a received message going to both a synchronous receive and all listeners for the message.

3. Explain why the example does not complete with your part 2 implementation.

4. Show test cases.
