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1. Introduction

This essay reviews those basic facts about (univariate) B-splines which are of interest
in CAGD. The intent is to give a self-contained and complete development of the material
in as simple and direct a way as possible. For this reason, the B-splines are de�ned
via the recurrence relations, thus avoiding the discussion of divided di�erences which the
traditional de�nition of a B-spline as a divided di�erence of a truncated power function
requires. This does not force more elaborate derivations than are available to those who
feel at ease with divided di�erences. It does force a change in the order in which facts
are derived and brings more prominence to such things as Marsden's Identity or the Dual
Functionals than they currently have in CAGD.

In addition, it highlights the following point: The consideration of a single B-spline
is not very fruitful when proving facts about B-splines, even if these facts (such as the
smoothness of a B-spline) can be stated in terms of just one B-spline. Rather, simple
arguments and real understanding of B-splines are available only if one is willing to consider
all the B-splines of a given order for a given knot sequence. Thus it focuses attention on
splines, i.e., on the linear combination of B-splines. In this connection, it is worthwhile
to stress that this essay (as does its author) maintains that the term `B-spline' refers to
a certain spline of minimal support and, contrary to usage unhappily current in CAGD,
does not refer to a curve which happens to be written in terms of B-splines. It is too bad
that this misuse has become current and entirely unclear why.

The essay deals with splines for an arbitrary knot sequence and does rarely become
more speci�c. In particular, the B(ernstein-B�ezier)-net for a piecewise polynomial, though
a (very) special case of a representation by B-splines, gets much less attention than it
deserves, given its immense usefulness in CAGD (and spline theory).

The essay deals only with spline functions. There is an immediate extension to
spline curves: Allow the coe�cients, be they B-spline coe�cients or coe�cients in some
polynomial form, to be points in IR2 or IR3. But this misses the much richer structure for
spline curves available because of the fact that even discontinuous parametrizations may
describe a smooth curve.

Splines are of importance in CAD for the same reason that they are used wherever
data are to be �t or curves are to be drawn by computer: being polynomial, they can be
evaluated quickly; being piecewise polynomial, they are very 
exible; their representation
in terms of B-splines provides geometric information and insight. See Riesenfeld's con-
tribution in this volume for details concerning the use of splines and, especially, of their
B-spline representation, in CAD. See Cox' contribution for details concerning numerical
algorithms to handle splines and their B-spline representation.

The editor of this volume has asked me to provide a careful discussion of the place-

holder notation customary in mathematical papers on splines. This notation was invented

by people who think it important to distinguish the function f from its value f(x) at the

point x. It is customarily used in the description of a function of one variable obtained
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from a function of two variables by holding one of those two variables �xed. In this essay,

it appears only to describe functions obtained from others by shifting and/or scaling of

the independent variable. Thus, f(� � z) is the function whose value at x is the number

f(x� z), while g(�+ ��) is the function whose value at t is g(�+ �t), etc.

It is also worth pointing out that I have been very careful to distinguish between

`equality' and `equality by de�nition'. The latter I have always indicated by using a colon

on the same side of the equality sign as the term being de�ned. I use Drf (instead of

f (r)) to denote the rth derivative of the function f , and use �r to denote the collection

of all polynomials of degree � r. The notation �<r for the collection of all polynomials of

degree < r (i.e., of order r) will be particularly handy. Finally, I use a double period to

indicate an interval; e.g., [x : : y) := f(1� t)x+ ty : 0 � t < 1g. This helps to distinguish

the interval (a : : b) from the point (a; b) in the plane, or the interval [a : : b] from the �rst

divided di�erence [a; b].

2. B-splines de�ned

We start with a partition or knot sequence, i.e., a nondecreasing sequence t :=�
ti
�
. The B-splines of order 1 for this knot sequence are the characteristic functions of

this partition, i.e., the functions

Bi1(t) := Xi(t) :=

�
1; if ti � t < ti+1
0; otherwise.

(2:1)

Note that all these functions have been chosen here to be right-continuous. Other choices

could have been made with equal justi�cation. The only constraint is that these B-splines

should form a partition of unity, i.e.,X
i

Bi1(t) = 1; for all t: (2:2)

In particular,

ti = ti+1 implies Bi1 = Xi = 0: (2:3)

From these �rst-order B-splines, we obtain higher-order B-splines by recurrence:

Bik := !ikBi;k�1 + (1� !i+1;k)Bi+1;k�1 (2:4a)

with

!ik(t) :=

�
t�ti

ti+k�1�ti
; if ti 6= ti+k�1

0; otherwise.
(2:4b)

Thus, the second-order B-spline is given by

Bi2 = !i2Xi + (1� !i+1;2)Xi+1; (2:5)

and so consists, in general, of two nontrivial linear pieces which join continuously to form

a piecewise linear function which vanishes outside the interval [ti : : ti+2). For this reason,
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Figure 1.1. Linear B-spline with (a) simple knots, (b) a double knot

Figure 1.2 Quadratic B-spline with (a) simple knots, (b) a triple knot

some call Bi2 a linear B-spline. If, e.g., ti = ti+1 (hence Xi = 0), but still ti+1 < ti+2,

then Bi2 consists of just one nontrivial piece and fails to be continuous at the double

knot ti = ti+1, as is shown in Fig. 1.1.
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The third-order B-spline is given by

Bi3 = !i3Bi2 + (1� !i+1;3)Bi+1;2

= !i3!i2Xi +
�
!i3(1� !i+1;2) + (1� !i+1;3)!i+1;2

�
Xi+1

+ (1� !i+1;3)(1� !i+2;2)Xi+2

(2:6)

This shows that, in general, Bi3 consists of 3 (nontrivial) quadratic pieces, and, to judge

from the Fig. 1.2, these seem to join smoothly at the knots to form a C1 piecewise quadratic

function which vanishes outside the interval [ti : : ti+3). Coincidences among the knots

ti; : : : ; ti+3 would change this. If, e.g., ti = ti+1 = ti+2 (hence Xi = Xi+1 = 0), then Bi3

consists of just one nontrivial piece, fails to be even continuous at the triple knot ti, but

is still C1 at the simple knot ti+3, as is shown in Fig. 1.2.

After k � 1 steps of the recurrence, we obtain Bik in the form

Bik =

i+k�1X
j=i

bjkXj ; (2:7)

with each bjk a polynomial of degree < k since it is the sum of products of k � 1 linear

polynomials. Thus a B-spline of order k consists of polynomial pieces of degree < k. (In

fact, all bjk are of exact degree k � 1.)

Figure 1.3 A 6th order B-spline and the six quintic polynomials whose

selected pieces make up the B-spline

From this, we infer that Bik is a piecewise polynomial of degree < k which vanishes

outside the interval [ti : : ti+k) and has possible breakpoints ti; � � � ; ti+k; cf. Fig. 1.3. In
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ti ti+1 ti+k�1 ti+k

0

1

1� !i+1;k

!ik

Figure 1.4 The two weight functions in (2.4a) are positive on (ti : : ti+k) =

supp Bik.

particular, Bik is just the zero function in case ti = ti+k. Also, by induction, Bik is positive

on the open interval (ti : : ti+k), since both !ik and 1�!i+1;k are positive there; cf. Figure

1.4.

Further, we see that Bik is completely determined by the k+1 knots ti; : : : ; ti+k. For

this reason, the notation

B(�jti; : : : ; ti+k) := Bik (2:8)

is sometimes used. Other notations in use include

Nik := Bik and Mik :=
�
k=(ti+k � ti)

�
Bik: (2:9)

The many other properties of B-splines are derived most easily by considering not

just one B-spline but the linear span of all B-splines of a given order k for a given knot

sequence t. This brings us to splines.

3. Splines de�ned

A spline of order k with knot sequence t is, by de�nition, a linear combination

of the B-splines Bik associated with that knot sequence. We denote by

Sk;t := f

X
i

Bikai : ai 2 IRg (3:1)

the collection of all such splines.

We have left open so far the precise nature of the knot sequence t, other than to

specify that it be a nondecreasing real sequence. In any practical situation, t is necessarily
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tj�k+1 tj tj+1 tj+k

Figure 2.1 The k B-splines whose support contains [tj : : tj+1); here k = 3

a �nite sequence. But, since on any nontrivial interval [tj : : tj+1) at most k of the Bik

are nonzero, viz. Bj�k+1;k; : : : ; Bjk (cf. Figure 2.1), it doesn't really matter whether t is

�nite, in�nite, or even bi-in�nite; the sum in (3.1) always makes pointwise sense, since, on

any interval [tj : : tj+1), at most k summands are not zero.

We will pay special attention to the following two \extreme" knot sequences, the

sequence

ZZ := (: : : ;�2;�1; 0; 1; 2; : : :)

and the sequence

IB := (: : : ; 0; 0; 0; 1; 1; 1; : : :):

A spline associated with the knot sequence ZZ is called a cardinal spline. This term

was chosen by Schoenberg [Scho69] because of a connection to Whittaker's Cardinal Series.

This is not to be confused with its use in earlier spline literature where it refers to a spline

which vanishes at all points in a given sequence except for one at which it takes the value

1. The latter splines, though of great interest in spline interpolation, do not interest us

here.

Because of the uniformity of the knot sequence t = ZZ, formulae involving cardinal

B-splines are often much simpler than corresponding formulae for general B-splines. To

begin with, all cardinal B-splines (of a given order) are translates of one another . With

the natural indexing ti := i; for all i, for the entries of the uniform knot sequence t = ZZ,

we have

Bik = Nk(� � i); (3:2)

with

Nk := B0k = B(�j0; : : : ; k): (3:3)

The recurrence relations (2.4) simplify as follows:

(k � 1)Nk(t) = tNk�1(t) + (k � t)Nk�1(t� 1): (3:4)
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Figure 2.2 Bernstein basis of degree 4 or order 5

The knot sequence t = IB contains just two points, viz., the points 0 and 1, but each

with in�nite multiplicity. The only nontrivial B-splines for this sequence are those which

have both 0 and 1 as knots, i.e., those Bik for which ti = 0 and ti+k = 1; see Figure 2.2.

There seems to be no natural way to index the entries in the sequence IB. Instead, it is

customary to index the corresponding B-splines by the multiplicities of their two distinct

knots. Precisely,

B(�;�) := B(�j 0; : : : ; 0| {z }
�+1 times

; 1; : : : ; 1| {z }
�+1 times

): (3:5)

With this, the recurrence relations (2.4) simplify as follows:

B(�;�)(t) = tB(�;��1)(t) + (1� t)B(��1;�)(t): (3:6)

This gives the formula

B(�;�)(t) =

�
�+ �

�

�
(1� t)�t� for 0 < t < 1 (3:7)

for the one nontrivial polynomial piece of B(�;�), as one veri�es by induction. The formula

enables us to determine the smoothness of the B-splines in this simple case: Since B(�;�)

vanishes identically outside [0 : : 1], it has exactly � � 1 continuous derivatives at 0 and

� � 1 continuous derivatives at 1. This amounts to � smoothness conditions at 0 and

� smoothness conditions at 1. Since the order of B(�;�) is � + � + 1, this is a simple

illustration of the generally valid formula

#smoothness conditions at knot + multiplicity of knot = order: (3:8)
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For �xed � + �, the polynomials in (3.7) form the so-called Bernstein basis (for

polynomials of degree � �+ �) and, correspondingly, the representation

p =
X

�+�=h

B(�;�)a(�;�) (3:9)

is the Bernstein form for the polynomial p 2 �h. In CAGD, it is more customary to refer

to (3.9) as the B�ezier form (for the polynomial p) or as the B�ezier polynomial or even

the Bernstein-B�ezier polynomial. It may be simpler to use the short term BB-form

instead.

Finally, I introduce here a simplifying assumption. In the next sections, I de-

velop the basic B-spline theory by studying the spline space Sk;t, i.e., the collection of all

functions s of the form

s =
X
i

Bikai (3:10)

for a suitable coe�cient vector a = (ai).

In practice, the knot sequence t is always �nite, hence so is the sum in (3.10). This

often requires one to pay special attention to the limits of that summation. Since I �nd

that distracting, I will assume from now on that the knot sequence t is bi-in�nite. This

can always be achieved simply by continuing the sequence inde�nitely in both directions

(taking care to maintain its monotonicity) and choosing the additional B-spline coe�cients

to be zero.

More than that, I will assume that

t�1 := lim
i!�1

ti = �1: (3:11)

This assumption is convenient since it ensures that every � 2 IR is in the support of some

B-spline.

At times, it will be convenient to assume that

ti < ti+k for all i (3:12)

which can always be achieved by removing from t its ith entry as long as ti = ti+k. This

does not change the space Sk;t since the only kth order B-splines removed thereby are zero

anyway. In fact, another way to state the condition (3.12) is:

Bik 6= 0 for all i: (3:120)
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4. The polynomials in Sk;t

We show in this section that Sk;t contains

�<k := the collection of all polynomials of degree < k;

and give a formula for the B-spline coe�cients of p 2 �<k.

We begin with Marsden's Identity:

Theorem 4. For any � 2 IR,

(� � �)k�1 =
X
i

Bik ik(�); (4:1a)

with

 ik(�) := (ti+1 � �) � � � (ti+k�1 � �): (4:1b)

Proof: We deduce from the recurrence relation (2.4) that, for an arbitrary coe�cient

sequence a, X
Bikai =

X
Bi;k�1

�
(1� !ik)ai�1 + !ikai

�
: (4:2)

On the other hand, for the special sequence

ai :=  ik(�) := (ti+1 � �) � � � (ti+k�1 � �)

(with � 2 IR), we �nd for Bi;k�1 6= 0, i.e., for ti < ti+k�1 that

(1� !ik)ai�1 + !ikai =
�
(1� !ik)(ti � �) + !ik � (ti+k�1 � �)

�
 i;k�1(�)

= (� � �) i;k�1(�)
(4:3)

since (1�!ik)f(ti)+!ikf(ti+k�1) is the straight line which agrees with f at ti and ti+k�1,

hence must equal f if, as in our case, f is linear. This shows that

X
Bik ik(�) = (� � �)

X
Bi;k�1 i;k�1(�);

hence, by induction, that

X
Bik ik(�) = (� � �)k�1

X
Bi1 i1(�) = (� � �)k�1;

since  i1(�) = 1 and
P

i
Bi1 = 1 (see (2.2)).

Remark. There may be some doubt as to why  i1 should be identically equal to 1.

From the de�nition (4.1b), it would appear that  i1 is the product of no factors, hence,

by a standard agreement concerning the empty product, equal to 1. This is the de�nition
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appropriate for use in induction arguments. Indeed, if you consider the coe�cients in (4.2)

for k = 2 directly, you get

(1� !i2) i�1;2(�) + !i2 i2(�) = (1� !i2) � (ti � �) + !i2 � (ti+1 � �)

= (� � �);

which agrees with (4.3) for this case if we set  i1(�) = 1.

Since � in (4.1) is arbitrary, it follows that Sk;t contains all polynomials of degree < k.

More than that, we can even give an explicit expression for the required coe�cients, as

follows.

By dividing (4.1a) by (k� 1)! and then di�erentiating it with respect to � , we obtain

the identities
(� � �)k��

(k � �)!
=
X
i

Bik

(�D)��1 ik(�)

(k � 1)!
; � > 0; (4:4)

with Df the derivative of the function f . On using this identity in the Taylor formula

p =

kX
�=1

(� � �)k��

(k � �)!
Dk��p(�);

valid for any p 2 �<k, we conclude that any such polynomial can be written in the form

p =
X
i

Bik�ikp ; (4:5a)

with �ik given by the rule

�ikf :=

kX
�=1

(�D)��1 ik(�)

(k � 1)!
Dk��f(�): (4:5b)

Here are two special cases of particular interest. For p = 1, we get

1 =
X
i

Bik (4:6)

since Dk�1 ik = (�1)k�1(k�1)!, and this shows that the Bik form a partition of unity.

Further, since Dk�2 ik is a linear polynomial which vanishes at

t�
i
:= (ti+1 + � � �+ ti+k�1)=(k � 1); (4:7)

we get the important identity

p =
X
i

Bikp(t
�

i
) for all p 2 �1: (4:8)
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Remark. In the cardinal case,

 ik(�)=(k � 1)! =

�
i� � + k � 1

k � 1

�
; (4:1b)ZZ

while in the Bernstein-B�ezier case,

 (�;�)(�) = (��)�(1� �)� = (�1)�B(�;�)=

�
�+ �

�

�
: (4:1b)IB

5. The pp functions contained in Sk;t

In this section, we show that the spline space Sk;t coincides with a certain space of

pp( := piecewise polynomial) functions.

Each s 2 Sk;t is pp of degree < k with breakpoint sequence t since each Bik is pp of

degree < k and has breakpoints ti; : : : ; ti+k. In symbols,

Sk;t � �<k;t: (5:1)

But Sk;t is usually a proper subspace of �<k;t since, depending on the knot multiplicities

#ti := #ftj : ti = tjg; (5:2)

the splines in Sk;t are more or less smooth, while the typical element of �<k;t has jump

discontinuities at every ti.

For the precise description, given in Theorem 5 below, of the smoothness conditions

satis�ed by the elements of Sk;t, we make use of Marsden's Identity, (4.1), since it provides

us with the B-spline coe�cients of various pp functions in Sk;t, as follows.

 i4

Bi4

ti ti+1 ti+4ti+2 = ti+3

Figure 5.1 Bi4 and  i4; note the double knot
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Figure 5.2 The summands Bi3 i3(tj) and their sum, (� � tj)
2

Figure 5.3 The summands Bi3 i3(tj); i � j; and their sum, (� � tj)+
2

Since Bik(tj) 6= 0 implies  ik(tj) = 0 (see Fig. 5.1), the choice � = tj in (4.1) leaves only

terms with support either entirely to the left or else entirely to the right of tj ; see Fig. 5.2.

This implies (see also Fig. 5.3) that

(� � tj)
k�1
+ =

X
i�j

Bik ik(tj) (5:3)

with

�+ := maxf�; 0g (5:4)

the positive part of the number �, i.e., (�� tj)
k�1
+ is a truncated power function of exact

degree k�1. More than that, since ti < tj < ti+k implies D��1 ik(tj) = 0 in case � � #tj ,

the same observation applied to (4.4) shows that

(� � tj)
k��

+ 2 Sk;t for 1 � � � #tj : (5:5)

Fig. 5.4 illustrates further the interplay between knot multiplicity and smoothness of

the resulting B-splines by showing all the relevant B-splines and truncated power functions

for a certain knot sequence.
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Figure 5.4 (a) The six quadratic B-splines for the case of one simple and

one double interior knot; and

(b) the corresponding truncated power basis.

Theorem 5. The space Sk;t coincides with the space ~S of all piecewise polynomials of

degree < k with breakpoints ti which are k � 1�#ti times continuously di�erentiable at

ti.

Proof: Assume without loss of generality (see Sec. 3) that

ti < ti+k for all i:

It is su�cient to prove that, for any �nite interval I := [a : : b], the restriction ~SjI of

the space ~S to the interval I coincides with the restriction of Sk;t to that interval. The

latter space is spanned by all the B-splines having some support in I, i.e., all Bik with

(ti; ti+k) \ I 6= ;. The space ~SjI has a basis consisting of the functions

(� � a)k�� ; � = 1; � � � ; k; (� � ti)
k��

+ ; � = 1; � � � ;#ti; for a < ti < b: (5:6)
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This follows from the observation that a pp function f with a breakpoint at ti which

is k � 1�#ti times continuously di�erentiable there can be written uniquely as

f = p+

#tiX
�=1

(� � ti)
k��

+ c� ;

with p a suitable polynomial of degree < k and suitable coe�cients c� . Since each of the

functions in (5.6) lies in Sk;t, by (5.3) and (5.5), we conclude that

~SjI � (Sk;t)jI : (5:7)

On the other hand, the dimension of ~SjI , i.e., the number of functions in (5.6), equals the

number of B-splines with some support in I (since it equals k+
P

a<ti<b
#ti), hence is an

upper bound on the dimension of (Sk;t)jI . This implies that equality must hold in (5.7),

which is what we set out to prove.

Remark. The argument from Linear Algebra used here is the following: Suppose

that we know a basis, (f1; f2; : : : ; fn) say, for the linear subspace F , and that we further

know a sequence (g1; g2; : : : ; gm) whose span, G say, contains each of the fi. Then, of

course, F � G and so

n = dim F � dim G � m:

If we now know, in addition, that n = m, then necessarily F = G. Moreover, then

necessarily dim G = m, i.e., the sequence (g1; g2; : : : ; gm) must be linearly independent

(since it then isminimally spanning for G). In our particular situation, this last observation

implies that the set of B-splines having some support in I must be linearly independent

over I. We pick up on this in the next section.

Remark. Formula (5.3) provides all the information needed to deduce the divided-

di�erence formulation for B-splines. By de�ning  +
ik
to be the function which agrees with

the polynomial  ik on (�1 : :�i) and is identically zero on [�i : :1), where �i is an arbitrary

point in the support of Bik, i.e., in (ti : : ti+k), we are entitled to write (5.3) in the form

(t� tj)
k�1
+ =

X
i

Bik(t) 
+
ik
(tj); all t: (5:30)

The function  +
ik
agrees with  ik at all tj with j < i+k, and agrees with the zero function

at all tj with j > i. Since both  ik and 0 are polynomials of degree < k, this implies that

the kth divided di�erence [tj ; : : : ; tj+k] 
+
ik
at the points tj ; : : : ; tj+k of  

+
ik
must be zero in

case j 6= i. Therefore, applying this divided di�erence to both sides of (5.30), we �nd that

[tj ; : : : ; tj+k](t� �)k�1+ = Bjk(t)[tj; : : : ; tj+k] 
+
jk
. Since  +

jk
agrees at tj ; : : : ; tj+k with the

kth degree polynomial ((�� tj)=(tj+k� tj)) jk, and this polynomial has leading coe�cient

(�1)k�1=(tj+k � tj), it follows that

(tj+k � tj)[tj; : : : ; tj+k](� � t)k�1+ = Bjk(t): (5:8)
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6. `B' stands for `BASIC'

In this section, we discuss the basis property of the B-splines, as a consequence of

Theorem 5 and its proof.

From the Remark following Theorem 5, we obtain the following sharpening of Theo-

rem 5.

Theorem 6. Let I := [a : : b) be a �nite interval. Then the restrictions

fBikjI : BikjI 6= 0g (6:1)

of those B-splines which have some support on I form a basis for the space of pp functions

of degree < k on I with breakpoints fti : a < ti < bg and which are k�1�#ti continuously

di�erentiable at each of their breakpoints ti.

We conclude that the number of smoothness conditions at a knot ti guaranteed to be

satis�ed by every spline in Sk;t equals k �#ti. This proves the formula

#smoothness conditions at knot + multiplicity of knot = order (3:8)

cited earlier (in connection with the Bernstein-B�ezier form).

It is worthwhile to think about this the other way around. Suppose we start o� with

a partition

a =: �1 < �2 < � � � < �` < �`+1 := b

of the interval I := [a : : b] and wish to consider the space

��

<k;�

of all pp functions of degree < k on I with breakpoints �i which satisfy �i smoothness

conditions at �i, i.e., are �i � 1 times continuously di�erentiable at �i; for all i. Then a

B-spline basis for this space is provided by (6.1), with the knot sequence t constructed

from the breakpoint sequence � in the following way: To the sequence

( �2; : : : ; �2| {z }
k��2 terms

; �3; : : : ; �3| {z }
k��3 terms

; : : : ; �`; : : : ; �`| {z }
k��` terms

); (6:2)

adjoin at the beginning k points � a and at the end k points � b. While the knots in

(6.2) have to be exactly as shown to achieve the speci�ed smoothness at the speci�ed

breakpoints, the 2k additional knots are quite arbitrary. They are often chosen to equal a

resp. b, and this has certain advantages (among other things that of simplicity). With such

a choice, it is necessary to modify the de�nition (2.1) so as to include the right endpoint,

b, into the support of the rightmost nontrivial Bi1. In other words, if n is such that

tn < tn+1 = b;

then

Bn1(t) := Xn(t) :=

�
1; if tn � t � b

0; otherwise.
(6:3)

This ensures that, in evaluating a spline or its derivatives at b, we obtain the limit from

the left.

The identi�cation of Sk;t with a certain space of pp functions allows the following

conclusions of importance in calculations to be discussed later.
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Corollary 1. If ti < ti+k�1, then the derivative of a spline in Sk;t is a spline of degree

< k � 1 with respect to the same knot sequence, i.e., DSk;t � Sk�1;t.

Proof: By assumption, #ti < k, hence the pp functions in Sk;t are continuous,

therefore di�erentiable (if we accept a possible jump at ti in the derivative Ds of s 2 Sk;t
in case #ti = k � 1). Further, such a derivative Ds is pp of degree < k � 1 and satis�es

k �#ti � 1 smoothness conditions at ti, hence belongs to Sk�1;t, by Theorem 5 or 6.

Corollary 2. If bt is a re�nement of the knot sequence t, then Sk;t � S
k;bt.

Proof: Since bt is a re�nement of t, i.e., contains entries in addition to those of t,

the pp functions in Sk;t satisfy all the conditions which, by Theorem 5 or 6, characterize

the pp functions in S
k;bt. (But the converse does not hold, since the pp functions in S

k;bt
may have more breakpoints and/or may be less smooth at some breakpoints than the pp

functions in Sk;t.)

These corollaries point out that it should be possible, in principle, to compute from

the B-spline coe�cients of a spline in Sk;t the B-spline coe�cients of its derivative and its

B-spline coe�cients with respect to a re�ned knot sequence. To carry out such calculations,

though, we need a means of expressing the B-spline coe�cients of a spline in terms of other

information, such as its values and derivatives at certain points. If the spline happens to be

a polynomial, then such a formula is provided by (4.5). We show in the next section that

the same formula works for any spline (provided we are willing to restrict the parameter

� suitably).

7. The dual functionals

In this section, we prove that the formula (4.5) for the B-spline coe�cients of a

polynomial is valid for an arbitrary spline provided we restrict the parameter � in the

de�nition

�ik : f 7!

kX
�=1

(�D)��1 ik(�)

(k � 1)!
Dk��f(�) (4:5b)

to the support of Bik.

For this, we agree, consistent with (2.1b), that all derivatives in (4.5b) are to be taken

as limits from the right in case � coincides with a knot (except, perhaps, when � is the

right endpoint of the interval of interest, see (6.3)).

Theorem 7. If � in de�nition (4.5b) of �ik is chosen in the interval [ti : : ti+k), then

�ik

�X
j

Bjkaj

�
= ai: (7:1)
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tl tl+1

pl�2

pl

pl�1

Figure 7.1 The three polynomials, pl�2; pl�1; pl, which agree with some

quadratic B-spline Bj3 on the knot interval [tl : : tl+1).

Proof: We prove that, under the given restriction,

�ikBjk = �ij :=

�
1; if i = j;

0; otherwise.
(7:2)

Assume that � 2 [tl : :tl+1) � [ti : :ti+k). Then (7.2) requires proof only for j = l�k+1; : : : ; l

since, for all other j, i 6= j and Bjk vanishes identically on [tl : :tl+1), hence also �ikBjk = 0.

For each of the remaining j's, let pj be the polynomial which agrees with Bjk on [tl : : tl+1);

see Fig. 7.1. Then

�ikBjk = �ikpj :

On the other hand,

pj =

lX
i=l�k+1

pi �ikpj ; (7:3)

since this holds by (4.5a) on [tl : : tl+1). This forces �ikpj , hence �ikBjk, to equal �ij for

i; j = l � k+1; : : : ; l, since, by Theorem 6 or directly from the fact that (4.5a) holds for

every p 2 �<k, the sequence

pl�k+1; � � � ; pl (7:4)

is linearly independent.

Remark. The argument used here is that, for a linearly independent sequence

(f1; : : : ; fn), the only way the equation

fi =

nX
j=1

fjaij
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can hold is for aij to equal 1 for i = j and zero otherwise. Further, the linear independence

of the sequence (7.4) follows from the validity of (4.5a) for every p 2 �<k since that implies

that the k�sequence (7.4) is spanning for the k�dimensional space �<k. It also follows

from Theorem 6 with I = [tl : : tl+1).

The two sequences,
�
Bik

�
and

�
�jk

�
, are said to be bi-orthonormal or dual to each

other because they satisfy (7.2). For this reason, the linear functionals �ik are at times

referred to as the dual functionals for the B-splines.

We exploit the simple formula (7.1) for the ith B-spline coe�cient of a spline in

subsequent sections, in order to derive algorithms for di�erentiation and knot insertion and,

ultimately, to derive statements about the condition and the shape-preserving property of

B-splines.

0

100 101

Figure 8.1 The power coe�cients of these two very di�erent linear poly-

nomials di�er by only 0.01%.

8. Condition

The condition of a basis measures how closely relative changes in the coe�cients are

matched by the resulting relative changes in the element represented. The closer the match,

the better conditioned the basis is said to be. For example, the power basis 1; t; t2; : : : is not

a good way to represent polynomials if we are interested in a positive interval [a : : b] with

a=b close to 1. If, e.g., [a : : b] = [100 : : 101], then a 0.01% change in the power coe�cients

of the straight line p : t ! t � 100 (to p : t ! 1:01t � 100) can change its behavior on

[100 : : 101] by 100%; see Fig. 8.1.

If we use the appropriately shifted power basis, e.g., write p in the form p(t) =

� + �(t � 100), then a .01% change in the coe�cients �; � of this form produces a .01%

change in the polynomial on the interval [100 : :101]. The appropriately shifted power basis
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is often much better conditioned than the power basis. In this section, we discuss brie
y

the condition of the B-spline basis.

This requires us to bound the spline in terms of its B-spline coe�cients and the B-

spline coe�cients in terms of the spline. The �rst turns out to be easy, while the second

requires some work. Precisely, we are looking for constants m > 0 and M for which the

inequalities

mmax
i

jaij � max
t

j

X
i

Bik(t)aij �M max
i

jaij (8:1)

hold regardless of what the coe�cient vector a =
�
ai
�
might be. Since the B-splines are

nonnegative and sum to 1 at any point, we have

j

X
i

Bik(t)aij �
X
i

Bik(t)jaij �
X
i

Bik(t)max
i

jaij = max
i

jaij;

hence the second inequality always holds with M = 1. For the �rst inequality, we have to

work a little harder.

Set s :=
P

i
Bikai. We know from Theorem 7 that

ai = �iks =

kX
�=1

(�D)��1 ik(�)

(k � 1)!
Dk��s(�) (8:2)

with � some point which we can freely choose in the interval [ti : : ti+k). We now bound

this sum in terms of maxt js(t)j.

Suppose that � 2 [tl : : tl+1) � [ti : : ti+k). Then, for some constk depending only on

k, and for all p 2 �<k and all j,

jDjp(�)j � constk (�tl)
�j max

tl�t�tl+1

jp(t)j: (8:3)

The existence of such a constk follows for the case �tl = 1 from the fact that �<k is

�nite-dimensional, and from this it follows for arbitrary �tl by scaling. Since s agrees

with some polynomial of degree < k on [tl : : tl+1), we conclude that

jDjs(�)j � constk (�tl)
�j max

ti�t�ti+k

js(t)j: (8:4)

On the other hand,  ik = (ti+1� �) � � � (ti+k�1 � �) is also a polynomial of degree < k, and

max
tl�t�tl+1

j ik(t)j � const0
k
j�tl� j

k�1 (8:5)

for some const0
k
which depends only on k and with [tl� : : tl�+1) a largest interval of that

form in [ti : : ti+k). Therefore we choose l = l� and then obtain, from (8.3) with p =  ik
and from (8.4), the bound

jD��1 ik(�)D
k��s(�)j � (constk)

2 const0
k

max
ti�t�ti+k

js(t)j:

Now sum these bounds over � and divide by (k � 1)! to obtain

jaij = j�iksj � const max
ti�t�ti+k

js(t)j;

with const depending only on k.

We have proved the following
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Theorem 8. There exists a constant Dk depending only on k so that, for all knot se-

quences t and all s 2 Sk;t, and for all i,

j�iksj � Dk max
ti�t�ti+k

js(t)j: (8:6)

The best value for Dk is not known exactly but there is strong numerical evidence

that Dk � 2k�1. If we only consider cardinal splines, i.e., only uniform knot sequences,

then the best value for Dk is known to be less than (�=2)k.

Corollary. The inequalities (8.1) hold with m = 1=Dk and M = 1.

9. Evaluation

In this section, we discuss the use of the recurrence relations (2.4) for the evaluation

of a spline

s =
X
i

Bikai (9:1)

from its B-spline coe�cients (ai).

We already observed in (4.2) that the recurrence relations imply

s =
X
i

Bikai =
X
i

Bi;k�1a
[1]

i
; (9:2)

with

a
[1]
i

:= (1� !ik)ai�1 + !ikai: (9:3)

Note that a
[1]
i

is not a constant, but is the straight line through the points (ti; ai�1) and

(ti+k�1; ai). In particular, a
[1]

i
(t) is a convex combination of ai�1 and ai if ti � t � ti+k�1.

After k � 1-fold iteration of this procedure, we arrive at the formula

s =
X
i

Bi1a
[k�1]

i
;

which shows that

s = a
[k�1]

i
on [ti; ti+1):

Algorithm 9. From given constant polynomials a
[0]
i

:= ai; i = j � k+1;: : : ; j, (which

determine s :=
P

i
Bikai on [tj : : tj+1)), generate polynomials a

[r]

i
; r = 1;: : : ;k � 1, by the

recurrence

a
[r+1]
i

:= (1� !i;k�r)a
[r]
i�1 + !i;k�ra

[r]
i
; j � k + r + 1 < i � j: (9:4)
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Then s = a
[k�1]

j
on [tj : : tj+1). Moreover, for tj � t � tj+1, the weight !i;k�r(t) in (9.4)

lies between 0 and 1. Hence the computation of s(t) = a
[k�1]
j

(t) via (9.4) consists of the

repeated formation of convex combinations.

In the cardinal case (see Sec. 3, esp. (3.2-4)), the algorithm simpli�es, as follows. Now

s =:
X
i

Nk(� � i)ai =
X
i

Nk�1(� � i)a
[1]
i
=(k � 1);

with

a
[1]

i
:= (i+ k � 1� �)ai�1 + (� � i)ai:

Hence

s = a
[k�1]

j
=(k � 1)! on [j : : j + 1);

with (9.4)ZZ

a
[r]

i
:= (i+ k � r � �)a

[r�1]

i�1 + (� � i)a
[r�1]

i
; j � k + r < i � j:

In the Bernstein-B�ezier case (see Sec. 3, esp. (3.5-9)), all the nontrivial weight func-

tions !i;k�r are the same, i.e.,

!i;k�r(t) = t:

Thus, for

s =
X

�+�=h

B(�;�)a(�;�);

we get

s = a(0;0) on [0 : : 1];
with (9.4)IB

a(�;�)(t) = (1� t)a(�+1;�) + ta(�;�+1); �+ � = r; r = h� 1; : : : ; 0:

This is de Casteljau's Algorithm for the evaluation of the BB-form.

10. Di�erentiation

In this section, we derive a formula for the B-spline coe�cients of the derivative of a

spline in terms of the B-spline coe�cients of the spline.

By Corollary 1 to Theorem 6, the derivative Ds of a spline s 2 Sk;t is again a spline

with the same knot sequence but of one order lower. This means that, by Theorem 7, we

can compute its B-spline coe�cients
�
a0
i

�
by the formula

a0
i
= �i;k�1(Ds)

provided we use � 2 [ti : : ti+k�1).
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To relate a0 to a, we express �i;k�1D as a linear combination of the functionals �ik,

making use of the fact that �ik depends linearly on  ik,{ recall the de�nition

�ik : f 7!

kX
�=1

(�D)��1 ik(�)

(k � 1)!
Dk��f(�); (4:5b)

{ and that

(ti+k�1 � ti) i;k�1 =  ik �  i�1;k: (10:1)

These facts imply that

�
�ik � �i�1;k

�
f(�) =

kX
�=1

(�D)��1
�
 ik �  i�1;k

�
(�)

(k � 1)!
Dk��f(�)

= (ti+k�1 � ti)

k�1X
�=1

(�D)��1 i;k�1(�)

(k � 1)!
Dk��f(�);

the last equality by (10.1) and since Dk�1 i;k�1 = 0. On the other hand, directly from

the de�nition (4.5b),

�i;k�1Df(�) =

k�1X
�=1

(�D)��1 i;k�1(�)

(k � 2)!
Dk�1��Df(�)

= (k � 1)

k�1X
�=1

(�D)��1 i;k�1(�)

(k � 1)!
Dk��f(�):

Comparison of these two displays shows that

�i;k�1D =
k � 1

ti+k�1 � ti

�
�ik � �i�1;k

�
: (10:2)

Assuming that Bi;k�1 6= 0, i.e., that ti < ti+k�1, we can choose � 2 (ti : : ti+k�1) =

(ti�1 : : ti+k�1) \ (ti : : ti+k). This yields

Algorithm 10. Compute the coe�cients for
P
a0
i
Bi;k�1 := D

P
aiBik by

a0
i
=

ai � ai�1

(ti+k�1 � ti)=(k � 1)
; if ti < ti+k�1: (10:3)

Remark. What happens when ti = ti+k�1? In this case, Bi;k�1 = 0, hence there is

no need to calculate a0
i
. To be precise, in this case, the spline s =

P
i
Bikai may not even

be continuous at ti, therefore (Ds)(ti) makes no sense. On the other hand, the left and

the right limit, (Ds)(ti�) and (Ds)(ti+), always make sense, and the algorithm provides

all the a0
j
's needed for their calculation.
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By applying the algorithm to the particular coe�cient sequence a = (�ij), we obtain

the formula

DBik =
k � 1

ti+k�1 � ti
Bi;k�1 �

k � 1

ti+k � ti+1
Bi+1;k�1: (10:4)

In terms of the alternative notations (2.9) for B-splines, this reads�
DBik =

�
DNik =Mi;k�1 �Mi+1;k�1:

From this, we infer that D
�P

�

i=�
Nik

�
= M�;k�1 �M�+1;k�1. Since

P
i
Nik = 1, this

implies that Z
ti+k�1

ti

Mi;k�1 =

Z 1

�1

Mi;k�1 = 1 (10:5)

and so indicates why the particular normalization

Mik :=
k

ti+k � ti
Bik

is of interest.

In the cardinal case, (10.3) reduces to

a0
i
= ai � ai�1 =: rai (10:3)ZZ

and (10.4) reads

DNk = Nk�1 �Nk�1(� � 1): (10:4)ZZ

On integrating this formula, we obtain

Nk(t) =

Z
t

t�1

Nk�1(�)d� (10:6)

since both sides of (10.6) vanish for negative t. In terms of the convolution product�
f � g

�
(t) :=

Z
f(t� �)g(�)d�

of two functions f and g, this gives the important formula

Nk = N1 �Nk�1: (10:7)

This shows that Nk is the k�fold convolution product of N1, i.e.,

Nk = N1 �N1 � � � � �N1| {z }
k terms

:

In the Bernstein-B�ezier case, we get

D
X

�+�=h

B(�;�)a(�;�) =
X

�+�=h�1

B(�;�)a(�;�) (10:4)IB

with

a(�;�) = (�+ � + 1)
�
a(�;�+1) � a(�+1;�)

�
: (10:3)IB
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11. Knot insertion

In this section, we discuss the most important CAGD contribution to (univariate)

spline theory, viz., the idea of knot insertion (a.k.a. subdivision), particularly as introduced

and practiced by Boehm; see [BBB87] for such things as the Oslo algorithm. Since the

spline order, k, will not change in this section, we will usually suppress it and write Bi

instead of Bik,  i instead of  ik, etc.

Simply put, knot insertion involves rewriting a given spline as a spline with a re�ned

knot sequence, as can always be done by Corollary 2 of Theorem 6. Such a calculation is

worthwhile since the B-spline coe�cients are nearly equal to values of the spline at known

points, and this is more nearly so when the knots are closer together. Here is the precise

statement.

Theorem 11. If the spline s =
P

i
Biai is continuously di�erentiable, then

jai � s(t�
i
)j � const jtj2 sup

t

jD2s(t)j; (11:1)

with

t�
i
:= (ti+1 + ti+2 + � � �+ ti+k�1)=(k � 1) (4:7)

and

jtj := sup
i

(ti+1 � ti):

Proof: Recall from Sec. 8 that

jaij = j�isj � const max
ti�t�ti+k

js(t)j: (8:6)

Further, recall from Sec. 4 (esp. (4.8)) that

�ip = p(t�
i
) for all p 2 �1:

Thus, choosing, in particular, p := s(t�
i
)+ (� � t�

i
)Ds(t�

i
), i.e., the linear Taylor polynomial

for s at t�
i
, we get

jai � s(t�
i
)j = jai � p(t�

i
)j = j�i(s� p)j � const max

ti�t�ti+k

j(s� p)(t)j

� const
(ti+k � ti)

2

8
max

ti�t�ti+k

jD2s(t)j: jjj

This suggests consideration of the control polygon (see Fig. 11.1 for an example)

associated with the representation
P

i
Biai of the spline s as an element of St. This control

polygon will be denoted by

Ca;t:

It is the broken line or piecewise linear function with vertices Pi := (t�
i
; ai). For, the

theorem implies that the control polygon will be close to s if jtj is small. Here is the

precise statement.
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Figure 11.1 A cubic spline and its control polygon. The end knots are

quadruple.

Corollary. Let Ca;t be the control polygon associated with the representation
P

i
Biai of

the continuous spline s as an element of St. Then

sup
t

js(t)� Ca;t(t)j � const jtj2 sup
t

jD2s(t)j: (11:2)

Proof: Let t�
i
� t � t�

i+1 and let p be the linear polynomial which agrees with s at

t�
i
and t�

i+1. Then

js(t)� p(t)j � jt�
i+1 � t�

i
j
2=8 max

t
�

i
���t�

i+1

jD2s(�)j;

while

jp(t)� Ca;t(t)j � maxfjs(t�
i
)� aij; js(t

�

i+1)� ai+1jg � const jtj2max
�

jD2s(�)j

by the theorem.

This shows that the control polygon Ca;t converges to the spline s as we re�ne the

knot sequence t. This is illustrated in Fig. 11.2. Since the typical graphical equipment only

draws broken lines, anyway, this makes it attractive to construct re�ned control polygons

for a spline.

For this, we need to know how to compute, from its B-spline coe�cients ai as an

element of St, the B-spline coe�cients bai for the spline s with respect to a re�ned knot

sequence bt. By Theorem 7, this is a question of comparing the corresponding b�i with �i.
Since the dual functional

�i : f 7!

kX
�=1

(�D)��1 i(�)

(k � 1)!
Dk��f(�) (4:5b)

depends linearly on  i, this requires nothing more than to express

b i = (bti+1 � �) � � � (bti+k�1 � �)
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Figure 11.2 The control polygon of Fig. 11.1 and three midpoint re�ne-

ments.

as a linear combination of the  i.

This is particularly easy when bt is obtained from t by adding just one knot, say the

point bt. Then
b i =

�
 i; ti+k�1 �

bt;
 i�1; bt � ti,

hence there is some actual computing necessary only for ti < bt < ti+k�1. For this case,

� i�1 + � i = (ti+1 � �) � � � (ti+k�2 � �)
�
�(ti � �) + �(ti+k�1 � �)

�
= b i

provided �(ti � �) + �(ti+k�1 � �) = (bt� �), i.e.,
� = 1� !i(bt) and � = !i(bt):

Since bti = ti < bt < ti+k�1 = bti+k, we can choose � in the de�nition (4.5b) in the interval

(bti : : bti+k) = (ti�1 : : ti+k�1) \ (ti : : ti+k). This proves
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Algorithm 11. If the knot sequence bt is obtained from the knot sequence t by addition

of the point bt, then the coe�cients bai for the spline s with respect to the re�ned knot

sequence are given by

bai =
8<
:
ai; if ti+k�1 �

bt;
(1� !i(bt))ai�1 + !i(bt)ai; if ti < bt < ti+k�1;

ai�1; if bt � ti.

(11:3)

Observe that !i(bt) 2 [0 : : 1] when ti < bt < ti+k�1, and thus the coe�cients ba are

convex combinations of the coe�cients a.

This algorithm has the following very pretty graphical interpretation.

Corollary. The re�ned control polygon Cba;bt can be thought of as having been obtained

by interpolation at its vertices to the original control polygon Ca;t, i.e.,

Cba;bt(bt�i ) = Ca;t(bt�i ) for all i: (11:4)

Proof: Consider the straight line p : t 7! t. It is a spline and, by (4.8),

p =
X
i

Bit
�

i
;

i.e.,
�
t�
i

�
is its B-spline coe�cient sequence with respect to the knot sequence t. In partic-

ular, it is its own control polygon, i.e., Ct�;t = p, regardless of what the knot sequence t

might be. This implies that (11.3) also holds with every a replaced by t�.

This says that the point bPj := (bt�
j
;baj) lies on the segment [Pj�1 : : Pj] and cuts this

segment in the ratio (bt� tj) : (tj+k�1�
bt). This is illustrated in Figure 11.3 for the control

polygon of Figure 11.1.

If r := #bt � k � 1, then, after just (k � 1 � r)-fold insertion of bt, we obtain a knot

sequence �t in which the number bt occurs exactly k�1 times (see Fig. 11.4 for an example).

This means that there is exactly one B-spline for that knot sequence which is not zero atbt. Hence it must equal 1 at bt and its coe�cient must provide the value of s at bt. This

makes it less surprising that the calculations in Algorithms 9 and 11 are identical.

Figure 11.5 Conversion to BB-net by (k � 2)-fold insertion of each knot
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tj�1 bt tj+2

Pj�1

bPj

Pj

tj+1

bt

tj�2

tj

bt

tj+3

Figure 11.3 Insertion of bt = 2 into the knot sequence

t = (0,0,0,0,1,3,5,5,5,5), with k = 4.

Figure 11.4 The cubic spline and its control polygon from Figure 11.1 and

the sequence of control polygons generated by three-fold inser-

tion of the same knot. (The �nest control polygon di�ers from

its predecessor only by an additional vertex point.)

Conversion to BB-net Let t be the re�ned knot sequence which contains each of

the knots in t exactly k�1 times (see Fig. 11.5 for an example). Then each corresponding B-

spline Bjk is nonzero on just one knot interval, hence coincides there with a properly shifted

and scaled element of the Bernstein basis. The k B-spline coe�cients aj associated in
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this way with a knot interval therefore provide the coe�cients in the BB-form for the

polynomial with which the spline agrees on that knot interval. The coe�cient sequence

(ai), or the control polygon Ca;t
, are called the BB-net for the given spline. It can be

obtained by inserting each knot ti of the spline k � 1 � #ti times. The process can be

speeded up slightly by inserting �rst every other knot, and, in a second round, inserting

the remaining knots. The latter insertion process is then entirely local and depends only

on the ratio of the two knot intervals containing the knot being inserted.

While the formulas do simplify for the cardinal case, they are not of much use in that

form since insertion of one knot into the sequence t=ZZ would destroy the uniformity of

the knot sequence. But it makes good sense to develop formulas for inserting the same

number of uniformly spaced knots into every interval [i : : i+1] since this produces again a

uniform knot sequence. Because of its practical importance, we treat this case separately,

in the next section.

12. Knot insertion for cardinal splines

In this section, we consider knot re�nement for cardinal splines, i.e., splines with

a uniform knot sequence. Here it is desirable to have the re�ned knot sequence again

uniform. We restrict attention to the case that the given knot sequence is t=ZZ. This is

no real restriction since an arbitrary uniform knot sequence can always be written in the

form �+ �ZZ for appropriate scalars � and �, and if s is a spline with that knot sequence,

then s(�+ ��) is a spline with the knot sequence ZZ.

If we insert m � 1 uniformly spaced knots into every knot interval of ZZ, then the

re�ned knot sequence is bt = m�1ZZ. The corresponding B-splines bBi are

bBi = bNk(� � i=m);

with bNk(t) := Nk(mt)

an appropriately scaled version of the standard cardinal B-spline Nk. This makes it trivial

to determine bai in case k = 1. Since

N1 = bN1 + bN1(� � 1=m) + � � �+ bN1(� � (m� 1)=m); (12:1)

we �nd for this case that

bami+j = ai for j = 0; : : : ;m� 1:

The formula for general order k is obtained from this with the aid of the convolution

formula

Nk = N1 �Nk�1 (10:7)

from Sec. 10, as follows. We de�ne

sr :=
X
i2ZZ

Nr(� � i)ai =:
X

i2m�1ZZ

bNr(� � i)ami;r; r = 1; : : : ; k: (12:2)
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Then bai = ai;k, and, from (10.7) and (12.1),

sr+1 = N1 � sr =

m�1X
j=0

bN1(� � j=m) �
X

i2m�1ZZ

bNr(� � i)ami;r

=
X

i2m�1ZZ

m�1X
j=0

bN1(� � j=m) � bNr(� � i)| {z }bNr+1(� � i� j=m)=m

ami;r

=
X

i2m�1ZZ

m�1X
j=0

bNr+1(� � i)=m ami�j;r:

Here, we have used the following consequence of the convolution formula (10.7):

bN1(� � �) � bNr�1(� � �) =

Z
N1(m(� � � � �))Nr�1(m(� � �))d�

=

Z
N1(m(� � � � �)� �)Nr�1(�)d�=m

= bNr(� � � � �)=m:

We conclude that

ai;r+1 := (ai;r + ai�1;r + � � �+ ai�m+1;r)=m; for r > 0: (12:2)

(The above argument was corrected 05 mar 96.) Here is the full algorithm.

Algorithm 12. Given the B-spline coe�cients a = (ai) of s 2 Sk;ZZ, its B-spline coef-

�cients ba = (bai) with respect to the re�ned knot sequence m�1ZZ can be computed as

follows:

ami+j;1 := ai; j = 0; : : : ;m� 1;

ai;r =

m�1X
j=0

ai�j;r�1=m; r = 2; : : : ; k;

bai := ai;k:

In practice, one would use the algorithm repeatedly with m = 2 rather than once with

a larger m. For, the computational cost is

nm(k � 1)((m� 1)A+D);

with n the number of coe�cients to start with, and A and D the cost of one addition,

respectively division. If, e.g., the targeted re�nement is to have 2�n coe�cients, then the
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cost ratio of the choice m = 2� versus the use of � applications of the algorithm, each time

with m = 2, is
2�((2� � 1)A+D)

(2 + 22 + � � �+ 2�)(A+D)
� 2��1A+D=2:

In addition, even though the repeated application, with m = 2, takes roughly twice as

many divisions, these are just divisions by 2.

13. Shape preservation

In this section, we use knot insertion to prove the shape preserving property of B-

splines. Roughly speaking, this property says that a spline has the same shape as its

control polygon. Fig. 13.1 illustrates the mathematical formulation of shape preservation,

i.e., the fact that any straight line crosses the spline no more often than it crosses the

control polygon.

Figure 13.1 A cubic spline, its control polygon, and various straight lines

intersecting them. The control polygon exaggerates the shape

of the spline. The spline crossings are bracketed by the control

polygon crossings.
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We begin with the

Convex hull property. If tj � t < tj+1, then s(t) is a convex combination of the k

B-spline coe�cients aj�k+1; : : : ; aj.

which follows from Algorithm 9 or directly from the facts that B-splines are nonnegative

(Sec. 2) and add up to 1 at every point (see (4.6)).

For a statement of the full shape preserving property, we recall that

S�(a)

is the standard notation for the number of (strong) sign changes in a sequence a. Thus

S�(1;�1; 1;�1) = 3; S�(1; 0; 1;�1) = 1; S�(0; 0; 0; 0) = 0:

Theorem 13. Variation diminution. S�(s) � S�(a); i.e., with x1 < � � � < xr arbi-

trary,

S�
�
s(x1); : : : ; s(xr)

�
� S�(a):

Proof. Recall from Sec. 11 that s(x1); : : : ; s(xr) is a subsequence of the sequence �a

of coe�cients for s with respect to the re�ned knot sequence �t which contains each xi at

least k� 1 times. Hence it is su�cient to prove that S�(�a) � S�(a). But this follows once

we know that S�(ba) � S�(a), with ba obtained by (11.3), i.e., by insertion of just one knot.

For this simple case, though, the conclusion is immediate if we think of the construction ofba from a as occurring in two steps: In the �rst step, we insert bai between ai�1 and ai, and
this does not increase the number of sign changes since each bai is a convex combination

of its neighbors ai�1 and ai in that new sequence. In the second step, we pull out ba as a

subsequence, and this may only lower the number of sign changes.

Corollary. Shape preservation. A spline crosses any straight line no more often than

does its control polygon. In particular, if the control polygon is monotone (convex), then

so is the spline.

Proof: Let s be the spline and p the straight line. Then S�(s � p) is the number

of times the spline crosses the straight line. Since s � p is a spline, this is bounded by

S�(a� b), with a; b the B-spline coe�cients of s, resp. p with respect to t, and this equals

the number of times the control polygon Ca;t crosses the control polygon for p. But, as

we observed in Sec. 11, the control polygon for the straight line p is p itself. This proves

the general statement.

For the particulars, recall that a (continuous) function is monotone if and only if it

crosses any constant function at most once, and that a function is convex if it crosses any

straight line at most twice (dipping �rst below and then rising above the line in case it

crosses it twice).
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14. Background

This essay is a slight reworking (and correction) of the lecture notes for the �rst of

four lectures in the course entitled \The extension of B-spline curve algorithms to surfaces"

given at SIGGRAPH'86. That lecture was solidly based on [BH87] which covers more or

less the same material, in a less elaborate way and without any �gures, in just seven pages.

The relevant literature on (univariate) B-splines up to about 1975 is summarized in

[B76] which also contains hints of the most exciting developments concerning B-splines

since then: knot insertion and the multivariate B-splines. The two books on splines, [B78]

and [Schu81], which have appeared since 1975, cover B-splines in the traditional way. As

presentations of splines from the CAGD point of view, the survey article [BFK84] and the

\Killer B's" [BBB85,87] are particularly recommended.

I refer you to these references and to the original papers referred to there if you are

curious about just who contributed (and when and how) to the material essayed here.

The author welcomes comments about this article, particularly concerning misprints,

at the address deboor@cs.wisc.edu.

Added 05mar96: Corrected various errors in the argument for Algorithm 12.

Added 03jun96: Corrected some mispellings and adjusted �gure scaling to current

dvips.

Added 06jun96: Corrected a misprint and adjusted to use of current TEX macro

�le.

Added 12feb,2-4mar98: Corrected a misprint in display before (10.2), replaced

ZZ=m by m�1ZZ, corrected a misstatement on page 14 (concerning the de�nition of  +
ik
),

and a misleading statement on page 12. Also, corrected (6.3), some of the percentages on

page 18, and (10.3)IB.
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