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Abstract

We propose two novel minimal solvers which advance
the state of the art in satellite imagery processing. Our
methods are efficient and do not rely on the prior existence
of complex inverse mapping functions to correlate 2D im-
age coordinates and 3D terrain. Our first solver improves
on the stereo correspondence problem for satellite imagery,
in that we provide an exact image-to-object space map-
ping (where prior methods were inaccurate). Our second
solver provides a novel mechanism for 3D point triangu-
lation, which has improved robustness and accuracy over
prior techniques. Given the usefulness and ubiquity of satel-
lite imagery, our proposed methods allow for improved re-
sults in a variety of existing and future applications.

1. Introduction
Commercial satellite imagery, captured on a variety of

hardware platforms, has become widely available by multi-
ple vendors. It is a valuable source of information and has
received much attention by the computer vision community.
For instance, it has driven work on geo-localization [20],
meteorological and oceanographic forecasts [19], urban
change detection [24], and road detection [25].

To effectively leverage this imagery, the relationship be-
tween the underlying 3D scene geometry and its 2D image
has to be known. This is typically provided by a camera
model. However, defining a precise physical camera model
is complicated due to the complex hardware configuration
and the capture process. It is standard practice to construct
an approximation to the mapping between the 3D object
space and the image.

The representation that has been used to approximate
this mapping for over two decades is the Rational Poly-
nomial Coefficient (RPC) model. It was first introduced
by Hartley and Saxena [14] and greatly contributed to the
thriving of satellite imagery applications. The primary rea-
son for its success is its ability to maintain the full accuracy
of physical sensor models, its unique characteristic of sen-
sor independence, and its real-time calculation [18]. It is
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Figure 1: The two problems solved in our paper.

included in the standards of the NITF image format [1], and
is available from most satellite image vendors [2].

However, one challenge faced by many works utilizing
satellite imagery and the RPC model is that the bidirec-
tional mapping between the 3D object and 2D image spaces
may be unknown. Specifically, vendors supplying the satel-
lite imagery may only provide the one-directional mapping
function from the 3D object space to 2D image (known as
a forward RPC model). The inverse mapping, termed the
inverse RPC model, utilizes 2D image coordinates and an
associated altitude in order to infer the resulting 3D coordi-
nate. Approaches attempting to solve for this inverse map-
ping often lack accuracy [31]. In this work, we propose two
novel high-accuracy minimal solvers (see Fig. 1) for use
with satellite imagery only requiring the forward RPC.

The first minimal solver for the inverse mapping targets
the domain of extracting depth information from pairs of
satellite images (stereo). Previous works have explored this
domain [11, 10, 18], but suffer from various limitations.
For instance, a typical approach relying on volumetric mod-
els can have high memory requirements [5]. Furthermore,
recent image-to-image approaches rely on the existence of
an inverse RPC model, which may be missing or inaccu-
rate [15, 26, 30]. Our approach avoids these issues by
proposing an efficient minimal solver, which bypasses the
issue of explicitly constructing a single inverse RPC model
for the entire image. Instead, each coordinate is processed
independently, providing a highly-accurate inverse mapping
conforming to the provided forward RPC model.
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The second novel minimal solver targets the application
of 3D point triangulation. In typical computer vision ap-
plications, 3D point triangulation is the task of finding the
optimal 3D point position given correspondences among
feature points in calibrated images. However, triangula-
tion under the forward RPC model is much more difficult,
mainly due to the increased complexity of the camera model
[29]. Moreover, since no explicit epipolar constraints exist
for the RPC camera model, feature mismatches cannot be
easily detected and removed. Our approach solves these is-
sues by first proposing an effective strategy for a minimal
solver based triangulation under the forward RPC model,
and then by making the observation that only three of the
four coordinates in a correspondence are needed to solve
the equations. The fourth coordinate can then be used both
for robustness (enabling us to reject false matches), as well
as for refinement (leveraging redundant information). This
is novel compared to typical triangulation schemes, and we
demonstrate the usefulness and effectiveness of this strategy
in our results.

Given the usefulness and ubiquity of satellite imagery
and the RPC model, our proposed methods allow for im-
proved results in a variety of existing and future applica-
tions. For low-level problems and stereo computations, our
exact image-to-object space mapping increases the accuracy
of 3D reconstructions. For high-level tasks, we provide im-
proved feature matching and outlier rejection mechanisms
to improve the results.

2. Related Work
Most applications leveraging satellite imagery for recon-

struction and analysis require a known camera model in or-
der to correctly function. A popular technique to provide
the required camera calibration is the RPC model [14]. Af-
ter its introduction, Tao et al. [28] studied the characteristics
of the RPC model and proposed an iterative approximation
solution to estimate RPC models from the physical sensor
model or using ground control points. Hu et al. [17] pro-
posed to exploit control information to further improve the
accuracy of the solution for RPC models. To further boost
accuracy, Dial et al. [9] leverage bundle adjustment to refine
the the RPC coefficients. All of the above methods provide
numerical approximations to the RPCs for satellite imagery.
However, numerical stability is and was a major challenge
in these solutions, which had typically been mitigated by
leveraging additional information such as sensor character-
istics or ground control points [28, 9]. In this paper we pro-
pose a solution to achieve a numerically stable and accurate
solution to determine the image-to-object-space mapping
given an RPC model describing the object-to-image-space
transformation.

Once the RPC model is known, computer vision and
photogrammetry applications have leveraged them in a va-

riety of applications. For instance, given a pair of match-
ing features from two stereo satellite images, Tao et al.
[29] reconstruct the corresponding approximate 3D point
by an iterative approach that relies on the first-order Tay-
lor approximation of the RPC model. However, lacking a
rigorous analytical convergence proof and outlier removal
mechanisms, the automatic processing of satellite images is
impeded. Several other approaches also provide methods
to perform dense stereo reconstruction from satellite im-
ages [8, 16, 12, 26]. Hirschmüller [15] used an approxi-
mation of global optimization to efficiently solve the dense
stereo problem. Oh et al. [26] rectify the satellite images
by approximating the epipolar curve with piecewise straight
lines, and then search for correspondences along the line
of the rectified images using normalized cross correlation
measures. It is unclear if the linear approximations work
for images with large distortions. Additionally, this method
also requires that the inverse RPC parameters are available.
Wang et al. [30] efficiently compute depthmaps of large
satellite images by testing a reduced set of disparity hy-
potheses for each pixel. These methods are very effective
when handling high-resolution satellite images, but a bi-
directional mapping is required for such methods to work.
We propose a novel minimal solver to accurately establish
this bi-directional mapping.

3. RPC model
There are two broadly used classes of sensor models, the

physical sensor model and the generalized sensor model.
The physical sensor model deduces the imaging character-
istics from the physical imaging process of the specific sen-
sor used for acquisition. The parameters describe the posi-
tion and orientation of the sensor with respect to an object-
space coordinate system. These physical sensor models typ-
ically yield high modeling accuracy when used for map-
ping. However, the physical models across different satel-
lites may vary significantly and do not provide a decent gen-
eralization. Accordingly, image analysis algorithms often
have to be tailored for the specific satellite.

To overcome this limitation of specificity and to achieve
generalization across sensor platforms (satellites), general-
ized sensor models were proposed. In the generalized sen-
sor model, the transformation between the image and the
object space is represented as a general mapping function
without modeling the specific physical imaging process of
the satellite. There are a number of common representa-
tions of the mapping function, for instance polynomials or
rational functions. In either of these models, the parameters
do not carry any physical meanings related to the imaging
process as is the case for the physical sensor models, so the
algorithms are fixed and can be directly apply across differ-
ent satellites. Utilizing the RPC model to replace physical
sensor models in photogrammetric mapping is becoming a



standard way for accurate, economical, and fast mapping.
Next, we describe the RPC model in detail.

To boost accuracy, the RPC model typically operates in
a normalized space. The normalization functions, for the
unnormalized object space coordinates X̃ , Ỹ , and Z̃, are
denoted as ΦX , ΦY , and ΦZ , given by:

X = ΦX(X̃) = (X̃ −Xo)/Xs,

Y = ΦY (Ỹ ) = (Ỹ − Yo)/Ys,

Z = ΦZ(Z̃) = (Z̃ − Zo)/Zs, (1)

with Xo, Yo, and Zo denoting the offset of object coordi-
nates, and Xs, Ys and Zs representing the corresponding
scale factors for the coordinate directions. Similarly, the
image coordinates are normalized through:

r = (r̃ − ro)/rs, c = (c̃− co)/cs, (2)

with r denoting the normalized row coordinate of the im-
age and c the normalized column in the image, and ro, co
being the offsets of the image coordinates. The scale fac-
tors for the image coordinates are denoted by rs, cs. The
normalization parameters are set to makes sure that the 3D
region covered by the satellite image has normalized coor-
dinates within the cube of [−1, 1] × [−1, 1] × [−1, 1], and
that the normalized image coordinates are within the range
of [−1, 1] × [−1, 1]. There parameters are provided by the
satellite image vendors with the RPC model. For conve-
nience, we denote M = (X,Y, Z), M̃ = (X̃, Ỹ , Z̃), and
the 3D point normalization as M = Φ(M̃).

Then, the forward RPC model relates the normalized ob-
ject coordinates X,Y, Z to the normalized image coordi-
nates (r, c):

r =
P 1(X,Y, Z)

P 2(X,Y, Z)
, c =

P 3(X,Y, Z)

P 4(X,Y, Z)
, (3)

with the P i, i = 1, 2, 3, 4 being polynomials of degree
three. Also, notice that in Eq. (3) the row and column of
the image coordinates are independently computed. The
P i, i = 1, 2, 3, 4 are of the form (superscript i is omitted
for simplicity)

P = a0 + a1X + a2Y + a3Z + a4XY + a5XZ

+ a6Y Z + a7X
2 + a8Y

2 + a9Z
2 + a10XY Z

+ a11X
2Y + a12X

2Z + a13XY 2 + a14Y
2Z

+ a15XZ2 + a16Y Z2 + a17X
3 + a18Y

3 + a19Z
3,
(4)

where aj , j = 0, . . . , 19 are the polynomial coefficients.
It is understood that distortions caused by the optical pro-
jection during the satellite image capture can generally be
represented by the ratios of first-order terms of the P i. Cor-
rections such for the earth curvature, the atmospheric re-
fraction, etc., can be well approximated by the second-order

terms. Additional unmodeled distortions are approximated
through the high-order components, where one example of
these distortions is the camera vibration that can be mod-
eled by the third-order terms [28]. Typically, the low-order
monomial terms in Eq. (4) have a significantly larger coef-
ficients than high-order monomials.

The inverse RPC model performs image-to-space trans-
formation. Given the input of the normalized row and col-
umn (r, c), and the normalized altitude Z of the correspond-
ing 3D point, it computes associated X and Y . The model
is almost the same to that of forward RPC model as follows,

X =
P 5(r, c, Z)

P 6(r, c, Z)
;Y =

P 7(r, c, Z)

P 8(r, c, Z)
; (5)

where P i, i = 5, 6, 7, 8 has the form of polynomial as in
Eq. (4). While some satellite image vendors deliver both the
forward and the inverse RPC model with their data, most of
them only provide the forward RPC model. We also find es-
timating the inverse RPC model is difficult without detailed
knowledge of the sensor and/or ground control points. In
the remainder of this paper, we use the term RPC model to
represent forward RPC model since we assume the inverse
RPC is unknown.

4. Inverse mapping
This section proposes the parameterizations of the in-

verse mapping, a minimal solver based on a polynomial
equation system, and our proposed solution using the
Gröbner basis method. We close the discussion with the
application of the novel minimal solver to stereo estimation.

4.1. Inverse Mapping Parameterization

Unlike traditional methods that explicitly model the in-
verse mapping and estimate its parameters, our method
maps each individual point without any assumption about
the model of the inverse mapping (inverse RPC).

To compute the inverse mapping, we rewrite the RPC
mapping from Equation (3) as:{

P 1(X,Y, Z)− rP 2(X,Y, Z) = 0
P 3(X,Y, Z)− cP 4(X,Y, Z) = 0

(6)

which defines a polynomial equation system. Assuming a
known normalized altitude Z and after expanding each of
P i in Eq. (6), we can obtain a polynomial equation system
of two equations. Each has degree three in the unknown
variables X and Y . Using computational algebra software
(e.g. Maple or Macaulay2 [13]) it can be confirmed that the
equation system of Eq. (6) has up to nine solutions. Next,
we describe the Gröbner bases method for our solution.

4.2. Solving polynomial equations

In order to solve the polynomial equation system of
Eq. (6), we leverage the Gröbner basis method which has
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Figure 2: The Gröbner basis method for inverse mapping problem. The black dots represent non-zero values. The value of
the three rows in the action matrix is obtained from the three rows in figure (b).

achieved great success in solving minimal problems en-
countered in computer vision [27, 23]. From the existing
standard approaches [4, 22, 27, 3], we opt to use the effi-
cient and accurate method proposed by Kukelova et al. [22]
as we empirically found it to produce very accurate results.

Solving a polynomial equation system typically involves
two steps. The first step is an offline process in which the
specific behavior of the problem is studied, and a pattern
for the solution is determined. The second step, an online
process, uses the determined pattern to set up and solve the
problem for a given input.

Starting with the offline process, it consists of two main
parts. In the first part, the problem (Eq. (6)) is mod-
eled in a computer algebra software package (such as
Macaulay2 [13]). We then leverage the built-in functions
of the software package to first compute the Gröbner bases,
and then the bases of the quotient ring (which in turn de-
fines the number of solutions to our problem). During this
computation, in order to avoid issues of numerical preci-
sion, the problem is represented using a finite field (which
uses fixed, discrete values instead of a floating-point rep-
resentation). For these computations, we use the GrevLex
as the monomial ordering, as this typically results in fewer
overall computations compared to other alternative ordering
schemes (such as lexicographic) [7].

The second part of the offline process seeks to construct
a modified set of polynomial equations that can be used for
action matrix construction. In order to achieve this, we first
construct an elimination template (e.g. Fig. 2a) which rep-
resents our initial equations (the first two rows of the tem-
plate correspond to Eq. (6)). Here, the polynomial equa-
tions are represented as MX = 0, where X is a vector
of monomial terms, and M is a matrix of polynomial co-
efficients (the elimination template [3]). Given these ini-
tial equations, we then multiply them by various monomial
terms, yielding additional entered rows in the elimination
template. The purpose of these additional entries is to en-

able the successful construction of an action matrix in a fol-
lowing step. Given the elimination template, we then per-
form Gauss-Jordan elimination to reduce the matrix to ech-
elon form. Once in echelon form, the matrix has certain
properties which enable the construction of an action ma-
trix by leveraging the bases of the quotient ring computed
above. The exact method, properties, and theory for how
to construct the elimination template and action matrix are
complex and beyond the scope of this paper. Therefore, we
refer readers to [7, 22, 23] for more details.

By successfully constructing the action matrix, we now
have a pattern for how the original set of equations can
be solved. The online portion of the processing now uti-
lizes actual input values to form the elimination template,
perform Gauss-Jordan elimination, and construct the action
matrix. Then, the final numerical solutions to the polyno-
mial equations can be computed from the eigenvectors of
the action matrix. As much of this process has been de-
tailed before [7, 22, 23], we now only provide the details of
the offline procedures for our specific problem.

For our inverse mapping problem, the polynomial
equation system consists of two polynomials, with each
containing 10 monomials (Eq. (6)). The polynomial
equations are multiplied by the following monomials
{X,Y,X2, XY, Y 2}, and the resulting equations are added
to form the elimination template (Fig. 2a). Then, the eche-
lon form of the elimination template is computed by Gauss-
Jordan elimination (Fig. 2b), and the action matrix is con-
structed. Here, the negated values of row 6, 10 and 12 in
Fig. 2b are used for action matrix construction as shown in
Fig. 2c. After constructing the action matrix, the 7th and 8th
elements of the eigenvectors are the solutions of the poly-
nomial equation system.

4.3. Inverse mapping in stereo

After describing how to solve for the inverse mapping,
we next detail its usage within the context of stereo estima-



tion for a pair of stereo images I1 and I2. For convenience
of notation, we use the subscript 1 and 2 to denote the asso-
ciated properties for I1 and I2.

In traditional image based stereo for pinhole cameras,
it is known that points corresponding to point p1 in the
first image I1 can only be found along the corresponding
epipolar line l2(p1) in the second image I2. The epipo-
lar line l2(p1) effectively represents the depth ambiguity
of the point p1 in the second image I2, i.e. the position
along the line corresponds to the depth of the point. Hav-
ing this reduction to a one-dimensional search space (epipo-
lar line) significantly reduces the computational expense of
the stereo estimation. Leveraging the inverse mapping in
combination with the RPC model, we are also able to es-
tablish a one dimensional search space for image-to-image
stereo from satellite images. In contrast to the pinhole cam-
era model that has an epipolar line, the satellite images have
epipolar curves with unknown analytical formulation [26].
However, using the inverse RPC mapping we can still nu-
merically identify the epipolar curve in the second image.

Starting from an image point (r̃1, c̃1) in pixel coordi-
nates, we first apply the image point normalization of Eq.
(2) to obtain the normalized point (r1, c1) in the first satel-
lite image. To explore the ambiguity space for the normal-
ized altitude Z1 of the corresponding object point, we can
sample the normalized altitude in the range [−1, 1] (Sec. 3).
For each specific sample Ẑi

1, the inverse mapping can be ap-
plied to compute the corresponding normalized 3D object
point M̂1 = (X̂i

1, Ŷ
i
1 , Ẑ

i
1). The set of samples {Ẑi

1} defines
a curve in the object space corresponding to the depth ambi-
guity of the image point (r̃1, c̃1). After de-normalizing from
the normalized 3D points M̂ i

1 to real object space, apply the
normalization of the second image and the RPC model of
I2 to compute the 2D point (r̂i2, ĉ

i
2) on I2. In practice we

adjust the sampling rate to produce a sub-pixel sampling in
the second satellite image. Fig. 3a shows a 2D point and
its corresponding epipolar curve for a pair of stereo satellite
images. The particular epipolar curve in Fig. 3b is close to a
line, but epipolar curves generally show different curvatures
in different parts of the image. As in the case of standard
stereo estimation, the limited altitude range further short-
ens the epipolar curve in the second image. This leads to a
further reduced search space in the second satellite image.

5. Triangulation
We now describe our method for robust satellite sparse

point triangulation, which allows us to efficiently remove
outlier correspondences during feature triangulation. We
address the problem of obtaining the normalized 3D point
from a pair of correspondences with normalized coordinates
(r1, c1) in image I1 and (r2, c2) in image I2 with known
RPC models. Our key observation is that it is sufficient to
use three out of the four coordinate values to triangulate the

(a) (b)

Figure 3: The yellow point on the left image and its corre-
sponding blue epipolar curve on the right image. The white
rectangle is the region of feature candidates for matching.

3D point. Hence, the last coordinate value can be used for
correspondence verification. Without loss of generality, we
use r1, c1 and r2 for triangulation, and c2 for verification.

For a 3D point (X̃, Ỹ , Z̃) in the real object space that is
observed by I1 and I2, and given the known RPC models
(Eq. (3)) for images I1 and I2, we can construct the follow-
ing polynomial equation system P 1

1 (ΦX
1 ,ΦY

1 ,Φ
Z
1 )− r1P

2
1 (ΦX

1 ,ΦY
1 ,Φ

Z
1 ) = 0

P 3
1 (ΦX

1 ,ΦY
1 ,Φ

Z
1 )− c1P

4
1 (ΦX

1 ,ΦY
1 ,Φ

Z
1 ) = 0

P 1
2 (ΦX

2 ,ΦY
2 ,Φ

Z
2 )− r2P

2
2 (ΦX

2 ,ΦY
2 ,Φ

Z
2 ) = 0,

(7)

where ΦX , ΦY and ΦZ are the known normalization func-
tions for the point in the object space given by Eq. (1).
Eq. (7) defines a system of three polynomial equations, and
each of the polynomial has degree 3 in the unknown vari-
ables X̃ , Ỹ and Z̃. Similarly to the inverse mapping, Eq. (7)
has in general up to 27 solutions, some of which have real
values. Solving Eq. (7) again uses the framework of the
Gröbner basis as briefly described below.

Solving the polynomial equation system for triangula-
tion is similar to that of inverse mapping, but slightly more
complicated. The original 3 polynomials are multiplied
by all the 34 monomials in variables {X̃, Ỹ , Z̃} of de-
grees from 1 up to 4, and added to the original 3 equa-
tions. The number of total equations is 35 ∗ 3 = 105, but
within which only 93 are linearly independent. By choos-
ing 93 linearly independent equations, we have the elim-
ination template of size 93 × 120 (Fig. 4a). After com-
puting the echelon form (Fig. 4b), the negated values in
the submatrix from the rows {36, 62, 63, 78, 79, 80, 89} and
columns {64, 83—85, 95—100, 104—120} are used in row
{1—3, 5—7, 11} of the action matrix (Fig. 4c). The 24th,
25th, and 26th elements of the eigenvectors of the action
matrix are solutions to the polynomial equation system.

After estimating the 3D object point M̃∗, we next need
to evaluate the obtained solution leveraging the remaining
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Figure 4: The Gröbner basis method for triangulation problem. The eliminate template shapes may vary depending on which
linearly independent equations are chosen, but the shape of the echelon form is fixed.

point coordinate c̃2. During this, c̃2 acts as a role to remove
the outlier correspondences and the fake real solutions of
the polynomial equation system. The estimated 3D point
M̃∗ = (X̃∗, Ỹ ∗, Z̃∗) is projected onto I2 to compute the
column c̃2

∗. If the distance d̃∗ = |c̃2− c̃∗2| is below a prede-
fined threshold (e.g. 2 pixels in our experiments), the cor-
respondence is considered to be correct. Since Eq. (7) gen-
erates multiple real valued solutions, each real valued solu-
tion is tested for correctness. If none of the solutions pass
the test, the 2D match is considered to be an outlier. For
correct matches (inlier), typically only one solution passes
the inlier test. Whenever multiple solutions pass the test, we
accept the one with the smallest distance d̃∗.

Beyond serving for validation, the redundancy during the
triangulation can also be used to further refine the estimated
3D point M̃∗ starting from the obtained solution. We pro-
pose to determine the refined 3D point by minimizing the
projection error in both images through

min
M̃

2∑
i=1

||P
1
i (Φi(M̃))

P 2
i (Φi(M̃))

− ri||22 + ||P
3
i (Φi(M̃))

P 4
i (Φi(M̃))

− ci||22,

(8)
where Φi are the normalization functions. We leverage the
Levenberg-Marquardt algorithm to perform the minimiza-
tion of the non-linear cost function.

Triangulation requires estimating the correspondences
from image features in two images. Since the satellite im-
ages are typically huge and contain millions of features, it is
inappropriate to exhaustively compute the pairwise distance
between every two features. Not only this is computation-
ally expensive, but also the feature descriptor is less distinc-
tive in presence of millions of features. To tackle this prob-
lem, we use the observation that the epipolar curve typically
covers a small region of the satellite image. For the feature
point shown in Fig. 3a, we only search within the white

rectangle for correspondence (Fig. 3b). The white rectangle
is determined by the two end points of the epipolar curve,
which is readily computed using the inverse mapping.

6. Experiments
To evaluate inverse mapping and triangulation, we use

both synthetic data and real data for quantitative and quali-
tative evaluations. Both solvers are implemented using C++
with double-precision arithmetic. To evaluate the numerical
errors, we also implement the triangulation method with 64-
bit significand (mantissa) as opposed to 53-bit for double
precision. The running time on Intel Xeon E5-2597 @2.70
GHz for each of the implementations are 0.064ms, 0.9ms
and 164ms, respectively. Accordingly, the efficiency of our
implementations with double arithmetic is sufficient to en-
able diverse application scenarios.

6.1. Inverse mapping

To quantitatively evaluate our proposed inverse RPC
mapping estimation, we generate synthetic 3D points from
a random uniform distribution within the cube of [−1, 1]×
[−1, 1] × [−1, 1]. In order to yield the image coordinates,
these 3D points are projected into virtual images I1 and
I2 using their known RPCs to produce normalized image
coordinates. To approximate realistic experimentation sce-
narios, we use four sets of real RPC model parameters ex-
tracted from two different satellites, including GeoEye-1
and Worldview-2. Each test is performed on 10, 000 ran-
dom samples for each set of RPC parameters. Error charac-
teristics were stable across the four different sets of RPCs.
Hence, quantitative results describe the performance over
the aggregated sample of 40,000 tests.

Accuracy. Our proposed inverse mapping computes the
normalized latitude and longitude of the 3D object point.
The estimated normalized coordinates (X∗, Y ∗) are com-
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Figure 5: Our inverse mapping has 7.8 ·10−14 median error.
LS in Fig. 5a represents the method proposed by [31].

pared with the ground truth using the Euclidian distance
||(X∗, Y ∗)− (Xg, Y g)||2, where the superscript g denotes
the ground truth. The resulting error distribution is shown
in Fig. 5a. As can be seen from Fig. 5a, our proposed algo-
rithm typically has errors of less than 10−11, which is well
below the demands of common applications.

To compare with one of the state-of-the-art methods
in estimating the inverse mapping, we implemented the
method of Yang [31]. Their method uses the inverse RPC
model in Eq. (5), and given the ground truth data between
3D and 2D correspondences, the parameters of the model is
estimated by fitting the data through least squares estima-
tion. To this end, we used ground truth synthetic data for
parameter estimation. We note that estimation errors above
a magnitude of 10−4 correspond to an error of one meter in
the real object space for a typical satellite image that cov-
ers 10 kilometers in one dimension. Accordingly, Fig. 5a
illustrates how our proposed algorithm significantly outper-
forms the method in [31] (LS).

Furthermore, we apply another error measure that intu-
itively shows the superiority of our method over [31]. A
2D image point with an altitude is inversely mapped into
the object space and then projected back onto the same im-
age to generate a new 2D point. The error is defined as the
Euclidean distance in pixels between the two points, which
ideally should equal to zero. For each pixel across the whole
image, we try 100 normalized altitudes randomly sampled
within the valid range [−1, 1], and report the average error
over the 100 trials. Fig. 6 shows the error distribution across
a image of resolution 7168× 9216. We can see our method
has low and uniform errors across the whole image, while
the method by [31] generates prominent and structured er-
rors (larger than 2 pixels for some regions).

Solution Cardinality. Depending on RPC model pa-
rameters and the values of the specific estimation instance,
we observed in our experiments either one or three real val-
ued solutions. Fig. 5b illustrates the distribution of the num-
ber of real valued solutions. It can be seen that our attained
solutions are predominantly unique. Moreover, there is al-
ways only one solution with both of the estimated values

(a) Our inverse mapping (b) The method of [31]

Figure 6: The error distribution of inverse mapping across
the whole image.

X∗ and Y ∗ within the valid range of [−1, 1]. This behavior
follows from the geometric intuition that two 3D points with
the same altitude in the real world should not be projected
onto the same pixel.

6.2. Triangulation

Accuracy. We use the coordinate-wise components
{r̃1, c̃1, r̃2} of a match positioning within the satellite im-
agery to estimate the 3D point by the triangulation solver,
and project onto I2 to compute the estimated column, de-
noted as c̃∗2. The projection error is defined as |c̃2 − c̃∗2|.
The triangulation error is defined as the Euclidian distance
between the refined 3D point (Eq. (8)) and the ground truth.
The error distributions in Figs. 7a and 7b show both of the
projection errors and triangulation errors are very small.
Moreover, we find that the accuracy of triangulation to be
inferior to that of our estimated inverse mapping. We at-
tribute this behavior to the numerical errors from the G-J
elimination of the much larger elimination template. To
validate this assumption, we also implement the solver in
high-precision floating point arithmetic with 64 bits of sig-
nificand (mantissa), in addition to the double precision im-
plementation (53-bit mantissa). The results in Figs. 7a and
7b support numerical precision to be a significant compo-
nent of the estimation error associated with our framework.

Stability. In practice our estimation process is faced
both with measurement errors and/or potential mismatches
in the 2D correspondences. To test the stability against
measurement noise, we additively perturb input coordinate
measurements with zero-mean Gaussian noise with differ-
ent standard deviations. Fig. 7c shows the projection error
across different noise levels. From Fig. 7c, it can be seen if
the Gaussian noise has deviation of 1 pixel, the 90th per-
centile of the projection error is around 1.8 pixels. The
projection error is used for outlier correspondences rejec-
tion, so we can optionally choose 2 pixels as the threshold
for inlier testing. We note that the estimated triangulation
error has real scale. Moreover, for the RPC parameters be-
ing used, each pixel corresponds to 0.5 meter in the object
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Figure 7: (a, b) Errors on noise-free data. (c, d) Median and 90th percentile errors on noisy data. (e) Solution cardinality.

(a) Satellite image (b) Triangulated point cloud (c) Textureless 3D mesh model

Figure 8: Triangulation results on the real satellite images. The images have a pixel resolution of 20460× 20460.

space. Given that, the triangulation error shown in Fig. 7d
have reasonably small errors. We also test the implementa-
tion with 64-bit significand in presence of noise, but it has
little benefit in errors, which means the measurement noise
dominates the errors. Considering the efficiency vs. accu-
racy trade-off, the implementation with double precision
should be used in most real applications. The number of
real solutions is shown in Fig. 7e. There are typically mul-
tiple real solutions within the valid range, but only one of
them has small projection error.

Real images. Although the synthetic data illustrates the
correctness and effectiveness of our estimation methods, we
also test the algorithm on a pair of real satellite images cap-
tured by the Worldview-2 satellite. To compute the 2D Cor-
respondences, BRIEF [6] is used as local feature descriptor,
and pairwise Hamming distance is used to measure feature
similarity. One of the images used for stereo triangulation
and the associated 3D point cloud are shown in Fig. 8a and
Fig. 8b. We generate 3D mesh using Poisson surface recon-
struction [21], where the point normal information required
by Poisson surface reconstruction is set to (0, 0, 1). Fig. 8c
shows the textureless mesh model.

7. Conclusion

We propose two novel minimal solvers for satellite im-
agery based computer vision. The first minimal solver tar-
gets image based stereo estimation by establishing an ac-
curate inverse mapping from image space to object space.
Our evaluations demonstrate the advantage of the proposed
solver over existing methods. The second minimal solver
aims at 3D triangulation from satellite images. Based on
this solver, we are able to propose a robust estimator and a
refinement for increased accuracy of the triangulation.
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