
TIMING ATTACK: WHAT CAN BE ACHIEVED BY A
POWERFUL ADVERSARY?

Gaël Hachez, Fraņcois Koeune, Jean-Jacques Quisquater

UCL Crypto Group,

Place du Levant 3, B-1348 Louvain-la-Neuve, Belgium.

{hachez,fkoeune,jjq}@dice.ucl.ac.be

URL: http://www.dice.ucl.ac.be/crypto

INTRODUCTION

Implementations of cryptographic algorithms often perform computations in

non-constant time, due to performance optimizations. If such operations involve

secret parameters, these timing variations can leak some information and, pro-

vided enough knowledge of the implementation is at hand, a careful statistical

analysis could even lead to the total recovery of these secret parameters. This

idea, due to Kocher [Koc96], was developed in [DKL+98], were a timing attack

against an actual smart card implementation of the RSA1 was conducted.

The paper’s conclusion was that, however impressive, the obtained results

could be improved even further in several aspects, especially regarding the error-

correction policy.

The paper first presents the basic principle of the timing attack, then briefly

discusses several error-correction policies and describes the results we obtain im-

plementing them on a parallel architecture of 4 processors PA8000 @ 180Mhz

with 4 Gbytes RAM.

TIMING ATTACK

We begin by describing the main features of the timing attack. A more

complete description can be found in [DKL+98].

We will attack an RSA implementation, performed in an earlier version of

the cryptographic library we developed for the CASCADE [Cas] smart card.

1In fact, a pre-version of the cryptographic library the UCL Crypto Group developed for
CASCADE[Cas]: in view of the devastating results of the timing attack, the final version was
modified to make it immune against it.



The scenario of the attack is the following: Eve disposes of a sample of

messages M and, for each of them, the time needed to compute the signature of

the message with the key k. Her goal is to recover k.

To perform the timing attack, Eve needs a bit information about the im-

plementation. We suppose she knows that the computation of mk mod n is per-

formed using the well-known left to right square and multiply (fig. 1). She also

knows that both the multiplication and the square are done using the Montgomery

algorithm.

x = m
FOR i = n − 2 DOWNTO 0

x = x2

IF (kj == 1) THEN
x = x · m

ENDFOR
RETURN x

Figure 1: Square and multiply

We will not describe the Montgomery algorithm in detail here. The only

point of interest is that the time for a Montgomery multiplication is constant,

independently of the factors, except that, if the intermediary result of the mul-

tiplication is greater than the modulus, then an additional subtraction (called a

reduction) has to be performed at the end of the multiplication. This means, and

that is the basis of our attack, that for some factors the multiplication time will

be longer than for others.

A first target: attacking the multiply

The most obvious way to take advantage of this knowledge is to aim our attack

at the multiply step of the square and multiply.

We start by attacking k2, the second bit2 (MSB first) of the secret key. Per-

forming the Montgomery algorithm step-by-step, we see that, if that bit is 1, then

the value m · m2 will have to be computed during the square and multiply.

Now, for some messages m (those for which the intermediary result of the

multiplication will be greater than the modulus), an additional reduction will

have to be performed during this multiplication, while, for other messages, that

2Of course we can suppose that the first bit of the key is always 1.



reduction step will not be necessary. So, we are able to divide our set of samples

in two subsets: one for which the computation of m · m2 will induce a reduction

and another for which it will not. If the value of k2 is really 1, then we can expect

the computation times for the messages from the first set to be slightly higher

than the corresponding times for the second set.

On the other hand, if the actual value of k2 is 0, then the operation m·m2 will

not be performed. In this case, our “separation criterion” will be meaningless:

there is indeed no reason for which a m inducing a reduction for the operation

m · m2, would also induce a reduction for m2 · m2, or for any other operation.

Therefore, the separation in two subsets should look random, and we should not

observe any significant difference in the computation times.

Once this value is known, we can simulate the computation up to the multi-

plication due to bit k3, attack it in the same way as described above, and so on

for the next bits.

The previous approach allowed us to recover 128-bit keys by observing sam-

ples of 50 000 timings. However, this approach was unsatisfying on several re-

spects (see [DKL+98]) and another one, described below, turned out to be much

more efficient.

Second target: attacking the square

There is a more subtle way to take advantage of our knowledge of the Montgomery

algorithm: instead of the multiplication phase, we could turn ourselves to the

square phase.

The idea is quite similar to that of section : suppose we know the first i − 1

bits of the key and attack the ith. We begin by executing the first i−1 steps of the

square and multiply algorithm, stopping just before the possible - but unknown

- multiplication by m due to bit ki ; we denote by mtemp the temporary value we

obtain.

First, we suppose ki is set. If this is the case, the two next operations to be

performed are

1. multiply mtemp by m,

2. square the result,

and both of these operations will be done using the Montgomery algorithm. We

simply execute the multiplication and then, for the square, determine whether



an additional reduction will be necessary or not. Doing this for every message,

we divide our samples set in two subsets M1 (additional reduction) and M2 (no

reduction).

Next, we suppose ki = 0. In this case, no multiplication will take place, and

the next operation will simply be m2
temp. Once again, we divide the samples set in

two subsets M3 and M4, depending on whether this square requires a reduction

or not.

Clearly, only one of these separations makes sense, depending on the actual

value of ki. All we have to do now is to compare the separations: if the timing

difference between M1 and M2 is more important than that between M3 and M4,

then conclude ki = 1, otherwise, conclude ki = 0.

This approach has several advantages on the previous one, but its most in-

teresting feature for the current purpose is its error-detection property. This will

be developed in next section.

Using this attack, we were able to recover 128-bit keys with 20 000 timings.

Some keys were disclosed with only 12 000 timings.

ERROR-DETECTION

One remarkable property of our attack is that it has an error-detection prop-

erty. This is easy to understand on an intuitive point of view: remember that the

attack basically consists in simulating the computations until some point, then

building two decision criteria, with only one of them making sense, depending on

the searched value, and finally deciding the bit value by observing which criterion

actually makes sense. Also note that each step of the attack relies on the previous

ones (we need the previous bits values to simulate the computation).

Now, suppose we made an erroneous decision for the value of bit ki. In the

following step, we will not correctly simulate the computations, so that the value

mtemp we will obtain will not be the one involved in step i + 1. Our attempts to

decide whether the Montgomery multiplications will involve an additional reduc-

tion or not will thus not make sense, and the criteria we will build will both be

meaningless. This remains true for the following bits.

In practice, this translates to abnormally close values for the two separations:

while, as long as the choices were right, the two separations were generally3 easy

3There are however some tedious cases, were the two criteria are uneasy to differentiate
although no error has been made. That is why it is better to wait until several contiguous low
values are observed before to conclude to an error.



to distinguish, one of them being clearly more significant than the other, they

appear much more similar (and both bad) after an erroneous choice has been

made. This fact is well illustrated in figure 2, showing the attack of a 512-bit

key on the basis of 350 000 observations. The decision criterion is simply the

difference between the mean times for the two subsets, and the graph shows the

absolute value of diff 1 (the difference between M1 and M2) minus diff 2 (difference

between M3 and M4). Clearly, an error has occurred near bit 149.

0

100

200

300

400

500

600

1 16 31 46 61 76 91 106 121 136 151 166 181 196 211 226 241 256 271 286 301 316 331 346 361 376 391 406 421 436 451 466 481 496 511

Figure 2: Detection of an error for a 512-bit key

Two things are worth noting about this figure: first, it can be seen that,

even when the guesses are correct, some values of the criterion turn out to be

very small. This suggests that, to detect an error, it would be better to consider

the criterion on few consecutive bits instead of single ones. Secondly, it must be

noted that this graph corresponds to a rather large sample; as the sample size

decreases, errors will of course become much more difficult to detect.

Thanks to this error-detection property, it should be possible to build attack

variants that would be robust against errors, as long as their proportion remains

sufficiently low. This can be extremely important, as the sample size appears to

decrease very fast when the error proportion grows (see figure below). A good

correction policy should thus allow to reduce drastically the sample size. We will

come back on this later.

Success rate 64 bits 128 bits 256 bits

75% 300 800 2500

90% 1000 2700 10000

95% 1750 5000 20000

99% 3750 9500 42000
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

50

66

75

80

85

90

95

99
100

# Samples

K
ey

 r
ec

ov
er

y 
%



PARALLEL IMPLEMENTATION

Once the samples have been collected, most of the computation time is spent

in simulating the algorithm’s behavior for each message and computing statistics.

These computations can easily be parallelized.

We built a parallel implementation, in which the total sample is cut into

parts and shared among several processors. Each processor handles its own subset

(checking Montgomery multiplications, computing partial means, . . . ) and they

only interact to share their statistics and make a common decision about the bit

value. The level of parallelism is thus very high, and the speed is multiplied by

the number of processors at disposal.

Our implementation on an HP/S-Class of 4 processors PA8000 @ 180Mhz,

with 4 Gbytes SDRAM, allowed to reduce the time to break a 512-bit key to

about 40 minutes. 128-bit keys were recovered in a few seconds.

Unfortunately, the real bottleneck for the attacker is not so much his com-

putation power than the smart card’s one. As a matter of fact, the only way to

build the time sample is by forcing the smart card to sign every message. Such a

processing of some hundred thousands different messages by the same smart card

seems, at several respects, unrealistic. Therefore, of much more interest would be

to be able to reduce the sample size we need for the attack. This is the purpose

of next section.

ERROR CORRECTION POLICY

As we said before, it should be possible, by implementing an adequate error-

correction policy, to reduce drastically the size of the needed sample. We therefore

tried several ways to make the attack robust against an as big error proportion

as possible.

Errors are always detected based on some criterion value. After many trials,

we decided to use a criterion based on the decision criterion for the next bit value.

We trace our decision criterion back from the last bit. If we find a bit with a

small criterion value preceded by a window of bits with high criterion values, we

concluded that the last bit was not correct. If we apply this criterion to figure 2,

we find that bit 149 was the first bad bit. Quite surprising, more sophisticated

criteria based on statistical models, did not reveal more efficient.

Basically, the error correction policy is the following:

1. start by performing the attack until the end, without trying any correction;



2. identify the last place P1 were the criterion was high: we can reasonably

suppose that the guess was correct until this point;

3. try a first correction, by changing the bit value at position P1 + 1; continue

the attack until its end and identify the last place P2 were the criterion was

high;

4. if P2 is further than P1, then the correction we tried was probably right; we

can now recursively repeat the process: execute step 3, using P2 instead of

P1;

5. otherwise, our correction attempt was incorrect: restore previous bit value,

and try to change the bit value at position P1 + 2, then P1 + 3, . . .

6. if the correct key is not found this way, we conclude the first error occurred

before P1; we thus find the last place, before P1, were the criterion was high,

and restart the same process.

Of course, every time a complete key is guessed, we check whether it is the

right one (this is easily done in a public key cryptosystem) and stop as soon as

the key is found.

However, one problem remains: we have seen that some bits are more difficult

than others, in the sense that the criterion is not very clear there, and that the

guess decision is taken in the wrong direction. The above algorithm will try to

detect these errors and correct them. But what will happen if two “difficult bits”

are consecutive? If this is the case, then the correction attempt will be directly

followed by an error ; the criterion will thus remain low for subsequent bits and

the algorithm will not detect it has done the good correction.

One solution is to try to correct not only single bits, but small bit windows.

In the above algorithm, instead of changing a single bit value, we will explore all

possibilities for three or four consecutive bits. We build a list with all possibilities

and order this list from the most to the least probable using our decision criterion.

For each possibility, we then try to complete the attack and proceed recursively

as before. Note that, for this to be fully efficient, we need to use at least two

different window sizes for the evaluation criterion window and for the correcting

window. (otherwise we simply report the problem a bit further).

CONCLUSION

The previous paper [DKL+98] showed that timing attacks are serious threats

against cryptosystems implementation on devices where timing measurements



can be precisely done. This is especially the case for smart cards. The longest

step (in time) is to get enough timing samples. The number of needed samples

are quite large for usual key sizes. Further reduction of this number will increase

the practicability of the attack.

In this paper, we focused on improvements able to reduce the number of

samples needed to successfully recover a secret key. We showed that the timing

attack enjoy good error-correcting properties. With our error-correcting method,

we are able to reduce the number of samples by a factor two.

Results (number of samples)

Key size without error correction with error correction

64 1 500–6 500 1 500–4 000

128 12 000–20 000 5 000–8 000

256 70 000–80 000 30 000–40 000

512 350 000–400 000 150 00–200 000

We are still working on devising better error-correcting schemes because we

believe that more information can be extracted from these timings.

REFERENCES

[Cas] Cascade (Chip Architecture for Smart CArds and portable intelli-

gent DEvices). Project funded by the European Community, see

http://www.dice.ucl.ac.be/crypto/cascade.

[DKL+98] J.-F. Dhem, F. Koeune, P.-A. Leroux, P. Mestré, J.-J. Quisquater,

and J.-L. Willems. A practical implementation of the timing attack.

In Proc. CARDIS 1998, Smart Card Research and Advanced Applica-

tions, 1998.

[Koc96] P. Kocher. Timing attacks on implementations of Diffie-Hellman,

RSA, DSS, and other systems. In N. Koblitz, editor, Advances in

Cryptology - CRYPTO ’96, Santa Barbara, California, volume 1109

of LNCS, pages 104–113. Springer, 1996.


