On the Security of Pay-Per-Click
and Other Web Advertising Schemes

Vinod Anupam Alain Mayer Kobbi Nissim Benny Pinkas*
Bell Laboratories, Lucent Technologies Department of Computer Science and Applied Math
Murray Hill, NJ, USA Weizmann Institute of Science, Rehovot, Israel
{anupam, alain}@research.bell-labs.com {kobbi, bennyp }@wisdom.weizmann.ac.il

Michael K. Reiter
Bell Laboratories, Lucent Technologies
Murray Hill, NJ, USA

reiterQresearch.bell-labs.com

Abstract

We present a hit inflation attack on pay-per-click Web advertising schemes. Our attack
is virtually impossible for the program provider to detect conclusively, regardless of whether
the provider is a third-party “ad network” or the target of the click itself. If practiced
widely, this attack could accelerate a move away from pay-per-click programs and toward
programs in which referrers are paid only if the referred user subsequently makes a purchase
(pay-per-sale) or engages in other substantial activity at the target site (pay-per-lead). We
also briefly discuss the lack of auditability inherent in these schemes.

Keywords: Electronic Commerce, Secure Systems, On-line Advertising, Pay-Per-Click.

1 Introduction

Click-through payment programs (“pay-per-click”) have become a popular branch of Internet
advertising. In the simplest case, the webmaster of the site running the program, here called
the target site, agrees to pay each referrer site for each user who clicks through the referrer to
the target. That is, if a user views a Web page served from the referrer site, and then clicks on
a hypertext link (e.g., banner ad, logo) in that page to the target site, then the target site owes
the referrer site some predetermined amount of money. The target site runs a click-through
payment program in order to motivate the referrer to prominently display ads for the target site
on its Web pages. Often, the target site does not administer such a program itself but rather
employs a third-party ad network to administer the click-through program on its behalf.!

*Research partly supported by an Eshkol fellowship from the Israeli Ministry of Science
'"Examples of such third-party services include ClickTrade (http://clicktrade.linkexchange.com/), eAds
(http://www.eads.com/), and ValueClick (http://www.valueclick.com/).



Click-through counts are also used by the Internet advertising industry at large to determine
the effectiveness of a banner ad (its location, design, etc.). Often the click-through rate (i.e., the
percentage of users who clicked on the banner after seeing it) is used as a metric to determine
the cost of placing the banner ad on a particular Web page.?

As has been recognized in the click-through payment industry, click-through payment pro-
grams are susceptible to hit inflation, where a referrer artificially inflates the click-through
count for which it should be paid. Consequently, most ad networks include clauses in their
service agreement that explicitly prohibit hit inflation by the referrer and mention that they
have “effective software to detect such misuse”.

The goal of this paper is to explore the extent to which hit inflation can be detected or
prevented in click-through payment programs. The main result of this paper is negative: we
present a hit inflation attack that on one hand is very difficult for the target site (or the ad
network site, if present) to detect conclusively and that on the other hand can be used by
the perpetrating referrer to inflate its referral count at the target site. The attack allows the
referrer to transform every visit by a user on any site that is collaborating with the referrer
into a click through to the target. We have tested the attack with both Netscape Navigator
and Microsoft Internet Explorer browsers.

The practical implications of our attack are potentially significant. If our attack becomes
commonplace, then it could accelerate a move away from pay-per-click programs and toward
advertising programs where payment is offered to a referrer only if the referred user either makes
a purchase at the target site (pay-per-sale) or shows some demonstrable interest (pay-per-lead).
Such variations of click-through programs have already appeared on the Web, presumably
motivated by the desire of target sites to pay only for “high quality” referrals. Our attack is
ineffective against pay-per-sale and pay-per-lead programs. However, as we will discuss, these
programs are susceptible to another form of fraud that present web infrastructure offers little
ability to detect.

Aside from its potential impact, our attack employs an interesting technique. In the attack,
two collaborating Web sites “team up” so that whenever a user visits one of these sites, the
click-through count of the other Web site is incremented at the target. Moreover, this is
invisible to the user, and the target has little ability to detect that this is not a legitimate
referral, even if its webmaster suspects that the attack is happening. Rather, to convincingly
detect this attack, the webmaster of the target must locate the Web page on the site that is
initiating the attack (i.e., the one that the user actually visited), which should be very difficult
unless the target has prior knowledge of the collaborating Web sites.

The rest of this paper is organized as follows. We introduce the hit inflation problem in
more detail in Section 2. We describe our attack in Section 3, and we discuss the security of
alternative advertising schemes (pay-per-sale and pay-per-click) in Section 4.

®See BannerNetwork (http://adnetwork.linkexchange.com) and BannerSwap (http://www.bannerswap.com/).



) ()

1 3

(pageR.html) (pageT.html)

Q)

Figure 1: A click-through: User U retrieves pageR.html from R (message 1) and clicks on a
link in it, causing pageT.html on site 7" to be requested (message 2) and loaded (message 3).

2 The hit inflation problem

In order to understand the hit inflation problem, we first must understand how a legitimate
click-through is manifested in HTTP protocol messages. Our initial treatment is for the simple
case of a click-through program run directly by a target site for referrers. The case of a third-
party click-through program provider will be discussed subsequently.

Let R denote a referring site, 7' denote the target site, and U denote a user’s Web browser.
A click-through begins when U retrieves a Web page pageR.html from R that contains a
hypertext link to a page pageT.html on site T (see Figure 1). When the user clicks on that
link, the user’s browser issues a request to site 7" for pageT.html. An important component
of this request is the Referer header of the HTTP request for pageT.html. This header is
set by the user’s browser and names the Web page that “referred” the user to pageT.html, in
this case pageR.html. T uses this Referer header to record the URL of the page that referred
the user to pageT.html, along with the IP address of U. T then returns pageT.html to U for
display in the browser.

In a click-through payment program, T will periodically pay R some previously agreed-
upon amount for each click-through from R to T. The fact that T pays for click-throughs
provides to R an incentive to mount hit inflation attacks on 7', in which R somehow causes
T’s record of click-throughs from R to be increased above the correct number. Here we do not
define precisely what the “correct number” is. Rather, we simply characterize a hit inflation
attack as one in which 7" receives a request for pageT.html with a Referer header naming
pageR.html when no corresponding Web user clicked to pageT.html after viewing pageR.html.
For example, a straightforward attempt to inflate R’s click-through count is for the webmaster
of R to run a program that repeatedly sends requests of the appropriate form to 7. However,
because most click-through programs pay only for “unique” referrals, i.e., click-throughs from
users with different IP addresses, multiple click-throughs where the user is at the same site are
counted as only one click-through for payment purposes. On the side we remark that counting
unique [P addresses is becoming increasingly ineffective, as more user requests are directed



through proxy servers either due to the default configuration of the user’s ISP (e.g., 99% of
AOL subscribers) or to enhance user privacy.?

A sophisticated attacker could issue multiple requests to T with forged IP source addresses,
thereby circumventing the unique referrals rule. However, this requires a further degree of
technical sophistication and effort on the attacker’s part (see, e.g., [3]). Moreover, these attacks
can be detected by T', due to the fact that in all likelihood, no browser will receive the response
from T'. So, for example, if pageT.html is constructed with links to images or other HTML
elements that a browser would immediately retrieve upon interpreting pageT.html, then a
request for pageT.html with a forged IP source address will not be followed by requests for
the HTML elements contained in pageT.html. If it is feared that the attacker will go one step
further and even issue these follow-up requests in a predictive fashion to avoid detection, then
T can dynamically generate pageT.html each time with links to different URLs (in the limit,
containing a nonce in the URL), thereby foiling any such attempt by the attacker to predict
the URLSs to request. The end result is that requests with forged IP addresses will stand out to
T as those for which correct follow-up requests were not received. Moreover, the perpetrator
of this attack will be revealed by the Referer field of these requests, as this Referer field must
indicate the referrer that is trying to inflate its hits.

Because of the difficulty and detectability of IP address forgery attacks, probably the most
common form of hit inflation today is one in which the referrer R forces the user to visit the
target T' by constructing pageR.html so as to automatically “click” the user to pageT.html
(e.g., see [6]). This simulated click can be accomplished using constructs that will also play
a role in our attacks; we thus defer an explanation of these techniques to Section 3. This
simulated click can be visible to the user, in which case the user will see, e.g., a new window
popped up on his screen unsolicited and containing pageT.html. Alternatively, the window
can be hidden from the user (e.g., behind the window containing pageR.html), so that the
user is unaware that she is being “used” by R to gain payment from 7". Regardless of whether
this hit inflation is visible to the user, it is still the case that these attacks can be detected
by T if the webmaster of T' periodically visits the Web pages of the referrers that she pays
(preferably from a machine outside her own domain, to avoid detection by the referrer). By
inspecting the constructions in those Web pages, and observing the behavior of these pages
when interpreted by her browser, the webmaster of T' can detect that hit inflation is occurring.
Indeed, this examination could even be automated, as it suffices to detect if the referrer’s page,
when interpreted, causes a request to 7"’s site automatically.

There are numerous variations on click-through programs as described above. In particular,
in a program run by a third-party provider, the interaction differs from the above description
in that the third party takes the place of T'. The third party records the click-through and then
redirects the request to the actual target site. Another variation is that some click-through
programs do not make use of the HT'TP Referer header, but rather simply have each referrer
refer to a different URL on the target site. This approach has the advantage of not relying
on the Referer field to be set correctly and thus functioning in conjunction with privacy-

3Example privacy-enhancing proxies include the Anonymizer (http://www.anonymizer.com) and the Lucent
Personalized Web Assistant (http://1lpwa. com).



enhancing tools that eliminate the Referer field in the HTTP header. However, this approach
exposes the click-through program to additional risks: in particular, the referrer webmaster can
broadcast-email (“spam”) his own banner ad to increase its click-through count. Thus, most
click-through programs of this form explicitly prohibit spamming to increase click-throughs,
and will cancel the referrer’s account if the referrer is detected doing so.

None of these variations deter the attack we present in Section 3. On the contrary, if
the Referer header is not used by the target site, then our attack becomes easier, as will be
discussed in Section 3.

3 Undetectable hit inflation for click-through counts

In this section we describe an approach to hit inflation that is very effective on two counts:
it enables a referrer to inflate hits arbitrarily, and it does so in a way that is very difficult
for the target to detect, even if the target suspects that the attack is being conducted. The
attack is equally applicable to both direct click-throughs from a referrer to a target and third-
party click-through program providers. Here we present our attack in the context of a direct
click-through program. Its full implications will be discussed in Section 3.3.

In our attack, the referrer site R inflates its click-through count by translating hits on
another site S that it controls into referrals from site R to the target site 7. That is, when
a user visits a certain pageS.html on site S—which may have no apparent relationship with
site R—this has the side effect of causing a click-through to be credited to pageR.html at site
T. The webmaster of site T' can detect this only if she happens to stumble upon pageS.html
and examines it carefully. However, if she has no reason to suspect a relationship between R
and S, then confirming this attack is effectively as difficult as exhaustively searching all pages
on all Web sites to find pageS.html, i.e., the page that is originating the hit inflation attack.
In particular, retrieving pageR.html for examination is of no assistance to the webmaster of
site T' in detecting this attack.

At a very high level, the attack works as follows; see Figure 2. The page pageS.html causes
a “simulated click” to pageR.html on site R. As mentioned previously, this simulated click can
be done in a way that is invisible to the user. This simulated click will cause the user’s browser
to send a request to site R with a Referer field naming pageS.html on site S. In response to
this request referred by site S, site R returns a modified version of pageR.html to the browser
that in turn causes a simulated click to pageT.html, the target page. This causes the browser
to request pageT.html from 7" with a Referer field naming pageR.html, thereby causing T
to credit site R with the referral. However, in response to any request for pageR.html that
does not contain a Referer field naming pageS.html, site R returns the normal and innocuous
pageR.html that, in particular, does not simulate a click to pageT.html. So, if the webmaster
of site T' retrieves pageR.html herself, the page she retrieves yields no evidence of foul play.
In the following subsections, we detail the components of this attack.



(pageS.html) (pageT.html)

Figure 2: The attack: User U retrieves pageS.html from S (message 1), which simulates
a click to pageR.html (message 2). In response to this request (with a Referer field of
pageS.html), R returns a manipulated version of pageR.html (message 3) that simulates a
click to pageT.html (message 4). T receives a request for pageT.html with a Referer field of
pageR.html, causing R to be credited for the click-through. For any request that R receives
that does not name pageS.html as its Referer, R returns the benign version of pageR.html.

3.1 Simulated clicks

A component of our attack is the “simulated click”, in which one Web page (the referrer)
causes the user’s browser to request another Web page (the target) on another Web site, with
a Referer field naming the referrer. Indeed, our attack of Figure 2 consists essentially of two
simulated clicks, one from S to R and one from R to T'. The preservation of the Referer field is
critical for a simulated click (and our attack), and this requirement rules out some of the most
straightforward possible implementations: e.g., if the referrer serves a page that “refreshes”
the browser to the target page using HTML’s <meta> tag (see [4]), then this retrieves the
target page but does not preserve the Referer field. As discussed in Section 1, simulated
clicks are already practiced in hit inflation attacks on the Web today. However, presently there
seems to be little attempt to hide these simulated clicks from users (e.g., see [6]), whereas we
use techniques to hide simulated clicks from users to limit detectability of our attack and the
annoyance caused to users.

One feature that makes simulated clicks possible is that modern browsers transmit Referer
information not only for pages requested by explicit user clicks, but also for components em-
bedded in pages like images, and especially subdocuments like frames and layers (see, e.g., [4]
for an introduction to these constructs in HTML). For example, the Web page containing a
layer is named in the Referer header of the request for the document contained in the layer,
even though no user clicks are involved when the layer contents are retrieved. Therefore, a
simple and effective simulated click can be achieved for Netscape Navigator 4.x (NN4) and
Microsoft Internet Explorer 4.x (IE4) if the referring site serves a page with a layer that con-
tains the target page (NN3 and IE3 do not support layers). To hide this simulated click from
the user, the layer containing the target page can be made of zero size, or stacked below the
containing document so that it is invisible to the user. Another form of simulated click can be



achieved using frames with IE3 and IE4, since these browsers report the document containing
a frameset as the Referer for the documents in each of the frames. Thus, a referrer can create
an invisible, simulated click to a target by serving a page that contains a frameset with a
zero-size frame that loads the target page. Interestingly, NN3 and NN4 report the Referer
of the page containing the frameset as the Referer for each of the documents in the frames.
Thus, we use layers to conduct a subdocument-based simulated click in NN4. It is somewhat
more awkward to perform a subdocument-based simulated click in NN3. In order to use the
appropriate form of simulated click, the server can determine the user’s browser and version
from the User-Agent header in the browser’s request.

For reasons that will be described in Section 3.2, these subdocument-based forms of sim-
ulated click will not suffice to make our attack as effective as it can be. Rather we will also
employ JavaScript for explicitly simulating a click on a link (see, e.g., [2] for more information
about JavaScript). When a JavaScript script in a Web page causes this simulated click on
one of its own links, the browser behaves as if the user clicked on the link, and thus requests
the URL of the link and loads it into the browser. In order to hide this simulated click from
the user, the referring page can cause the contents of the “clicked” URL to be loaded into a
separate window that lies beneath the user’s browser window. Then the referring page can
quickly close this window once the referred-to page has started loading, or after a brief duration
in which the page should have started loading. The attentive user might notice an additional
window indicated on her desktop toolbar for a brief moment, but otherwise this additional
window will almost certainly go unnoticed by the random user for the brief period of time in
which it is present. And even if the user does notice the additional window, the JavaScript
script can still prevent the user from exposing it before it is closed by repeatedly raising the
main browser window above it.

The JavaScript mechanism to simulate a click on a link differs slightly from browser to
browser, and care must be taken to ensure that this simulated click preserves the Referer field
received by the target. In TE4, link objects support the click() method that, when invoked,
causes the browser to behave as if a user clicked on the link. Referrer information is preserved,
i.e., the document containing the link is reported to the target Web site as the Referer. In
NN3 and NN4, as well as in IE3, link objects do not have the convenient click() method.
However, using a script to send the browser window to the URL corresponding to the link
causes the script’s page to be reported as the referrer to the target Web site.

To summarize, the attack that we detail in the following section will use two different forms
of simulated clicking. The first employs a subdocument (i.e., layer or frame) form of simulated
click in the referring page and will be called a subdocument-based simulated click. The second
employs JavaScript and will be called the JavaScript simulated click.

3.2 Detailing the attack

As described in Section 3.1, at a high level our attack consists of two simulated clicks, one
from S to R and one from R to T (see Figure 2). However, the nature of these two simulated
clicks is quite different. Recall that S and R are collaborating in this attack, and indeed it is



important for the attack that in the first simulated click, R recognizes that the simulated click
from S is happening (so that it can serve the “attack” version of pageR.html that causes the
simulated click to T'). On the other hand, in order to make our attack truly undetectable to
T, it is important that T be unable to detect that the referral from R is by a simulated click.
Because of these conflicting requirements, the two simulated clicks in our attack are conducted
via different mechanisms.

The simulated click from S to R, so that R recognizes the simulated click from S, is the
easiest to achieve. Since S and R are in collaboration, their webmasters can set up the Web
sites so that any request that R receives for pageR.html with a Referer field of pageS.html
is by a simulated click from S. This can be ensured if pageS.html has no link to pageR.html
that can be clicked by the user. Thus, the subdocument-based approach of Section 3.1, in
which the only link to pageR.html is for a layer’s contents, for example, is ideally suited for
this simulated click.

The simulated click from R to T is more sensitive, as it is essential that T be unable to detect
that the click is simulated. In particular, if JavaScript is enabled in the browser, then a script
in pageT.html could detect the subdocument-based simulated click of Section 3.1. Specifically,
in current browsers pageT.html can use JavaScript to detect whether it is displayed in a frame.
Moreover, in version 4 browsers, pageT .html can use JavaScript to detect the size of its window,
layer, or frame, and thus pageT.html can be designed to detect the case when it is displayed
in a zero-size frame or layer. For these reasons, pageR.html must test for various conditions
when conducting its simulated click and tailor its method of attack to them. Specifically, the
simulated click from R to T should occur as follows:

1. pageR.html first tests if JavaScript is enabled in the browser. If not (i.e., JavaScript is
disabled), then it simulates a click to pageT .html using the subdocument-based simulated
click of Section 3.1.

2. If JavaScript is enabled in the browser (and thus pageT.html has greater detection
capabilities at its disposal), then pageR.html performs the simulated click using the
JavaScript method of Section 3.1 that directs pageT.html to a new window, hidden from
the user.

There is always the possibility that the webmaster of site T will request pageR.html for
inspection, and so we remind the reader that for any request for pageR.html that does not
name pageS.html as the Referer, R should respond with an innocuous Web page that does
not simulate a click to 7.

3.3 Discussion

The attack detailed in this section is effective even if a third-party click-through program
provider is used. In this case, T is the third-party provider and not the actual target site,
but this distinction has no bearing on the mechanism behind our attack. Another difference
is that third-party programs often do not make use of the Referer header for identifying the



referrer, but rather simply use a different URL per referrer. In this case, however, our attack
just becomes easier since there may be less of a need to retain the correct Referer header
when performing simulated clicks.

Our attack has other implications. As mentioned in Section 2, most click-through programs
are not agreeable to the use of spamming by a referrer to increase click-through counts, and in
fact, many click-through programs explicitly prohibit the use of spamming in their contracts
with referrers. Our attack, however, makes target sites susceptible to “indirect” spamming
that is hard to detect: A spammer (an agent of S) can drive a large number of users to S,
triggering the inflation attack. The lack of an obvious relationship between R and the spammer
or S makes it difficult for the webmaster of T to detect this practice.

Many click-through programs desire “high quality” referrals, i.e., referrer sites with a tar-
geted audience (e.g., technology oriented sites). Our attack enables a referrer site R with
appropriate content to register in the click-through program, while using a different site S
with completely different content to attract the click-throughs. Furthermore, many click-
through programs disallow referrers with illicit material, regardless of their popularity. Our
attack enables referrers R to use such sites to draw users and register click-throughs for R at
the target.

To see the potential for profit from this attack, consider that the average click-through
rate for banner ads is 1-3%, and that payments for click-throughs are calculated accordingly.
Our attack can yield an effective rate of almost 100% for users who visit pageS.html and thus
(unknowingly) click through pageR.html to pageT.html. We can go a step further and use S
in conjunction with several (say 10) sites Rj,...,R1o that are enrolled in different click-through
programs, and thereby get an effective click-through rate of 1000%. This is undetectable as
long as the different target sites do not compare the IP addresses from which they receive clicks
at the same time. (Thus, this multi-target attack might be impossible with target sites that
are on the same third-party click-through program).

An attacker might draw suspicion if the target site 7' monitors the click through rate (CTR)
of its ads. The target can monitor the CTR if R’s page is required to load the ads from a
site that is controlled by the target. A high click-through rate (say greater than 5%) is likely
attract the attention of the target’s webmaster, if only to learn the marketing practices of the
referrer. The attacker can prevent such inquiries by keeping the CTR low. One way to achieve
this is to register site R with, say, 20 different targets. Whenever R receives a request with
a Referer field naming pageS.html, it returns a page containing ads for each of the targets,
and performs a simulated click on one of these ads at random. The attacker is paid for 100%
of the visits to S, while keeping the CTR below 5% at each target. This method can of course
be extended to achieve lower CTR or higher payment rates.

Another way for the target site T to detect the attack is to search for pages that have
links to pageR.html, in an effort to find pageS.html. A simple approach would be to use
existing search engines to find pages that refer to pageR.html.* However, S can easily avoid

“For example, InfoSeek (http://www.infoseek.com) explicitly offers the ability to query for such information,
via a “field search” using the syntax link:pageR.



detection by serving a different, benign version of pageS.html to spiders of search engines.?

A second approach that 7' can try is to perform the search for pages like pageS.html itself,
using a spider. This reconnaissance operation is of almost the same scale as building a search
engine, and can be complex and costly. Moreover, R and S can extend the attack in a natural
way to use a chain of three or more simulated clicks, e.g., from some S’ to S to R to T. This
further complicates efforts to “trace backward” along the chain to find the page that initiates
the attack.

Probably the most viable way of detecting the attack is for 7' to monitor user activity (e.g.,
mouse movement, mouse clicks, or filling out a form) on 7”s site. A real user will typically
either click further into the site or leave the site immediately. The former is easily detectable
and confirms the existence of a real user. To detect the latter case, pageT.html could be
constructed to include a “back” button that both returns the user to the referrer page and
informs T that the user clicked on this button. However, this does not capture the case that
a user next directs her browser to a bookmarked location, uses the browser’s “Back” button
to leave 1"s site, or closes the window containing pageT.html. Similarly, pageT.html could
be constructed with JavaScript code to inform 7' of mouse movement over pageT.html, or
to inform T of the length of time that the page was active in the browser (e.g., by causing
a message to be sent to T every few seconds). The latter offers little information to 7' if
pageR.html closes the window containing pageT.html after a random amount of time. The
former, i.e., detecting mouse movement over pageT.html, possibly lets T" confirm that a user
sees the page (if the user moves the mouse over it). However, again it does not enable T' to
determine that a user did not see the page. In the limit, 7" could occasionally serve a version
of pageT.html that contains a newly generated question for the user to answer (and perhaps
offers a financial incentive to do so), to see if a user responds.

While none of these techniques can offer proof that the attack is taking place, they can
offer T statistical evidence of the attack if the attack is mounted aggressively through a single
referrer R. As such, detecting user activity seems to be the most promising direction for coping
with this attack, and in fact is the same principle that is behind pay-per-lead and pay-per-sale
schemes discussed in Section 4.

Finally, it is worth noting that legal means could also be used to discourage hit inflation
attacks. Extreme hit inflation attacks could be grounds for a civil lawsuit if detected. If the
threat of civil action is combined with suitable criminal penalties, these threats may effectively
deter large-scale hit inflation.

4 Pay-per-sale and pay-per-lead

If pay-per-click programs are going to be de-emphasized in the future, then it is worth con-
sidering the security of the programs that are likely to replace them. Presently, the foremost
alternative to pay-per-click programs are programs in which target sites pay only for “high

5Search engine spider queries can be easily identified as such. For example, see
http://searchenginewatch.com/webmasters/spiders.html.

10



quality” referrals, i.e., for referred users who perform some substantial activity or make pur-
chases at the target site. There are essentially two forms of such programs:

o Pay-per-lead: Referrers are paid only if the user has performed a significant action at
the target site, e.g., if she registered an account at the target site or performed successive
hits at the target site for more than five minutes.

o Pay-per-sale: Referrers are paid some commission for purchases the user makes at the
target site.® Typically the referrer displays a link for a specific item for sale at the target
site, and is paid some percentage for purchases of this item by referred users.

Payments in these programs are typically larger than in pay-per-click programs, since they are
more valuable for the target sites.

It is virtually impossible for referrer sites to mount useful hit inflation attacks on such
schemes, since simple clicks are worthless to the referrer. However, these programs are sus-
ceptible to a different form of fraud, known as hit shaving. In hit shaving, the target site
fails to report that a referred user executed a lead or sale, thereby denying the user’s referrer
rightful payment (regardless of whether a third-party program provider is used). Current Web
technology offers referrers little ability to detect such fraud (cf. [5]), short of the webmaster of
a referrer site simply clicking through her own site to the target and, e.g., making a purchase
to verify that her site is credited with this referral. This type of detection can be powerful:
even if the target site attempts to shave just 5% of the commissions it is required to pay, this
fraud is expected to be discovered after only 20 such probes by the referrer. However, this type
of detection is not always feasible, for example if the target site sells rather expensive items
(e.g., cars). In such cases, the referrers are presently at the mercy of target sites to faithfully
report the leads and sales for which the referrers should be paid.

Future versions of browsers may provide a mechanism to enable a referrer to monitor the
user’s behavior at a target site to a limited extent. Specifically, at Bell Labs we have designed
and implemented a new JavaScript security model in the free Mozilla source code (see [1]),
and this is presently being considered for inclusion in Netscape 5.x browsers. This security
model enables (among other things) a JavaScript program from one domain to interact with
a page loaded from a different domain, provided that the latter page allows this. This feature
can be used to enable the referrer site to monitor the user’s actions at the target site with
a JavaScript program. For example, this program could report to the referrer when the user
registers or makes a transaction at the target site. The model further allows the target site
to have fine-grained control over what information on a page is made available to the referrer;
e.g., on the sales page, the target could make the total purchase amount available without
revealing what books the user bought or the user’s credit card information.

Even this new security architecture, however, does not provide machinery sufficient to fully
address the hit shaving problem in pay-per-lead and pay-per-sale programs. This is the case for
two reasons. First, the additional exposure of user activities to referrers that is enabled by this

5An example is the Associates program run by Amazon (http://www.amazon.com).

11



security architecture, which seems to be needed to combat hit shaving, may be an unacceptable
privacy intrusion for many users. And consequently, the security architecture of [1] allows this
exposure only with user consent. Thus, the web advertising industry may need to consider
ways to motivate users to allow greater exposure of their web activities to referrers, in order
to combat the threat of hit shaving. Second, a more common and unintentional form of hit
shaving occurs when a user clicks from a referrer to a target, exits the browser, and then
returns directly to the target later to explore the site or make a purchase. In this case, the
referral is (perhaps unintentionally) “shaved”, and foreseeable web infrastructure offers little
machinery for the referrer to detect this.

5 Conclusion

Pay-per-click programs are a popular form of advertising incentive on the Web today. We have
presented a hit inflation attack on these programs that appears to be virtually undetectable to
target sites and very effective in inflating referral counts. Our attack involves two collaborating
Web sites, where each user’s visit to the first causes a target to register a referral from the
second. There seem to be no sure ways of detecting this attack, short of locating the page on
the first site that initiates the attack, though testing by the target site to attempt to determine
if a user sees its page may give some indication to the target.

In our opinion, this attack brings the viability of pay-per-click programs into question and,
if practiced widely, may accelerate an ongoing trend to move toward pay-per-sale and pay-
per-lead programs. As discussed in Section 4, these programs have fraud problems of their
own that seem difficult to address given today’s Web infrastructure. How to achieve sufficient
auditability to eliminate fraud in these web advertising schemes remains an open problem.

Acknowledgements

We are very grateful to the anonymous reviewers for the 8th International World Wide Web
Conference, who offered useful comments on how to improve the presentation of this work.

References

[1] V. Anupam and A. Mayer. Secure web scripting. IEEE Internet Computing 2(6), December 1998.
[2] D. Flanagan. JavaScript: The Definitive Guide. 3rd edition, O’Reilly & Associates, 1998.

[3] R. T. Morris. A weakness in the 4.2 BSD Unix TCP/IP software. Computer Science Technical Report 117,
AT&T Bell Laboratories, February 25, 1985.

[4] C. Musciano and B. Kennedy. HTML: The Definitive Guide. 2nd edition, O’Reilly & Associates, 1997.

[6] M. K. Reiter, V. Anupam, and A. Mayer. Detecting hit shaving in click-through payment schemes. In
Proceedings of the 8rd USENIX Workshop on Electronic Commerce, pages 155-166, September 1998.

[6] Web surfers wary of ‘kidnapping’ sites. USA Today, September 28, 1998. Available at
http://www.usatoday.com/life/cyber/tech/ctd540.htm.

12



Figure 3: Vinod Anupam

-
o N

Figure 4: Alain Mayer

6 Vitae

Vinod Anupam is a member of the Database Systems Research Department in the Systems
and Software Research Center of Bell Labs, Lucent Technologies. He received a Ph.D. in
Computer Science from Purdue University in 1994. His research interests include Collaborative
Computing, Internet and Web Security, Electronic Commerce, Graphics and Visualization, and
Mobile Computing.

Alain Mayer is a Research Scientist in the Secure Systems Research Dept. at Bell Labs /Lu-
cent Technologies. He joined Bell Labs in September 1996 from System Management Arts,
(SMARTS), a network management start-up company. He received his Ph.D. in Computer
Science in 1995 from Columbia University. Alain’s research interests include electronic com-
merce, network and Web security, cryptography, privacy, and network management. During
1999, he is serving on the program committee of both the USENIX Security Symposium and
the ACM Conference on Computer and Communications Security.

Benny Pinkas is a Computer Science doctoral student at the Department of Applied Math and
Computer Science of the Weizmann Institute of Science, Rehovot, Israel. He received his B.A.
(Summa Cum Laude) and his M.Sc., both in Computer Science, from the Technion - Israel
Institute of Technology, in 1988 and 1991, respectively. During 1991-1996 he served in the

13



Figure 5: Benny Pinkas

Figure 6: Michael Reiter

Israel Defense Forces, where he worked in computer science and communications research and
development. His main research interests are Computer Security and Cryptography, and in
particular communication efficient security protocols. His research is supported by an Eshkol
Fellowship from the Israeli Ministry of Science.

Michael K. Reiter (www.bell-labs.com/user/reiter) is Department Head of the Secure Systems
Research Department in Bell Laboratories, Lucent Technologies. He received the B.S. degree in
mathematical sciences from the University of North Carolina in 1989, and the M.S. and Ph.D.
degrees in computer science from Cornell University in 1991 and 1993, respectively. During
1998-2000, he will serve as Program Chair of the flagship computer security conferences of
both the Association for Computing Machinery (ACM) and the Institute of Electrical and
Electronic Engineers (IEEE). Dr. Reiter’s research interests include all areas of computer and
communications security, electronic commerce, and distributed computing.

14



