
Roaming Honeypots for Mitigating Service-level Denial-of-Service Attacks∗

Sherif M. Khattab§ Chatree Sangpachatanaruk‡ Daniel Mossé§ Rami Melhem§ Taieb Znati§‡
§Department of Computer Science

‡Department of Information Science and Telecommunications
University of Pittsburgh, PA 15260

{skhattab, chatree, mosse, melhem, znati}@cs.pitt.edu

Abstract

Honeypots have been proposed to act as traps for ma-
licious attackers. However, because of their deployment at
fixed (thus detectable) locations and on machines other than
the ones they are supposed to protect, honeypots can be
avoided by sophisticated attacks. We propose roaming hon-
eypots, a mechanism that allows the locations of honeypots
to be unpredictable, continuously changing, and disguised
within a server pool. A (continuously changing) subset of
the servers is active and providing service, while the rest of
the server pool is idle and acting as honeypots.

We utilize our roaming honeypots scheme to mitigate
the effects of service-level DoS attacks, in which many at-
tack machines acquire service from a victim server at a
high rate, against back-end servers of private services. The
roaming honeypots scheme detects and filters attack traf-
fic from outside a firewall (external attacks), and also mit-
igates attacks from behind a firewall (internal attacks) by
dropping all connections when a server switches from act-
ing as a honeypot into being active. Through ns-2 simula-
tions, we show the effectiveness of our roaming honeypots
scheme. In particular, against external attacks, our roam-
ing honeypots scheme provides service response time that is
independent of attack load for a fixed number of attack ma-
chines.

1. Introduction

Network Denial-of-Service (DoS) attacks [26] pose an
increasing threat to both public services, such as Google,
and private services, such as subscription-based business
services, deployed over the Internet. Typical private services
consist of front-ends (e.g., web servers) and back-ends (e.g.,
database servers). Whereas service front-ends can be pro-
tected from DoS attacks by massive replication, as in Con-

∗ The authors were supported in part by NSF under grant ANI-0087609.

tent Distribution Networks (CDNs) such as Akamai [1], ser-
vice back-ends cannot tolerate the same level of replication,
because of higher costs and tighter consistency constraints.

DoS attacks are difficult to prevent because of inevitable
software vulnerabilities, which get exploited by attackers
either to directly crash a victim or to compromise zom-
bie machines, which are unwittingly used to launch the
attack. Network-level DoS attacks aim at congesting net-
work resources, such as link capacity and router buffers, by
flooding them with bogus packets sometimes with spoofed
(forged) source addresses. However, wide deployment of
source-end DoS defense systems, such as D-WARD [19],
which autonomously detects and stops abnormal one-way
flows, and Ingress Filtering [9], which stops most spoofed
attacks, would limit the pervasiveness and effectiveness of
network-level and spoofed attacks, leaving floor to service-
level DoS attacks. In service-level DoS attacks, a large num-
ber of attack machines manage to acquire service from a
victim server, consuming both service-level resources, such
as server memory and processing time, as well as network-
level resources along the path outward from the server.

Honeypots [22,33], a proactive detection mechanism, are
machines that are not supposed to receive any legitimate
traffic and, thus, any traffic destined to a honeypot is most
probably an ongoing attack and can be analyzed to reveal
vulnerabilities targeted by attackers. Coupled with an Intru-
sion Detection System (IDS) (e.g., [4]), honeypots are ef-
fective in detecting hosts exploited by Internet worms [28]
that perform random scanning [16]. However, since honey-
pots are deployed at fixed, detectable locations and on ma-
chines different than the ones they are supposed to protect,
sophisticated attacks can avoid the honeypots.

In this paper, we propose roaming honeypots, a scheme
for mitigating service-level DoS attacks against back-ends
of private services. The locations of honeypots are continu-
ously and unpredictably changing disguisedly within a pool
of back-end servers. Each server alternates between provid-
ing the service and acting as a honeypot in a manner unpre-
dictable to attackers.

1.1. Solution Approach

In [14], we presented the proactive server roam-
ing mechanism, which is a secure and light-weight mech-
anism to proactively change the location of the active
server within a server pool. Legitimate clients keep track
of roaming times and location of the roaming server us-
ing light-weight, one-way hash functions.

In this paper, we build on the work in [14] to achieve
roaming honeypots as follows: A (continuously and unpre-
dictably changing) subset of k out of N servers is active
and providing service, while the rest are acting as honey-
pots. Even if attackers obtain the identities of all servers,
which of the servers are the active servers and which are the
honeypots at a given moment is unknown to attackers.

Against service-level attacks, the benefit of our roaming
honeypots scheme is two-fold: Firstly, idle servers (hon-
eypots) detect attacker addresses so that all their subse-
quent requests are filtered out. Secondly, each time a server
switches from idle to active, it drops all its current (attack)
connections, opening a window of opportunity for legiti-
mate requests before the attack re-builds up. We call these
two benefits the filtering effect and the connection-dropping
effect, respectively. Whereas the filtering effect defends the
service against attacks launched from outside a firewall (ex-
ternal attacks), the connection-dropping effect mitigates at-
tacks launched from behind the firewall (internal attacks).

The proactive nature of our scheme allows it to detect
DoS attacks that are difficult to detect otherwise, for exam-
ple degrading attacks [18], which consume only some por-
tion of the victim’s resources, and thus, could remain un-
detected for a significant time period. Although in this pa-
per we focus on physically roaming honeypots, we note the
potential of logically roaming honeypots (similar to IP hop-
ping [11]), in which legitimate clients, in coordination with
servers, randomly change the value of some field in their
packets (e.g., destination address) rendering traffic with dif-
ferent field values illegitimate. Logical roaming increases
the elusiveness and cost-effectiveness of the roaming hon-
eypots, however, physical roaming is still necessary to de-
fend against internal attacks. We leave the evaluation of log-
ical roaming for future work.

We also utilize a layer of indirection between the server
pool and legitimate clients, in the form of a network over-
lay of access gateways, to serve as front-ends, to make the
mechanism transparent to clients, and to decouple authenti-
cation and authorization from service provision.

Through ns-2 simulation, we show the effectiveness of
our roaming honeypots scheme against service-level DoS
attacks launched from both external and internal networks.
Against external attacks, our roaming honeypots scheme ex-
periences a favorable attack-load-independent behavior, for
a fixed number of attack machines. However, because of

Legitimate Clients

Back-end

Servers

Attackers

Access Gateways

Overlay Network

Figure 1. The service consists of a pool of
back-end servers, an access gateways net-
work (AGN) overlay acting as service front-
end, and clients. Effective attackers send
traffic directly to the servers.

sacrificing some servers to act as honeypots, distributing the
load on all the servers outperforms our roaming honeypots
scheme in the case of a high legitimate client load combined
with a low attack load.

In the next section, we describe the service and attack
models. Section 3 reviews the proactive server roaming
scheme and some of its limitations. In Section 4, we de-
scribe our roaming honeypots scheme and address some of
the limitations of the proactive server roaming scheme. Sec-
tion 5 presents an evaluation of our scheme against service-
level DoS attacks. Section 6 expands on the overlay net-
work, and discusses network-level attacks and overhead. We
describe strongly related work in Section 7 and Section 8
concludes the paper.

2. Models

2.1. Service Model

We consider a private service that is deployed over the
Internet and composed of front-ends, such as web servers,
and back-ends, such as database servers. In this paper,
we focus on protecting a pool of N back-end servers, re-
ferred to as just servers in the rest of the paper. The ser-
vice is subscription-based; that is, clients need subscribe
through front-ends to gain access to the service. We assume
a large client population with different access rights and
both high service request rate and high membership sub-
scription/expiration rate.

At the Point of Presence (PoP) of each ISP network host-
ing a server, a packet-filtering firewall and an on-line IDS,
such as Snort [4], are deployed. The IDSs detect attack sig-
natures and update the firewalls’ filtering rules through a se-
cure group communication mechanism (e.g., [34]).

Service front-ends form a layer of indirection between
the server pool and legitimate clients in the form of a net-
work overlay of access gateways (AGs), as depicted in Fig-
ure 1. We use the overlay network paradigm to provide flex-
ibility in structuring the AGs (see Section 6.1), but not to

route data packets. The access gateways network (AGN)
keeps track of the current active servers using the mecha-
nism described in Section 4. Clients contact AGs to sub-
scribe and request service, and after a client request is au-
thenticated and authorized, AGs either contact the servers
on behalf of the requesting client or tunnel authenticated
client packets to and from the current active servers. The
AGN can be operated by a third party entity in a business
model similar to Akamai [1] or XenoService [36]. Servers
do not perform per-request authentication/authorization and
thus are relieved from costly authentication processing.

Finally, the service supports per-connection load balanc-
ing; AGs distribute clients’ requests among servers using a
distributed, dynamic load-balancing scheme.

2.2. Attack Model

In this paper, we assume that attackers select a number
of servers, Natt, from the server pool and request service
from the selected servers at a high rate.

We consider two types of attacks: fixed-target and fol-
lower attacks. In a fixed-target attack, the attacker selects
Natt servers and attacks them continuously, whereas in a
follower attack, the attacker tries to continuously direct the
attack into Natt active servers. However, it takes some time
(follow delay) for the attacker to detect that a server be-
comes idle, to find an active server, and to re-task its zom-
bies to attack the active server.

Whereas public services are clearly vulnerable to
service-level attacks, service-level attacks are also pos-
sible in our private service model. Although restricting
service access to members of a list of current legiti-
mate clients would eliminate service-level attacks, with
a large client population and high join/leave and ser-
vice request rates, maintenance of an up-to-date list of
legitimate clients and per-request service authentica-
tion/authorization would incur high overhead causing both
service degradation and attack amplification.

Defending against the service-level DoS attack is im-
portant as we envision this type of attack to be prevailing
in the future after deploying source-end defenses, such as
D-WARD [19], that filter out one-way flooding attacks at
source networks. Also, service-level attacks are attractive
to attackers because they are low-bandwidth attacks and can
result in consuming both server and network resources.

It is difficult to launch a service-level attack using a
spoofed source address; for instance an attacker needs to
complete a three-way handshake protocol in order to re-
quest a TCP service. Thus, we assume service-level attacks
use non-spoofed source addresses (we describe how to han-
dle spoofed attacks in Section 6.2).

Finally, an attacker can eavesdrop on client traffic but
cannot gather the identities of the current active servers by

eavesdropping within the AGN or at the servers.

3. Proactive Server Roaming Background

The proactive server roaming scheme has been proposed
in [14], where a prototype of the scheme is presented, and
has been studied through simulation in [25]. In [14], one
active server constantly changes its location within a pool
of N homogeneous servers to proactively defend against
unpredictable and undetectable attacks. Service time is di-
vided into epochs; at the end of each epoch, the service
migrates from one server to another in the server pool. A
long hash chain is generated using a one-way hash function
H(·), and used in a backward fashion similar to the Pay-
Word scheme [24]. The last key in the chain, Kn, is ran-
domly generated and each key, Ki (0 < i < n), in the chain
is computed as H(Ki+1) and used to calculate both the
length, Ri, of service epoch Ei and the location, Si, of the
active server during Ei as follows: Ri = MSBm(H ′(Ki))
and Si = servers[MSBblg Nc(H

′′(Ki))], where MSBj(x)
are the j most significant bits of x, 2m represents an up-
per bound on epoch length, N is the number of servers, and
the array servers contains an 〈IP address, TCP port〉 pair for
each server in the server pool. H ′ and H ′′ are public one-
way hash functions, such as MD5 [23].

During offline subscription, each legitimate client is as-
signed a roaming key, Kt, from the hash chain, with a vary-
ing value of t according to each client’s trust level and/or
other policies. Kt allows the client to track the service up
to and including epoch Et. Clients also receive the servers
list encrypted with a shared key, KC , between the service
and the client. The service registers the IP address of each
subscribed legitimate client, a TCP port number for roam-
ing update messages, the shared secret key KC , and the in-
dex t of the roaming key assigned to each client.

The mechanism defines roaming update messages to
serve three purposes: (1) to allow for changing the epoch
length’s upper bound, 2m, to reflect the current threat level
for example; (2) to keep the legitimate clients aware of the
current service epoch; and (3) to provide a means for on-
line extension of subscription durations of trusted clients;
that is, to provide trusted clients with newer key values al-
lowing them to track the service for a longer time.

TCP connection migration [27, 31] is used as a vehicle
for the server roaming scheme. The proactive server roam-
ing scheme proposes to use the clients for storing periodic
state checkpoints of both TCP state and per-connection ap-
plication state of the server. State update messages (contain-
ing state checkpoints) are sent securely to clients to protect
from an attacker trying to fake erroneous state updates.

As a consequence of loose clock synchronization (i.e.,
the clock shift among system components is bounded by
a constant, δ), each service epoch starts earlier by δ at the

new server and its firewall and ends later by δ + γ at the old
server and its firewall, where γ is the estimated communi-
cation delay from clients to servers.

Although proactive server roaming represented a good
first step toward the mitigation of DoS attacks, its limita-
tions are addressed in this paper: (1) it handles only one
server active at a time; (2) it requires offline service sub-
scription, which is not a flexible service model; (3) servers
keep track of the IP addresses of all subscribed clients in
order to periodically send them roaming update messages;
keeping such a list is not scalable, especially with a large
and dynamic client population, and limits each client to use
a fixed IP address, reducing flexibility; (4) the mechanism is
not transparent to the clients and requires changes in client
software; (5) it is easy to compromise a client machine with
the possibility of either revealing the service secrets stored
in the client or eavesdropping on client’s traffic to discover
the address of the current server (or both).

4. Roaming Honeypots

Our roaming honeypots mechanism allows for k out of
N servers to be concurrently active. The locations of the
current active servers (and thus the honeypots) are changed
so as to be unpredictable to the attackers. Each legitimate
request is tunneled through the AGN to an active server,
whereas an illegitimate request sent directly to a randomly
selected server has a probability of N−k

N
of hitting a honey-

pot. The source address of any request that hits a honeypot
is recorded and all its future requests are dropped.

An idle server (honeypot) responds, in a contained man-
ner, to (malicious) packets and service requests in order to
hide its current status from attackers and to increase the fol-
low delay (defined in Section 2.2). Before a server changes
its status from idle to active, it cleans its state (e.g., flushes
the service queue). From time to time an idle server per-
forms source-code downloading from a secure read-only
medium to defend against possible Trojan horses [37].

Servers, firewalls and AGs keep track of the long back-
ward hash chain described in Section 3 and use it to change
the current active servers as follows: Let Ki be a key in
this chain. Let S represent the set of indexes of the servers
array. Also, let Pk(S) represent an ordered set of all pos-
sible subsets of S with cardinality k. The cardinality of

Pk(S) is Np =

(

k

N

)

, where N is the number of servers

in S. Then, for each service epoch Ei, the set of current ac-
tive servers is Pk(S)[MSBblg NpcH

′(Ki)], where H ′(·) is a
one-way hash function and MSBx(y) are the x most signif-
icant bits of y. The length, Ri, of service epoch Ei is uni-
formly distributed in the interval [m, m+u] seconds as fol-
lows: Ri = m + MSBblg uc(H

′′(Ki)) seconds, where m

and u are system parameters and can be changed adaptively

through roaming update messages. The value of m repre-
sents a lower-bound on the idle time of a server and should
be long enough for the IDS at the server’s network to de-
tect and analyze attacks. We add k, N , u, the servers list,
and Pk(S) to the roaming update message.

The roaming honeypots scheme allows for k servers to
be active concurrently, solving the first limitation described
in Section 3. We next describe how the roaming honeypots
scheme addresses limitations (2)-(5): (2) Offline subscrip-
tion is no longer required in the roaming honeypots scheme
as clients can subscribe to the service on-line through the
AGN. (3) On the other hand, periodic roaming update mes-
sages are still necessary, but they are only sent to AGs in-
stead of legitimate clients. Section 6.1 describes how these
update messages are sent, that servers need only keep track
of a few IP addresses of AGs, and that servers no longer
maintain client IP addresses. (4) & (5): Client-server traf-
fic is tunneled in both directions through the AGs, whom
clients perceive as the servers. Thus, the roaming mecha-
nism is transparent to the clients and clients neither receive
roaming keys nor update their software. Also, an eavesdrop-
per on client traffic would only discover the AGs and not the
current active servers’ addresses.

Next, we describe our simulation experiments to study
the behavior of the roaming honeypots scheme.

5. Experimental Results

We have developed a simplified model of our roaming
honeypots scheme in ns-2 [5] and conducted a number of
simulation experiments to study the effect of different pa-
rameters on our scheme. We compare our scheme to a full
replication scheme, in which all the N servers are active
with client load uniformly distributed among them.

Simulation Model: We created a wrapper for the ns-
2 built-in FullTcp agent and added a socket layer to sup-
port roaming. In addition, we created a multi-threaded FTP
server and client modules to be used as our testbed appli-
cation for the simulation. The code for these modules [3]
works on top of the socket layer, where both roaming and
TCP agent management take place. An FTP connection re-
mains alive until either the FTP request is fulfilled com-
pletely or roaming occurs. If a roaming event is scheduled
to cause the server module to be idle in the middle of an ac-
tive connection, the client module will use its socket layer to
record the current FTP state (number of remaining bytes) of
the connection, to drop the current TCP agent, to connect to
one of the current active servers selected uniformly at ran-
dom, and to send the recorded FTP state to the new server
module in order to resume the FTP transfer (TCP state, such
as congestion window, is not carried over because the path
to the new server is likely to be different in general).

Access Gateways

Network

10 Mbps

Server

Router

Attacker

Client

Authenticator

10 Mbps

Figure 2. Simulation topology: all links are 1
Mbps unless noted.

For simplicity, we fix the length, Ri, of all service epochs
during a simulation run and term the fixed Ri value as mi-
gration interval. We also use a deterministic roaming pat-
tern instead of using the hash chain.

As mentioned in Section 1, the benefit of our roam-
ing honeypots scheme is two-fold; the filtering effect
and the connection-dropping effect. If a servers re-
ceives a (malicious) request while acting as a honeypot,
it records the requester’s address into a list of attack-
ers available to all servers. Servers filter out requests from
nodes with addresses in the attackers list. To study the
connection-dropping effect separately, we also model a
roaming scheme in which no filtering takes place. In the de-
scription that follows, we refer to our roaming honey-
pots scheme as filter-roaming (or FR), the full replication
scheme as non-roaming, and the scheme with no filter-
ing as roaming (or R). We refer to the migration interval as
M-interval (or just M).

Figure 2 depicts the simulated network topology. Nodes
labeled as clients along with the router directly attached to
them model the AGN depicted in Figure 1. The node labeled
as authenticator replaces the functionality of roaming up-
date messages (see Section 3). We use 1 and 10 Mbps links
to model access and backbone links, respectively. For the
sake of fast simulations, we do not use realistic link capaci-
ties nor realistic attack loads (although their relative values
correspond to realistic cases).

Both clients and attackers request files of size 1 Mbits
each with request inter-arrival times drawn from a Poisson
distribution. We characterize both client and attack loads by
the average bandwidth requested per second. For example, a
load of 2.4 Mbps corresponds to requesting 2.4 files per sec-
ond on average. When a new client is scheduled to request
a file, it selects one server uniformly at random out of the
N servers in the case of non-roaming, and out of the k cur-
rent active servers in the case of both FR and R. Attack re-
quests are distributed uniformly on the Natt targets. When
an attack request is scheduled, an attack node is selected
uniformly at random to launch the request. For fixed-target
attacks, we set Natt to N , that is, attacking all the servers,
to illustrate that the low-bandwidth requirement of service-
level attacks allows the attackers to attack more servers. For

Parameter(s) Simulated Values

(N, k) (5, 3)
Client load (CL) 0.9, 1.5 and 2.4 Mb/s
Attack load (AL) 1.5, 2.1, 3, 4, and 5 Mb/s

Migration interval (M) 3, 5, 7, 10, 20, and 30 sec
Attack type, Natt Fixed-target, 5 and Follower, k

Follow delay 25%, 50%, and 75% of M

Table 1. Simulation Parameters

follower attacks, we set Natt = k. Table 1 lists the simula-
tion parameters and the values we use for them

Each simulation experiment has 10 runs (averaged in the
graphs) with each run as follows: Legitimate clients send re-
quests from time 0 to time 350 seconds and attackers from
50 to 250 seconds. A simulation run ends when all legit-
imate clients finish their requests. Figure 3 shows an ex-
ample of how the average legitimate client response time
changes with time throughout one simulation experiment.

Each point in Figure 3 represents the average response
time (ART) of all legitimate requests issued within the pre-
vious 30 seconds. The ART of non-roaming keeps on in-
creasing during attack. For both R and FR, dropping attack
connections when roaming creates a short time-window,
during which client requests can get serviced before the at-
tack re-builds up. For FR, the ART increases slightly be-
tween time 50 and 180 seconds, that is, at the start of the at-
tack. After all attack nodes are detected and filtered out, the
ART is not affected by the attack anymore.

The relative performance of the different schemes (R,
FR, and non-roaming) changes with different migration in-
tervals, client loads, and attack loads. In the next para-
graphs, we study the effect of varying these parameters. Re-
sults for both fixed-target and follower attacks exhibit the

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

Request Start Time(sec)

Av
er

ag
e

Re
sp

on
se

 T
im

e(
se

c)

All Schemes (Client Load 1.5 Mb/s & Migration Interval 10 s. & Attack Load 5.0 Mb/s)

NonRoaming
Roaming
FilterRoaming

Figure 3. Average client response time (ART)
throughout a simulation experiment. Fixed-
target attack is from 50 to 250 seconds; k =3.

0
 5
 10
 15
 20
 25
 30

60

70

80

90

100

110

120

Average Client Response Time vs. Migration Interval (Client Load 2.4 Mb/s)

Migration Interval (sec)

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
ec

)

RAL: 5 Mb/
s

RAL: 4 Mb/
s

RAL: 3 Mb/
s

FRAL: 5 Mb/
s

FRAL: 4 Mb/
s

FRAL: 3 Mb/
s

Figure 4. Effect of migration interval for dif-
ferent attack loads (AL)

same behavior, except that for a specific attack load, fixed-
target attacks (with Natt = N) cause more damage to the
service, in terms of increased ART. Unless otherwise noted,
we show the results for fixed-target attacks only.

Effect of Migration Interval (M): Figure 4 shows that
there exists a critical value of M (10 seconds for R for this
combination of parameters) that strikes a balance between
roaming benefit and its overhead, which results mainly from
forcing active legitimate connections into TCP connection
re-establishment and consequently TCP slow start with each
roaming event (in Section 6.3, we give more details on this
overhead). For M below the critical value, roaming over-
head is dominant; as M increases, the frequency of connec-
tion re-establishment (and slow start) decreases, resulting in
a decreasing ART.

As M increases beyond the critical value, the ART in-
creases. The reason is two-fold: First, as roaming happens
less frequently, the connection-dropping effect of roaming
occurs less frequently, as well. Second, the larger the M, the
more client requests are issued to an attacked server and the
more client requests will flock into the new server, dilut-
ing the effect of the reduced-attack time-window that roam-
ing opens among them. Another (surprising) result is that,
for FR, as attack load increases (i.e., attack request inter-
arrival times decreases), the ART decreases, especially for
small M, because of faster detection of attackers.

From the above, it is clear that the exact value of the crit-
ical M depends on service characteristics, such as average
service time. The investigation of deriving this value is left
for future work.

Effect of Client Load: Figure 5 shows the expected be-
havior of increasing ART with increasing client load for
all schemes, under an attack load of 5 Mbps. The non-
roaming scheme outperforms both R and FR under lower at-

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

20

40

60

80

100

120

140
Average Client Response Time vs. Client Load (Attack Load 5 Mb/s)

Client Load (Mb/s)

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
ec

)

NonRoaming
RM: 30s
RM: 10s
FRM: 30s
FRM: 10s

Figure 5. Effect of client load for different mi-
gration intervals

tack loads, as shown in the next section. Graphs with other
attack loads (not shown here) exhibit a similar behavior.

Effect of Attack Load: Figure 6 shows that FR keeps
the ART stable with increasing attack loads for a fixed num-
ber of attack nodes. This is because once the attack nodes
are detected and filtered out, the attack has no impact. For
non-roaming, distributing the load on all the servers helps
in the case of low attack loads, but ART increases as attack
load increases. For R, ART increases with increasing attack
load, because the length of the time-window that roaming
creates decreases with increasing attack load; note that the
slope of the curve is lower for smaller M.

Effect of Follow Delay: As shown in Figure 7, as the fol-
low delay increases, the ART decreases for both R and FR
schemes. The effect of the follow delay is two-fold; during
the follow delay, legitimate client requests enjoy an attack-
free time-window (both R and FR benefit from this) and at-

1.5 2 2.5 3 3.5 4 4.5 5
30

40

50

60

70

80

90

100

110

120

130
Average Client Response Time vs. Attack Load (Client Load 2.4 Mb/s)

Attack Load (Mb/s)

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
ec

)

NonRoaming
RM 30s
RM 10s
FRM 30s
FRM 10s

Figure 6. Effect of attack load

25 30 35 40 45 50 55 60 65 70 75
30

40

50

60

70

80

90

100

110

120

Follow Delay (Percentage of Migration Interval)

Av
er

ag
e

R
es

po
ns

e
Ti

m
e

(s
ec

)

Follow Delay (Client Load 2.4 Mb/s & Attack Load 5.0 Mb/s)

RM: 30s
RM: 10s
FRM: 30s
FRM: 10s

Figure 7. Effect of follow delay

tack requests arrive at each honeypot at a higher rate than
in fixed-target attacks for the same attack load (attack load
is distributed over 3 servers in follower attacks compared
to 5 in fixed-target attacks), resulting in faster detection in
FR. Because we plot the follow delay as a percentage of M,
the scheme with 30 seconds M gets more (absolute) follow
delay than the one with 10 seconds M, resulting in steeper
slopes for higher M values. For non-roaming, the ART is the
same for follower attacks and fixed-target attacks at about
120 seconds (not shown in this graph).

6. Discussion

6.1. Access Gateways Network (AGN)

The AGN acts as a layer of indirection between the
server pool and legitimate clients; AGs keep track of the
current active servers and forward client packets to them. In
this section, we give more details about the AGN, discuss
a scalable mechanism for distributing roaming update mes-
sages, and describe how migration of active connections, as
described in Section 3, takes place.

We assume that the number of AGs assigned to a service
is large and reconfigurations inside the AGN happen con-
stantly in response to attacks and/or according to the poli-
cies of the operating entity. Also, we assume that the AGs
are dispersed so that it is not possible to assume address ag-
gregation (e.g., having a common IP prefix). Finally, we as-
sume that the AGs vary in attached link capacity and intru-
sion resistance level.

Roaming update messages: AGs receive roaming up-
date messages (see Section 3) to keep track of the current
active servers. To improve the scalability of sending these
messages, the group of AGs assigned to a service along with
the service’s server pool form a logical tree, with the server
pool representing its logical root, and each node keeping

track only of its immediate children. An AG may partici-
pate in more than one service tree. In the following descrip-
tion, without loss of generality, we consider a tree of one
service and refer to it as “the tree”. Next, we discuss how
AGs are assigned to different levels of the tree, how an AG
is inserted into the tree, and how roaming update messages
are sent from the server pool to AGs.

As the link capacity of an AG and its intrusion resistance
increase, the AG is assigned to a lower (closer to the root)
level in the tree. With this policy, the AGs in the level im-
mediately below the server pool exhibit the highest attack
tolerance among AGs in the tree and are expected to fea-
ture the lowest reconfiguration rate. As a result, the num-
ber of AGs at this level can be kept small and servers need
keep track of only a small number of AGs.

We utilize the Chord [30] lookup protocol to tolerate the
high reconfiguration rate in the AGN as follows. Each AG
(Chord node) is assigned a unique n-bit Chord identifier.
To join a service tree, an AG performs both address regis-
tration and parent registration. For address registration, the
AG registers the tuple 〈id, address〉 (similar to registering a
trigger in the Internet Indirection Infrastructure (i3) [29]) at
the Chord node responsible for storing the key id, where id

is the n-bit string ([SID]n1
||[`]n2

||[index]n3
), where SID

is a unique service identifier, `(> 0) is the AG’s level in the
tree, index is the AG’s index within level `, the || operator
represents concatenation, [x]y means that x has a bit-length
of y, n1 + n2 + n3 = n, and address is the AG’s IP ad-
dress.

The AG registers its IP address with its parent in the
tree. The lowest-level AGs (at tree level 1) register their
IP addresses with the server pool and every other AG reg-
isters its address with its parent as follows. The AG uses
the string ([SID]n1

||[` − 1]n2
||[indexparent]n3

) as the key
identifier to lookup its parent’s address registration entry,
where indexparent is the parent’s index within its tree level
` − 1(` > 1). The AG then contacts its parent using IP to
register its IP address at the parent. After registering with its
parent, the AG receives roaming update messages using IP
routing. We set the last n3 bits of each AG’s Chord identi-
fier to zero (as in [29]), so that all AGs sharing the same tree
level in the tree perform address registration with the same
node, allowing the node to perform longest-prefix matching
on the id field [29], and thus, allowing for selecting both
index and indexparent at random.

An AG invalidates its address registration entry and per-
forms a new address registration if, for instance, the AG
leaves the tree or changes its level within the tree. Also, an
AG invalidates its parent registration entry and performs a
new parent registration if, for any reason, the AG changes
its parent in the tree. If an AG changes its IP address, it up-
dates its address and parent registration entries with the new
address.

Roaming update messages traverse tree edges down-
ward. As the tree level of an AG increases (and its attack
tolerance decreases), the frequency of received roaming up-
date messages increases and the indexes of roaming keys
contained in the messages decrease, reducing the impact of
compromising an AG with a low attack tolerance level and
allowing the less-frequently reconfigured AGs to know fu-
ture active servers’ addresses for a longer time.

Connection migration: For each active connection it
handles, an AG receives and stores periodic state update
messages sent by the servers, as described in Section 3. At
the end of each service epoch, a subset of the servers, Sai,
change their status from active to idle and another subset,
Sia, change from idle to active. The number of servers in
both subsets is the same; that is, |Sai| = |Sia|. For each
client connection, C, to a server in Sai, its handling AG
selects a server uniformly at random from Sia, encapsu-
lates the latest state update message for C in a TCP SYN
packet with a migrate option [27], and establishes a con-
nection with the selected server to take over C.

6.2. Network-level attacks

We have shown the effectiveness of our roaming honey-
pots scheme against service-level attacks. In this section, we
give a qualitative analysis of the effectiveness of our mecha-
nism against spoofed attacks, in which attackers use forged
source addresses to hide their identity.

An attacker can launch a TCP sequence number guess-
ing [20] attack and manage to request service using spoofed
addresses. If such a spoofed request hits a honeypot, all
future requests from the spoofed address will be dropped,
denying service to a potentially legitimate address. How-
ever, because legitimate requests are tunneled through the
AGN, an attacker needs to spoof an AG’s address in or-
der for this attack to be successful. An AG can easily de-
tect that it is under such an attack (all its requests are be-
ing dropped) and can respond by changing its IP address.
The AG then updates its address registration with the new
IP address. The AG and all its immediate children should
re-perform parent registration (as described in Section 6.1).

Defenses that tolerate packet source spoofing have been
proposed elsewhere, such as Pushback [17] and Path Iden-
tifier (Pi) [35]. Our roaming honeypots scheme can work in
combination with these defenses, to solve some of their lim-
itations: (1) if the attack is mixed with legitimate flows and
is comprised of many streams with a small bandwidth each,
Pushback can cause collateral damage to legitimate traffic;
(2) [15] describes how one low-bandwidth attack stream
that exploits TCP’s retransmission timeout (RTO) mecha-
nism evades detection by Pushback and still causes severe
throughput degradation; and (3) if attack packets are not ac-
curately detected, Pi can cause collateral damage. Pushback

can profit from our roaming honeypots scheme because it
separates legitimate from attack traffic. In the case of Pi, a
honeypot provides attack packets that can be used for filter-
ing based on the Pi field. However, because the Pi field de-
pends on the path traversed by a packet, we note that the Pi
field value of a detected attack packet at one network can-
not be readily used for packet filtering at another network.

6.3. Performance Shortcomings

Our roaming honeypots scheme incurs an overhead that
causes performance degradation both in the absence of at-
tacks and under low attack loads. This overhead results from
three main factors: (1) The offered load, both legitimate and
illegitimate, is distributed over k instead of N servers; (2)
When a server switches from active to idle, all its current
legitimate connections move to another server, re-establish
TCP connections and re-enter TCP slow-start, losing their
current TCP throughput; and (3) Legitimate connections
flock simultaneously into new servers distorting the other-
wise smoother request arrival distribution.

To offset the cost of the unused N − k servers, we pro-
pose to add the typically available spare servers [6] into the
server pool. Also, a scheme in which the value of k is var-
ied adaptively depending on attack load would solve the first
shortcoming and is left for future work.

7. Related Work

Although much work has been done in security, DoS at-
tacks, intrusion detection, authentication, consistent hash-
ing, and other related work, we only describe here work that
is directly related to our roaming honeypots scheme.

At the cost of changing client software, client puzzles
[12] allow for mitigating service-level attacks. Each client
has to solve a cryptographic problem with varying complex-
ity before the server allocates resources to the request and
starts servicing it. Puzzle auctions [32] are implemented in
Linux kernel as a framework to tune puzzle difficulty so as
to minimize legitimate client cost in the presence of an ad-
versary of unknown computing power.

Most solutions to the network-level DoS attacks try to
develop a packet filter that can distinguish legitimate pack-
ets from illegitimate ones and hence drop illegitimate pack-
ets only [18]. The D-WARD defense system [19] is de-
ployed at source-end networks, and autonomously detects
and stops attacks originating from these networks.Wide de-
ployment of D-WARD will motivate service-level attacks,
on which we focused in this paper.

In the Pushback framework [17], once a router suffers
from sustained congestion, it tries to detect flow aggregates
that are contributing the most to congestion. The congested
router rate-limits the detected flow aggregate(s) and sends

the aggregate signature (e.g., destination address) to up-
stream routers, which apply rate-limiting to the aggregate
and recursively push the rate-limiting upstream toward at-
tack sources. Pushback requires contiguous deployment; to
overcome this limitation, Selective Pushback [21] proposes
to send rate-limiting requests to routers sending traffic with
higher than “normal” rates. The detection of these routers
and the profiling of normal traffic are performed via an en-
hanced probabilistic packet marking scheme.

The Path Identifier (Pi) is a deterministic packet mark-
ing scheme that approximately identifies the path took by a
packet. The attack victim uses the Pi mark to filter out ma-
licious packets on a per-packet basis. Our scheme can be
used in cooperation with either Pushback or Pi to filter at-
tacks that use spoofed IP addresses.

DoS attacks have been classified as either single-source
or multi-source, and it has been shown that the attack rate,
as observed at the victim, of multi-source DoS attacks ex-
hibit a ramp-up behavior, ranging from 200 ms to 14 sec-
onds [10]. The staggered starting time of attack zombies
causes this behavior and allows our roaming honeypots
scheme to detect attack zombies and filter them out; effi-
ciently throttling the attack rate before it reaches its peak.

IP hopping [11] protects a public server, whose clients
use DNS to look up its IP address. In IP hopping, the server
changes its IP address without changing its physical loca-
tion. All packets destined to the old IP address are filtered
at the network perimeter by a firewall. To avoid continuous
server reconfiguration, a NAT (Network Address Transla-
tion) gateway can be used. IP hopping can be used both re-
actively and proactively. By using a virtual honeypot, such
as [2], proactive IP hopping can provide the same effect
that our scheme achieves in making it difficult for attack-
ers to avoid hitting a honeypot and thus getting detected.
However, IP hopping suffers from the following limitations.
First, during the period of time in which the DNS entry of
the old IP address is cached, all legitimate client requests us-
ing the old entry are filtered out. Second, IP hopping does
not block a persistent attacker which looks up the new IP ad-
dress using DNS. Although clients in our scheme utilize a
public lookup service, such as DNS, to find the AGs, our
scheme does not suffer from these limitations of IP hop-
ping because the AGN is well provisioned, thus there is lit-
tle chance that all AGs accessible to a client are down si-
multaneously. By physically moving the service and proac-
tively cleaning server state, our scheme avoids the third lim-
itation of IP hopping, keeping the server vulnerable to ma-
licious state entries possibly implanted during the attack.

TCP-Migrate [27] and Migratory-TCP [31], which pro-
vide a framework for moving one end point of a live TCP
connection from one location and reincarnating it at another
location having a different IP address and/or a different port
number, are used for mobility support and fault, or attack,

tolerance. Mutable Services [8] is a framework to allow for
reactively relocating service front-ends and informing only
pre-registered clients of the new location through a secure
DNS-like service. Our scheme builds on connection migra-
tion mechanisms and provides a secure framework for issu-
ing the roaming trigger proactively.

The idea of introducing a layer of indirection to defend
against DoS attacks was presented in the Secure Overlay
Services (SOS) [13] architecture and the DoS Attack Mit-
igation (DAM) [7] framework. SOS uses the overlay net-
work to hide the locations of a small number of proxy nodes
(servlets) and allows only traffic from these servlets to en-
ter the protected service’s network. In order to gain access
to the overlay network, a client has to authenticate itself
with one of the replicated access points (SOAPs), which
routes each client packet to one of the servlets using hash-
based routing. The overhead of the overlay routing can be
up to 10 times the direct communication latency. Our sys-
tem model carries a large similarity with the SOS architec-
ture, but uses one-hop tunneling through the AGs (typically
close in proximity to clients) instead of hash-based routing
for client-server traffic; thus it avoids this high latency.

DAM uses the network overlay to hide the locations of
gateways to protect a CDN. Firewalls at the entry point
of each replica in the CDN allow only traffic sourced at
these secret gateways. The requirements of both continuous
change of gateway locations, to avoid detection, and flexi-
bility in the assignment of overlay nodes to services would
cause an overhead of maintaining an up-to-date list of gate-
way addresses at the replica firewalls. Our scheme does not
depend on this kind of whitelist-based filtering, and hence
avoids this overhead.

8. Conclusion

Honeypots are either physical or virtual machines that
are deployed to trap attackers. However, honeypots can be
avoided by sophisticated attacks because of their fixed and
detectable locations as well as being deployed on machines
other than the ones they are supposed to protect. In this pa-
per, we present roaming honeypots, a scheme for mitigat-
ing DoS attacks, in which honeypots are disguised within
the protected server pool and are continuously and unpre-
dictably changing. At any point of time, a subset of servers
is active and providing service while the rest are acting as
honeypots to capture attack packets and either record the
address of the attackers (for non-spoofed packets) or use
anti-spoofing defenses, such as Pi and Pushback, to filter or
rate-limit attack streams. We presented distributed, random-
ized algorithms for changing the current active servers and
allowing only legitimate clients to follow the roaming ac-
tive servers.

Through simulations, we showed the effectiveness of our
roaming honeypots scheme against service-level DoS at-
tacks launched from behind firewalls and from external net-
works. As compared to a full replication scheme, in which
all the servers are active, our roaming honeypots scheme
shows a performance gain under the more realistic scenarios
of high attack loads. A mechanism that adaptively changes
the number of concurrent active servers depending on at-
tack and client loads is a subject of future work.

References

[1] Akamai Corporation. http://www.akamai.com.
[2] Labrea - the tarpit. http://hts.dshield.org/LaBrea/.
[3] NetSec Group. http://www.cs.pitt.edu/NETSEC.
[4] Snort. http://www.snort.com.
[5] The Network Simulator - ns-2.

http://www.isi.edu/nsnam/ns/.
[6] CERT. Denial of Service Attacks.

http://www.cert.org/tech tips/denial of service.html, 1997.
[7] B.-G. Chun, P. Mehra, and R. Fonseca. DAM: a DoS Attack

Mitigation Infrastructure. Under Submission, January 2003.
[8] P. Dewan, P. Dasgupta, and V. Karamcheti. Defending

against Denial of Service attacks using Secure Name reso-
lution. In Proceedings of SAM 2003.

[9] P. Ferguson and D. Senie. Network Ingress Filtering: Defeat-
ing Denial of Service Attacks which employ IP Source Ad-
dress Spoofing. In RFC 2827, May 2001.

[10] A. Hussain, J. Heidemann, and C. Papadopoulos. A Frame-
work for Classifying Denial of Service Attacks. In ACM SIG-
COMM 2003.

[11] J. Jones. Distributed Denial of Service Attacks: Defenses, A
Special Publication. Technical report, Global Integrity, 2000.

[12] A. Juels and J. Brainard. Client Puzzles: A Cryptographic
Countermeasure Against Connection Depletion Attacks. In
Proceedings of NDSS’99.

[13] A. Keromytis, V. Misra, and D. Rubenstein. SOS: Secure
Overlay Services. In ACM SIGCOMM, 2002.

[14] S. M. Khattab, C. Sangpachatanaruk, R. Melhem, D. Mosse’,
and T. Znati. Proactive Server Roaming for Mitigating
Denial-of-Service Attacks. In Proceedings of ITRE’03.

[15] A. Kuzmanovic and E. W. Knightly. Low-Rate TCP-
Targeted Denial of Service Attacks. (The Shrew vs. the Mice
and Elephants). In ACM SIGCOMM 2003.

[16] J. Levine, R. LaBella, H. Owen, D. Contis, and B. Culver.
The Use of Honeynets to Detect Exploited Systems Across
Large Enterprise Networks. In Proceedings of the 2002 IEEE
Workshop on Information Assurance and Security.

[17] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Pax-
son, and S. Shenker. Controlling high bandwidth aggregates
in the network. In ACM SIGCOMM Computer Communica-
tion Review, volume 32, pages 62–73. ACM Press, 2002.

[18] J. Mirkovic, J. Martin, and P. Reiher. A Taxonomy of DDoS
Attacks and DDoS Defense Mechanisms. Technical Report
020018, Computer Science Department, University of Cali-
fornia, Los Angeles, 2002.

[19] J. Mirkovic, G. Prier, and P. Reiher. Attacking DDoS at the
Source. In Proceedings of ICNP 2002.

[20] R. Morris. A Weakness in the 4.2BSD Unix TCP/IP Soft-
ware. Technical Report 117, AT&T Bell Labs Computer Sci-
ence, 1985.

[21] T. Peng, C. Leckie, and K. Ramamohanarao. Defending
against distributed denial of service attack using selective
pushback. In Proceedings of ICT 2002.

[22] T. H. Project. Know Your Enemy. Addison-Wisley, Indi-
anapolis, IN, 2002.

[23] R. Rivest. The MD5 message-digest algorithm. In RFC
1321, 1992.

[24] R. L. Rivest and A. Shamir. PayWord and MicroMint–Two
Simple Micropayment Schemes. In M. Lomas, editor, Pro-
ceedings of 1996 International Workshop on Security Pro-
tocols, number 1189 in Lecture Notes in Computer Science,
pages 69–87. Springer, 1996.

[25] C. Sangpachatanaruk, S. M. Khattab, T. Znati, R. Melhem,
and D. Mosse’. A Simulation Study of the Proactive Server
Roaming for Mitigating Denial of Service Attacks. In Pro-
ceedings of ANSS’03.

[26] C. Shields. What do we mean by Network Denial of Ser-
vice? In Proceedings of the 2002 IEEE Workshop on Infor-
mation Assurance and Security.

[27] A. C. Snoeren, H. Balakrishnan, and M. F. Kaashoek. The
Migrate Approach to Internet Mobility. In Proc. of the Oxy-
gen Student Workshop, July 2001.

[28] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the In-
ternet in your spare time. In Proceedings of the 11th USENIX
Security Symposium, August 2002.

[29] I. Stoica, D. Adkins, S. Zhaung, S. Shenker, and S. Surana.
Internet Indirection Infrastructure. In ACM SIGCOMM
2002.

[30] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In ACM SIGCOMM 2001.

[31] F. Sultan, K. Srinivasan, D. Iyer, and L. Iftode. Migratory
TCP: Connection Migration for Service Continuity in the In-
ternet. In Proceedings of ICDCS 2002.

[32] X. Wang and M. K. Reiter. Defending against denial-of-
service attacks with puzzle auctions. In Proceedings of the
2003 IEEE Symposium on Security and Privacy, May 2003.

[33] N. Weiler. Honeypots for distributed denial-of-service at-
tacks. In Proceedings of WET ICE 2002.

[34] C. K. Wong, M. Gouda, and S. Lam. Secure Group Commu-
nications Using Key Graphs. In ACM SIGCOMM 1998.

[35] A. Yaar, A. Perrig, and D. Song. Pi: A Path Identification
Mechanism to Defend against DDoS Attacks. In Proceed-
ings of IEEE Symposium on Security and Privacy, May 2003.

[36] J. Yan, S. Early, and R. Anderson. The XenoService - A Dis-
tributed Defeat for Distributed Denial of Service. In Pro-
ceedings of ISW 2000.

[37] L. Zhou, F. Schneider, and R. van Renesse. COCA: A Se-
cure Distributed On-line Certification Authority. Technical
report, Department of Computer Science, Cornell University,
Ithaca, NY USA, 2000.

