
Discussion on
Space-Efficient Block

Storage Integrity

Moderated by Sam Small
600.624 Advanced Network Security

March 11th, 2005

with slides by Vishal Kher

Agenda

• More on the SAN model

• The Self-certifying File System (SFS)

• Provable Security

• Comments on the paper

Storage Area Networks (SAN)

• aggregates storage devices

• allows servers and client computers to
access a single virtual storage entity

• presents an interface to machines that is
identical to that used by directly attached
storage

• Often use SCSI communication protocol

• but not the SCSI low-level interface

• SAN: “Give me block 4000 from drive 5”

• NAS: “Give me /etc/passwd”

5Technology Overview

Xsan

Network-attached storage (NAS)

A NAS is a storage device with a built-in computer. This “NAS appliance” connects to

a local area network and, like a DAS, shares storage with clients over Ethernet using a

network file system. A NAS appliance typically features a specialized server operating

system designed to make file-sharing setup and maintenance easier than with most

general-purpose servers.

Why a SAN with a SAN File System?

A storage area network, or SAN, is a method of aggregating storage devices and allow-

ing servers and client computers to access them as a single virtual storage entity. The

volume looks just like a DAS—like a big hard drive—to the servers. The difference is

that, with a SAN file system such as Xsan, all the servers can access the storage volume

at the same time. These host servers can then share the data with additional clients on

the local Ethernet network using a network file system, such as AFP, SMB/CIFS, or NFS.

Network-Attached Storage

Benefits of consolidated storage

A SAN file system provides important benefits

over DAS and NAS architectures:

• Fast, concurrent file sharing for streamlined

workflows

• Increased uptime through the elimination of

single points of failure

• Simplified administration and access controls

using directory-based management

• Reduced costs through more efficient disk use

• Flexible deployment and easy scalability with-

out interrupting operations

Storage Area Network

SAN Benefits

• Fast, concurrent file sharing

• Network-based storage management

• Eliminates single points of failure

• Topologies are flexible

Xsan
Technology Overview

January 2005

Example: Xsan

Xsan
• Marketed towards:

• professional video studios

• data centers

• high-performance clusters

• price point is significantly cheaper than
similar products

• has increased popularity of SANs

Self-certifying File System

• Escaping the evils of centralized control with
self-certifying pathnames. SIGOPS, 1998.
Mazieres, Kasshoek

• Separating key management from file system
security. SOSP, 1999. Mazieres, Kasshoek,
Kaminskv

• Fast and secure read-only filesystem. OSDI,
2000. Fu, Mazieres, Kasshoek

Motivation

• FS like NFS and AFS do span the Internet

• They do not provide seamless file access

• Why is global file sharing (gfs) difficult?

• Files are shared across administrative realms

• Scale of Internet makes management a
nightmare

• Every realm might follow its own policy

SFS Goals

• Provide global file system image

• FS looks the same from every client machine

• No notion of administrative realm

• Servers grant access to users and not clients

• Separate key management from file system

• Various key management policies can co-
exist

• Key management will not hinder setting up
new servers

• Security Benefits

• Authentication

• Confidentiality and integrity of client-
server communication

• Versatility and modularity

• Every SFS file system is accessible as:

• /sfs/location:HostID

• HostID = (”Hostinfo”, Location, PublicKey)

• Every pathname has a public key embedded
in it

Self-certifying Pathnames

• /sfs/sfs.cs.jhu.edu:vefsdfa345474sfs35/foo

• access file foo located on sfs.cs.jhu.edu

• allows for automatic mounting

NFS
Client

SFS client

Agent

Agent

SFS server

MACed, Encrypted
TCP Connection

Kernel

User
program Authserver

Recursive Hashing in SFS

• Each data block is hashed, becomes handle

• Handle used to lookup block in database

• Handles stored in file's inode

• Directories store <name, handle> pairs

• Directories and inodes hashed

• rootfh is hash of root directory's inode

H(B0)

H(B1)

H(H(B7)..)

[…]

metadata

H(B7)

H(B8)

H

H
File Handle

B0 B1 B7

H

H

Name, handle

Name, handle

Name, handle

[…]

metadata H
Sign

Limitations

• Database update inefficient

• Re-compute handles

• Client must keep up with updates

• Verification

• Traverse the tree to the root

Provable Security

• scheme constructions rely on cryptographic
primitives

• reduction argument: if A is secure and
A⇒B, then B is secure. if B is not secure
and A⇒B, then A is not secure

• the most ideal block cipher is a family of
random permutations P, indexed by keys

Hazards

• Implementing P requires a database of |P| ≥

264

• Inefficient and impractical

Computational Security

• unconditional security: functions are
random, bitstrings are random

• computational security: functions seem
random, bitstrings seems random

• to an adversary with limited resources

• resources are usually bound by a
polynomial Turing machine

• Instead of P, we use a pseudo-random
permutation (PRP)

• looks like a random permutation to a poly-
bound adversary

• what do we mean by saying that a PRP
“looks” like a RP?

Distinguishing

A

Guess: which algorithm is

D1 D2

behind the line: D1 orD2

• A ε-distinguishes D1 and D2 if

|Pr[x←R D1 : A(x) = 1]− Pr[x←R D2 : A(x) = 1]| ≥ ε.

T-79.159 Cryptography and Data Security, 31.03.2004Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

13

Oracle Model

Oracle

PRP Definition
Definition of an PRP

Definition. We say that E is an (q, t, ε)-secure PRP if for any algorithm

that spends at most t steps (in some well-defined machine model), queries

the oracle at most q times, has the success probability≤ ε of distinguishing

E:

SuccPRP
f (A) ≤ ε for all (t, q)-machines A .

• The same adversary can achieve larger success probability if q and t

are increased. Thus ε = ε(q, t) depends on q and t.

T-79.159 Cryptography and Data Security, 31.03.2004Lecture 10: Pseudor., Provable Sec., Helger Lipmaa

16

Provable Security in this
week’s paper

• Tweakable encryption scheme reduces to
the security of the underlying block cipher

• The authors’ integrity scheme S1 reduces to
the security of second pre-image resistance
in hash functions

• S2 reduces to the second pre-image
resistance, tweakable encryption, and the
guarantee of a low false positive rate

Comments on the
Paper

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

b
lo

c
k
s

 Entropy

Entropy for 1024-byte Random Blocks

Entropy of Random Blocks

Figure 6. Entropy of 1024-byte Random
Blocks

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 o
f

b
lo

c
k
s

 Entropy

Entropy for 1024-byte Trace Blocks

 Entropy of Trace Blocks

Figure 7. Entropy of 1024-byte Trace
Blocks

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e

ra
g

e
 S

to
ra

g
e

 p
e

r
B

lo
c
k
 (

in
 b

y
te

s
)

Block Size

Average Storage for Integrity

MAC Scheme
8-bit Entropy Test
4-bit Entropy Test

Figure 8. Average Client Storage for In-

tegrity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 (

in
 m

s
)

Block Size

Performance

CMC Encryption
Scheme 1 (Hashing)

Scheme 2 (8-bit Entropy Test)

Figure 9. Performance Time for Different

Storage Schemes

Performance Plots Lastly, but very importantly, we

measured the average time to encrypt the collected

blocks using the CMC-AES tweakable enciphering

mode described in [13]. We also implemented the two

schemes for integrity and compared their overhead with

that of the CMC encryption.

The results in Figure 9 show that the overhead due

to hashing is 44% more than encryption alone, while

the overhead for the entropy test is 19% for 4096-byte

blocks. For S1, we have used the hash function SHA-1.

Our entropy test is about twice as fast as SHA-1. As ex-

pected, the measured times rise linearly with the block

size.

From the experiments, the advantages and disadvan-

tages of the two integrity schemes are clear. Scheme S1

provides integrity against the replay attack, at the ex-

pense of high storage cost on the client and increased

client computation time. On the other hand, our second

scheme S2 is very efficient in both computation time and

additional storage on the client. This comes at the ex-

pense of guaranteeing only a weaker notion of integrity,

namely one that permits replays (and leaves them to be

dealt with at a higher layer).

7. Is There A More Efficient Solution for

Preventing Replay Attacks?

We have analyzed two schemes, one that keeps a hash

for each block and defends against the replay attack; and

the second one more efficient that only satisfies a weaker

notion of integrity. The natural question that comes into

mind is whether there are other schemes that prevent re-

play attacks more efficiently than storing a hash for each

block. In this section, we answer this question affirma-

tively.

First we give a simple example to demonstrate that

scheme S2 is vulnerable to replay attacks. Consider a

scenario in which the client writes two messagesm1 and

m2 to block bid in that order, both messages having low

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6 7 8

P
e
rc

e
n
ta

g
e
 o

f
b
lo

c
k
s

 Entropy

Entropy for 1024-byte Random Blocks

Entropy of Random Blocks

Figure 6. Entropy of 1024-byte Random
Blocks

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 1 2 3 4 5 6 7 8

P
e
rc

e
n
ta

g
e
 o

f
b
lo

c
k
s

 Entropy

Entropy for 1024-byte Trace Blocks

 Entropy of Trace Blocks

Figure 7. Entropy of 1024-byte Trace
Blocks

0

5

10

15

20

25

30

0 500 1000 1500 2000 2500 3000 3500 4000

A
v
e
ra

g
e
 S

to
ra

g
e
 p

e
r

B
lo

c
k
 (

in
 b

y
te

s
)

Block Size

Average Storage for Integrity

MAC Scheme
8-bit Entropy Test
4-bit Entropy Test

Figure 8. Average Client Storage for In-

tegrity

0

0.1

0.2

0.3

0.4

0.5

0.6

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 (

in
 m

s
)

Block Size

Performance

CMC Encryption
Scheme 1 (Hashing)

Scheme 2 (8-bit Entropy Test)

Figure 9. Performance Time for Different

Storage Schemes

Performance Plots Lastly, but very importantly, we

measured the average time to encrypt the collected

blocks using the CMC-AES tweakable enciphering

mode described in [13]. We also implemented the two

schemes for integrity and compared their overhead with

that of the CMC encryption.

The results in Figure 9 show that the overhead due

to hashing is 44% more than encryption alone, while

the overhead for the entropy test is 19% for 4096-byte

blocks. For S1, we have used the hash function SHA-1.

Our entropy test is about twice as fast as SHA-1. As ex-

pected, the measured times rise linearly with the block

size.

From the experiments, the advantages and disadvan-

tages of the two integrity schemes are clear. Scheme S1

provides integrity against the replay attack, at the ex-

pense of high storage cost on the client and increased

client computation time. On the other hand, our second

scheme S2 is very efficient in both computation time and

additional storage on the client. This comes at the ex-

pense of guaranteeing only a weaker notion of integrity,

namely one that permits replays (and leaves them to be

dealt with at a higher layer).

7. Is There A More Efficient Solution for

Preventing Replay Attacks?

We have analyzed two schemes, one that keeps a hash

for each block and defends against the replay attack; and

the second one more efficient that only satisfies a weaker

notion of integrity. The natural question that comes into

mind is whether there are other schemes that prevent re-

play attacks more efficiently than storing a hash for each

block. In this section, we answer this question affirma-

tively.

First we give a simple example to demonstrate that

scheme S2 is vulnerable to replay attacks. Consider a

scenario in which the client writes two messagesm1 and

m2 to block bid in that order, both messages having low

Storage for S1 Storage for S2 Storage for S3

16.262 MB 0.022 MB 0.351 MB

Figure 11. Client Storage for the Three
Schemes for One-Month Traces

the storage for S1 and S2. Of course, the client storage

increases with the lifetime of the system, as more blocks

are overwritten. One solution to prevent the indefinite

expansion of client state is to periodically change the en-

cryption key, re-encrypt all the data under the new key

(perhaps opportunistically), recompute all the integrity

information and reset all the block flags.

8. Conclusions

We have given new cryptographic definitions and con-

structions for block-level storage integrity in a scenario

in which storage servers are assumed to be untrusted.

In order to authenticate data without changing the block

size or the number of sectors accessed, clients need to

keep themselves additional integrity information. Our

constructions minimize the size of the integrity infor-

mation, are provably secure, and are storage-efficient as

demonstrated by our experimental evaluation.

9. Acknowledgements

We would like to thank the anonymous reviewers for

pointing out an efficiency improvement to scheme S3.

References

[1] J. Ann, M. Bellare. Does Encryption with Redun-

dancy Provide Authenticity? In Proceedings of Eu-

rocrypt 2001.

[2] M. Bellare, A. Desai, D. Pointcheval, P. Rogaway.

Relations among notions of security for public-

key encryption schemes. In Proceedings of Crypto

1998, LNCS 1462, 1998.

[3] M. Bellare, T. Kohno, C. Namprempre. Authenti-

cated Encryption in SSH: Provably Fixing the SSH

Binary Packet Protocol. In 9th ACMConference on

Computer and Communications Security, 2002.

[4] M. Bellare, C. Namprempre. Authenticated En-

cryption: Relations among Notions and Analysis

of the Generic Composition Paradigm. In Proceed-

ings of Asiacrypt 2000.

[5] M. Bellare, P. Rogaway. Encode-then-Encipher

Encryption: How to Exploit Nonces or Redun-

dancy in Plaintexts for Efficient Cryptography. In

Proceedings of Asiacrypt 2000.

[6] D. Bindel, M. Chew, C. Wells. Extended Crypto-

graphic File System. Unpublished manuscript, De-

cember 1999.

[7] M. Blaze. A Cryptographic File System for Unix.

In First ACM Conference on Communications and

Computing Security, CCS 1993.

[8] G. Cattaneo, L. Catuogno, A. Del Sorbo, P. Per-

siano. The Design and Implementation of a Trans-

parent Cryptographic File System for UNIX.

In USENIX Annual Technical Conference 2001,

Freenix Track.

[9] K. Fu. Group Sharing and Random Access in

Cryptographic Storage File Systems. Master’s the-

sis, Massachusetts Institute of Technology, June

1999.

[10] H. Gobioff, G. Gibson, D. Tygar. Security for Net-

work Attached Storage Devices. CMU SCS Tech-

nical Report CMU-CS-97-185, 1997.

[11] H. Gobioff, D. Nagle, G. Gibson. Integrity and Per-

formance in Network Attached Storage. CMU SCS

Technical Report CMU-CS-98-182, 1998.

[12] E. Goh, H. Shacham, N. Modadugu, D. Boneh.

SiRiUS: Securing Remote Untrusted Storage. In

Proceedings of the Internet Society (ISOC) Net-

work and Distributed Systems Security (NDSS)

Symposium 2003, pages 131-145.

[13] S. Halevi, P. Rogaway. A Tweakable Enciphering

Mode. In Proceedings of Crypto 2003.

[14] S. Halevi, P. Rogaway. A Parallelizable Encipher-

ing Mode. In The RSA conference - Cryptogra-

pher’s track, RSA-CT ’04, LNCS vol. 2964, pages

292-304.

[15] IEEE Security in Storage Working Group.

http://siswg.org.

[16] M. Kallahalla, E. Riedel, R. Swaminathan,

Q. Wang, K. Fu. Plutus: Scalable Secure File Shar-

ing on Untrusted Storage. In Proceedings of the

Second USENIX Conference on File and Storage

Technologies (FAST), March 2003.

[17] J. Katz, M. Yung. Unforgeable Encryption and

Chosen Ciphertext Secure Modes of Operation. In

Proceedings of FSE 2000, LNCS 1978, pages 284-

299, 2001.

[18] T. Kohno, A. Palacio, J. Black. Building Se-

cure Cryptographic Transforms, or How to En-

crypt andMAC.Cryptology ePrint Archive, Report

2003/177.

Does Theorem 6.3 Hold?

• ... the frequency of any pattern in the sub-
blocks of a single block should not exceed
pi < 1/4

• is this assumption baseless? what is the
justification?

• this assumption is used to derive the
formula for false negatives, the rate α

Skeptics

• “I don’t think this is an academic
achievement as much as an exercise in
performing an experiment for the sake of
performing one”

Skeptics (2)

• Encryption does not always provide integrity

More on entropy

• Why do the authors consider two different
lengths for their entropy tests? What are the
advantages/disadvantages to using either?

• Is entropy the only metric that can be used
to test for randomness in plaintext?

On test data

• Is this test set OK?

• Why don’t we use file access patterns from
operational SANs?

• Shouldn’t we consider the entropy of file
types rather than “all” files (e.g., WAV vs.
MP3 vs. CPP)?

Entropy

• Looked at a bunch of files on my hard drive

• Used ent at http://www.fourmilab.ch/random/

• Analyzed 12.5 GB of files (24,897 files

Entropy by file format
• .c files: 5.06 (45,270,209 bytes / 2855 files)

• .h files: 4.69 (13,365,833 bytes / 1956 files)

• .vob files: 7.85 (7,384,492,032 bytes / 9 files)

• .php files: 5.12 (19,885,585 bytes / 1862 files)

• .java files: 5.00 (37,277,794 bytes / 1158 files)

• .mp3 files: 7.94 (487,454,293 bytes / 114 files)

• .wav files: 6.33 (271,408,960 bytes / 4 files)

• mis-decrypted file: 7.999658

• encrypted file (128-bit AES, CBC mode, base64 encoding
removed): 7.999629

Cumulative distribution

Summary

• Lots of files have low entropy

• However, most of the larger files (hence, occupying more blocks)
have higher entropy (mp3, vob, etc)

• My mis-decryption had an entropy of almost 8 - will they almost
always be this high? Can the threshold be up around 7.99?

• What about chi square distribution?

Proposed Extensions

• Compression

• Message redundancy

• Multiple users

