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Alice Bob

Warden

The Prisoners’ Problem

Let’s Escape!



• Alice and Bob may communicate

• Warden watches all communications

• If he suspects secret communication or 
any plans to escape, Alice and Bob will be 
placed in solitary confinement



• A means of communication between two 
processes that are not permitted to 
communicate, but do so anyway

• usually done a few bits at a time

• usually exploits a shared resource or 
medium

• traditionally classified as storage-based or 
timing-based

Covert Channels
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Most Important

• Covert channels require COVER

• Cover should consist of permitted actions 
and appear innocuous (as not to cause 
suspicion)

• We’ll talk more about this later
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Storage Timing

Information conveyed 
by writing or abstaining 

from writing

Information conveyed 
by the timing of events

Clock not needed Receiver needs clock



The Disk-arm Channel

• A covert channel involving the placement of 
the arm of a shared disk-drive in KVM-370 
(1979)

• Involves a shared disk drive with adjacent 
cylinders shared for read-access by two 
virtual machines

1. HIGH operates with high secrecy level

2. LOW operates with low secrecy level
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• The channel is timing-based

• HIGH and LOW issues a series of read 
requests to the disk

• By measuring the seek time of these 
requests, HIGH can leak data to LOW



• Presents a variant that requires no external 
clock

• Variant channel characterized through the 
order of events

• Suggests new model: storage-nature and 
timing-nature

• The usefulness of this distinction is 
questionable

An Analysis of Covert 
Timing Channels (1991)
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Information Hiding

• Parties are allowed to communicate with 
the exception that content is:

• censored 

• restricted to certain subjects

• e.g., hiding a message in the lowest order 
pixel bits of an image

• referred to formally as steganography
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Cover Image Image Containing
Embedded Data

Steganography

Similar techniques have been used to 
watermark copyrighted images



Subliminal Channels

• Introduced by the crypto community to 
circumvent US regulations (G J Simmons)

• demonstrated channel using ElGamal and 
Schnorr signature schemes (EUROCRYPT ‘84)

• e.g., signal a bit by choosing one of two keys to 
sign a message
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• The use of covert channels is relevant in 
organizations that:

• restrict the use of encryption in their 
systems

• have privileged or private information

• wish to restrict communication

• monitor communications

Where is this relevant?
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Security Paradox?

• Otherwise strong security policies can be 
circumvented by covert methods

• Should we focus our attention towards 
making communication channels subliminal-
free?

• How would we do this?

• We’ll talk about this tomorrow
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Network Covert 
Channels

• Information hiding

• placed in network headers AND/OR

• conveyed through action/reaction

• The goal is that the channel be undetectable 
or unobservable
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Taxonomy

• Network covert channels can be

• Storage-based

• Timing-based

• Frequency-based

• Protocol-based

• ...or any combination of the above
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• Each of the above categories constitute a 
dimension of data

• Information hiding in packet payload is 
outside the realm of network covert 
channels

• These cases fit into the broader field of 
steganography



• Steganography differs from covert channels 
in areas of

• Interactivity

• Persistence

• Scope

Aside: Steganography
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Storage-based

• Information is leaked by hiding data in 
packet header fields

• IP identification

• Offset

• Options

• TCP Checksum

• TCP Sequence Numbers
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Data

Options

Destination IP

Source IP

Checksum

Offset

LengthTOS

ID

ProtocolTTL

Ver Hdr Len

DF0 MF

* a limited number of options exist for 
these types of channels

X

IP Header



Timing-based

• Information is leaked by triggering or 
delaying events at specific time intervals

• The CBS channel is timing-based
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Frequency-based

• Information is encoded over many channels 
of cover traffic using any of the other covert 
channel techniques

• The order or combination of cover channel 
access encodes information
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Protocol-based

• Exploits ambiguities or non-uniform features 
in common protocol specifications

• We’ll see an example of this tomorrow
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Threats to covert 
communication

• Discovery

• Channel completely compromised

• Detection

• Existence of particular channel is known

• Prevention Mechanisms

• Proxy processing and delay added
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Traditional Detection 
Mechanisms

• All detection is done through statistical 
methods

• Storage-based

• Data analysis

• Time-based

• Time analysis

• Frequency-based

• Flow analysis
34



Flow Analysis
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Pitfall: Randomness

• In Covert Messaging Through TCP Timestamps 
[PET 2002] the authors use the low order bits 
of the TCP timestamp field to hide data

• The authors encrypt their data before 
transmission to make the bits appear 
random

• Oops, low order bits of  TCP timestamp 
aren’t cryptographically random [Defcon 10]
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Implementation Pitfalls

• Synchronization and a priori setup

• Error-correction

• Feed-back

• e.g., flow-control

• Side-effects

• e.g., Symmetry, feature loss
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The CBS Channel

• Developed by Cabuk, Brodley, and Shields

• Appeared at CCS 2004

• Covert data sent by traditional timing 
channel
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covert channels, which have become a pervasive security
threat to trusted distributed systems. Network covert chan-
nels have been used by attackers to communicate with com-
promised hosts, particularly in distributed denial of service
attacks [18]. Many tools exist for setting up network covert
channels using a variety of protocols including TCP, IP,
HTTP and ICMP [9, 10, 29, 31].

The data section of packets is the easiest place to convey
covert information, due to its large size and because it is
relatively unstructured compared to headers. Modifying the
packet payload is outside the scope of this paper as it falls
in the realm of steganography or watermarking. Our focus
in this section is instead on storage channels in the packet
headers and on timing channels.

Unused header fields that are either designed for future
protocol improvements or in general go unchecked by fire-
walls and network intrusion detection devices, may convey
information in the form of a covert channel [2, 3, 10, 12, 29,
30]. The ID field (for unfragmented packets) in TCP and
the option bits in IP have been used for storage channels
[12]. A smart attacker can even devise means to use some of
the header fields that do fall under scrutiny, such as the IP
checksum field [1]. An effective way to eliminate most stor-
age channels is through traffic normalizers [11, 17], which
modify both incoming and outgoing packets by standard-
izing fields that are unused or redundant. Unusual traffic
patterns may also lead to discovery of storage channels. For
example, multiple ping requests within a small time interval
may indicate a storage channel in the ICMP protocol such
as that used by Loki [9]. In addition, covert storage chan-
nels can sometimes be detected by observing variations in
unused packet header fields [17].

Less attention has been placed on network timing chan-
nels. These channels convey information through the arrival
patterns of packets, rather than through the contents of the
packets themselves. Network timing channels include packet
sorting channels [2, 3], in which the order of packet arrival
conveys information, and timing channels in which it is the
reception or absence of packets within specific time intervals
that carries significance. In our research we have focused on
the latter type of timing channel.

To understand how these channels work, consider a dis-
tributed MLS system which uses the TCP/IP protocol suite
to provide the necessary communication between remote
users of the system. For the sake of simplicity, we will as-
sume that the two parties have information access levels of
HIGH and LOW. We assume that the system is capable of
securing all overt communication and further mechanisms
such as a packet sanitizer are also employed, which remove
all sensitive data from the message content when data is
transferred from HIGH to LOW security levels. Our re-
search addresses two questions: How can information be
leaked using IP from a HIGH node to a LOW node? How
can the system detect such leakage?

In terms of a client/server architecture, the covert channel
can be set to leak information in either direction: server to
client or client to server. In the first case, the server resides
on a HIGH node running a form of malware. The client ini-
tiates the covert communication by a connect request over
a known port (e.g., FTP). The trojaned server recognizes
the IP address of the client, and begins the covert commu-
nication. Note that the server exhibits normal behavior on
connection requests from all other clients. In the second

MESSAGE

We shall not spend 
a large expense of 

time Before we 
reckon with your 

several loves,
And make us even 

with you. My 
thanes and 
kinsmen,

Henceforth be 
earls, the first that 

ever Scotland
In such an honour 

named. What’s 
more to do,

Which would be 
planted newly with 

the time,
As calling home 
our exiled friends 

abroad
...

E
N
C
O
D
E
R

D
E
C
O
D
E
R

SENDER RECEIVER

1

0

1

0 1

0

1

0

1

0

1

01

0

0

1

1

0

0

1

0

1

0

1

1

0

0

1

1

0

1

0

0

0

0

1

.

.

.

1

0

1

0

0

1

0

1

1

0

0

1

1

0

1

0

0

0

0

1

.

.

.

delay

MESSAGE

We shall not spend 
a large expense of 

time Before we 
reckon with your 

several loves,
And make us even 

with you. My 
thanes and 
kinsmen,

Henceforth be 
earls, the first that 

ever Scotland
In such an honour 

named. What’s 
more to do,

Which would be 
planted newly with 

the time,
As calling home 
our exiled friends 

abroad
...

timing 
interval

Figure 1: IP covert timing channel. The example
text is first encoded with a coding scheme and then
bit by bit sent to the receiving end. The message is
rebuilt by decoding the bit stream.

case, malware in a client on a HIGH node initiates the con-
nection. In this case, the server’s IP address is known to
the malware. The server responds and the covert commu-
nication is started, this time from client to server. Given
our implementation experience (see Section 3), we conjec-
ture that fewer hacker tools use timing channels because of
the difficulties in synchronizing such channels and because of
their reduced bandwidth as compared to storage channels.

Network implementations of the pump [20] as well as tim-
ing jammers [13], which act as intermediaries between net-
works and modify packet inter-arrival times, are the prin-
cipal defenses against timing channels. These defenses are
aimed at stopping such channels rather than detecting them.
An attacker who is aware of the existence of such counter-
measures may intentionally decrease the bandwidth of the
covert channel, reducing the effect of fluctuations in packet
inter-arrival times on message accuracy. This ensures that
the introduced timing discrepancies will be small compared
to the length of each timing interval. Detection may also
be more desirable than stopping covert channels because of
the added benefits of locating compromised internal hosts as
well as in blacklisting external IP addresses that are found to
participate in the covert communication. Consequently, the
focus of our research is to detect network timing channels.

3. IP COVERT TIMING CHANNEL

IMPLEMENTATION

In a timing channel, the receiver and sender agree a pri-
ori on a timing interval and the starting protocol (either a
particular time or in response to a network event, such as
the first packet sent). During each time interval the sender
either transmits a single packet or maintains silence. The re-
ceiver monitors each interval to determine whether a packet
was received or not. The result is a binary code where a
1 represents the detection of packet in an interval and a 0
represents the absence of a packet (see Figure 1). Note that
the raw data that flows across the channel is binary but
the actual interpretation of the binary stream is up to the
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The CBS Channel (2)

• Requires a priori knowledge for start event 
and timing interval

• Unidirectional channel

• “No” feedback mechanism

40



Performance Factors

• The following issues become important 
during implementation of the CBS channel

• Network conditions

• Sender/receiver processing capabilities

• Algorithmic complexity

41



Determining the Time 
Interval

• The bandwidth of the covert channel is 
limited by:

1. the processing speed of the hosts and 
network availability (upper bound)

2. the length of the timing interval (lower 
bound)

• The goal is to have the smallest timing 
interval possible while retaining accuracy
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Figure 2: The synchronization problem in the IP covert timing channel. (a) A temporary change in network
conditions causing the channel to enter the error state temporarily after the fourth bit. (b) A longer-term
change in network conditions causing the channel to enter the error state and stay there.

3.4 Synchronization
In a covert timing channel, all information transmitted is

based entirely on the arrival time of packets at the receiver.
Because the sender and receiver may operate with different
clocks, it becomes a challenge to implement end-to-end syn-
chronization, particularly in a one-way channel. Jitter can
cause packets to be recorded as arriving in a time period
before or after the intended one, as shown in Figure 2(a).

While some error from jitter can be corrected with error-
correcting codes, longer-term changes that occur in the mid-
dle of a transmission might cause an entire series of trans-
mission to be shifted (Figure 2(b)). Clearly this problem
can be solved by simply making the timing interval much
larger than any expected network or processing delays, but
this reduces the bandwidth of the channel. In this section,
we describe techniques we used to help maintain synchro-
nization.

3.4.1 Start of frame (SOF):

As a precaution against low levels of jitter in the network,
each packet is sent in the middle of the timing interval.
Moreover, upon receipt of every SOF packet, the receiver
aligns itself with the newly received SOF by assuming that
the SOF arrived exactly in the middle of the timing interval.
This aligns the sender and receiver timing windows and in
turn helps maintain synchronization.

3.4.2 Silent intervals:

We enhance the previous scheme by introducing silent in-
tervals between frames. During a silent interval no packet
transfer occurs between sender and receiver. We assume
that the parties have previously determined the length of
the silent interval. This interval can either be a default value
or the covert channel itself can be initially used to send this
value before the actual data transfer begins. The sender
can enter the silent state any time during the transmission.
Note that the sender has no way of knowing whether the
receiver received the covert bits correctly or not. Therefore,
it is up to the sender to observe the changing network condi-
tions and make the decision when to pause the transmission.

As an example, a sudden change in the RTT between the
sender and the receiver might be a good signal for enter-
ing the silent state. On the other end, the receiver simply
waits for the arrival of the SOF packet and takes no action.
A simpler option is to enter the silent state periodically to
clear the channel. This method increases channel accuracy
at the expense of transmission rate. We investigate this
tradeoff between channel accuracy and transmission time in
Section 3.5.

3.4.3 Interval adjusting:

Rather than slow down the transmission by introducing
silent periods in which no transfer occurs, the channel can
adapt to the changes gradually as the network conditions
change. In our interval adjusting scheme, the receiver closely
monitors the time each packet arrives and compares it to the
projected ideal case (the expected arrival time of the next
packet) based on the current timing interval. Comparing the
two, a delta is computed, which is the deviation between the
ideal and actual times. The receiver then simply adds this
value to its timing interval and adjusts its clock for the next
arriving packet. Note that delta can be positive or negative,
depending on whether the packet arrived early or late. This
scheme is most useful when there is an incremental change
in the network conditions that persists for longer than the
lifetime of a single packet. It can however lead to errors
if the change in the network delay is greater than 50% of
the timing interval (e.g., adjust to an incorrect timing in-
terval). As a precaution, we restrict the magnitude of each
adjustment to be less than 10% of the difference between
two consecutive intervals.

3.4.4 Phase locked loop (PLL):

A more promising solution for combating errors caused by
variable network delays is to make interval adjustment more
responsive to changes in delay. A phase-locked loop (PLL)
is a popular method in communications used for bit and
symbol synchronization. A PLL is a closed-loop feedback
control circuit that is designed to track or synchronize an
output signal with an input signal in frequency and phase
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Synchronization (2)

• Start of frame (SOF)

• realigns clock synchronization between 
sender and receiver every few words

• Silent intervals

• interval is decided a priori

• allows sender some control over 
misaligned data

44



Interval Adjusting

• An additional mechanism to keep data 
intervals synchronized

• Receiver computes delta as difference 
between packet arrival time and expected 
arrival time

• Receiver adjusts timing interval by delta

• Only works if delta is < 50% timing 
interval
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Evaluation of CBS Channel

• Accuracy of channel is based on edit distance

• minimum distance between two strings 
needed to transform one into the other

• e.g., “hassle” and “castle” have an edit 
distance of 2 characters
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RTT ≈ 31.5 msec
~12 hops
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Timing interval vs. Accuracy
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Figure 3: Timing interval versus accuracy with dif-
ferent values of k for the silent interval synchroniza-
tion scheme.

[5]. The current error in synchronization between the out-
put and input signal at a given instant in time is used to
refine the synchronization between the signals at a future
instant. Our future work includes investigation of a PLL as
a synchronization mechanism.

3.5 An Empirical Evaluation of the IP Timing
Channel Performance

In this section we show the performance of our IP tim-
ing channel. The communication channel becomes lossy as
the timing interval is decreased due to the impact of one or
more performance factors described in Section 3.1. We in-
vestigate the maximum data rate provided by our IP timing
channel by decreasing the timing interval and observing the
corresponding accuracy.

The channel accuracy can be measured as the percentage
of correctly received bits, characters, or words. Because of
potential erasures or shifting of bits, the number of bits,
characters, or words may not be identical in the sent and
received messages. We therefore measure accuracy based
on edit distance, which is the minimum distance between
two strings (in our case bits or characters) that is needed to
transform the first string into the second. We use an efficient
(Θ(mn) where m and n are the lengths of the strings) dy-
namic programming approach to calculate the edit distance
known as the Wagner-Fischer technique [33].

Our covert channel ran between Purdue and Georgetown
Universities, and was subject to changing network condi-
tions. During “normal” network conditions, the route be-
tween communicating parties was twelve hops with an av-
erage RTT of 31.5 msec. In order to assess the accuracy of
our covert channel under varying traffic loads, we ran our
experiments at different times. Our results show that an IP
timing channel is highly dependent on network factors.

3.5.1 Effect of timing interval size:

We first investigate the potential data rate of our channel
by decreasing the timing interval until the accuracy drops.
We mark this point as a threshold that can be thought as
a boundary between the lossless and lossy communication

and calculate the corresponding channel bit and character
rate. In this experiment we used the periodic silent intervals
synchronization scheme described in Section 3.4, with k de-
noting the frequency the synchronization scheme goes into
a silent period (e.g., every twenty timing intervals). The
character coding is eight bit ASCII with no error correction.
Figure 3 shows the trade-off between the timing interval and
the channel accuracy. Our channel provides nearly lossless
communication for larger intervals at the cost of lower trans-
mission bandwidth.

The experiment results show that the threshold value for
the covert interval is around 0.06 seconds, which guaran-
tees nearly 98% character accuracy for all three values of
k. The equivalent channel bit rate is 16.666 bits per sec-
ond (bps). With ASCII encoding and the SOF bit taken
into account, we calculate the channel character rate around
1.852 characters per second (cps). As expected, the channel
accuracy remains high for larger timing intervals. It also
remains slightly higher when the transmissions are periodi-
cally paused for resynchronization.

3.5.2 Effect of network conditions:

In this experiment, we demonstrate an example of a net-
work congestion and its effects on the performance of the
covert channel. We plan to expand on these results in fu-
ture work with reproducible network conditions using the
DETER test bed [8].

We ran our covert channel on a congested network with
a highly varying RTT between the sender and receiver with
mean RTT at 42.07 msec. The normal RTT values for this
channel have a mean RTT at 31.5 msec. Our evaluations
show that congestion lowers the accuracy rate. For example,
with timing interval set to 0.08, we observe 100% average
character accuracy under normal conditions, but the accu-
racy drops to 82.11% for the congested network. Clearly, the
interval must be increased to retain accuracy during periods
of high congestion.

4. DETECTING IP COVERT TIMING

CHANNELS
In this initial exploration, our focus is on whether we can

create mechanisms that can detect covert channels in IP
traffic. To this end we have developed and experimented
with two different methods. As we explain in Section 4.1,
each method tries to detect the fundamental regularity that
must exist for a covert timing channel to exist. In Figure
4(a), we show the inter-arrival times of a simple covert tim-
ing channel. The y-axis is the inter-arrival time and the
x-axis is the packet number. In Figure 4(b), we have sorted
the inter-arrival times from smallest to largest. The result is
a step function (note that because of varying network load,
it is not a perfect step function). From these two figures,
we observe that there appear to be approximately 4 or 5
different inter-arrival times. This highly regular behavior is
a direct result of the static encoding of the frames in the
timing channel. The arrival of packets is separated by 0,
1, 2, 3, 4,... intervals (the number of intervals separating
packets is the number of “zeros” between two consecutive
“ones” in a codeword). In contrast overt traffic packets can
arrive anytime, resulting in an irregular pattern.

We present empirical results that show that for the simple
case of a covert channel with a single interval and no noise
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Effect of Network 
Conditions

• Channel run over congested network with 
high RTT variance

• congestion lowers the accuracy

• Lesson:

• “... interval must be increased to retain 
accuracy during periods of high congestion”
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Detecting IP Covert 
Timing Channels

• Can we detect covert channels in IP traffic?
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Figure 4: Inter-arrival times for the covert timing
channel. (a) Actual values. (b) Sorted values.

that both of the proposed methods are highly effective at
detecting covert channels. We then explore how well each
method performs when measures are taken to try to hide
the covert channel’s regularity.

4.1 Methods for Detecting Regularity in
Inter-arrival Times

Assume that we have observed n packets (in our exper-
iments we set n to be 2000). Our objective is to develop
metrics that capture any pattern of regularity in the traffic
that is suggestive of a covert timing channel.

4.1.1 Measure 1: Examining patterns in the
variance:

Our first method examines whether the variance in the
inter-arrival (IA) remains constant. To this end, we separate
the traffic into non-overlapping windows of size w packets.
For each window i, we compute the standard deviation σi

of the IA times. To compute our heuristic measure of reg-
ularity, we then calculate the pairwise differences between
σi and σj for each pair of windows i < j. Finally to obtain
a summary statistic, we compute the standard deviation of
the pairwise differences. The following formula summarizes
the process:
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Figure 5: Relative differences of the covert timing
channel inter-arrival times.

regularity= STDEV (
|σi−σj |

σi
, i < j, ∀i, j)

4.1.2 Measure 2: ε-Similarity between adjacent
inter-arrival times

The second measure is derived from the sorted IA times
(see Figure 4(b)). From this sorted list, we compute the
relative difference between each pair of consecutive points.
For example the relative difference between Pi and Pi+1 is
computed as |Pi − Pi+1|/Pi. We show these pairwise rela-
tive differences plotted in Figure 5. We can then compute a
measure of similarity, which we call ε-Similarity by comput-
ing the percentage of relative differences that are less than ε.
For covert channels the majority of the pairwise differences
in the sorted list of IA times will be very small. It is large
only for jumps in the step function (see Figure 4(b)).

4.1.3 A discussion of other approaches:

We also investigated several approaches that were not
fruitful, but were more obvious from a statistical point of
view.

Indexes of dispersion of a point process have been used
as a tool in network characterization [16, 28]. In particular,
index of dispersion for intervals (IDI) can be used to qual-
itatively compare the inter-arrival times of a point process
with the Poisson process serving as the basis (for which the
IDI is unity) [7]. IDI provides a finer measure for defining
the variability of the process than does a second order mo-
ment analysis. In [16], the variability, or the burstiness, of
the network traffic is defined as “the changes in the variance
of the sum of consecutive inter-arrivals.” Although this mea-
sure appears promising, it makes a number of assumptions
including stationarity, which needs to be verified for the cor-
rect interpretation of the results. In this initial study, we do
not impose such assumptions on the distributions of covert
or overt traffic. Our future work includes such analysis of
both types of traffic.

Another avenue we examined was statistical non-
parametric tests similar to those used in other work [26, 4,
6]. Applications of these tests has mainly concentrated on
network traffic characterization and modeling. The goal is
often to determine whether two streams come from the same
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Figure 4: Inter-arrival times for the covert timing
channel. (a) Actual values. (b) Sorted values.

that both of the proposed methods are highly effective at
detecting covert channels. We then explore how well each
method performs when measures are taken to try to hide
the covert channel’s regularity.

4.1 Methods for Detecting Regularity in
Inter-arrival Times

Assume that we have observed n packets (in our exper-
iments we set n to be 2000). Our objective is to develop
metrics that capture any pattern of regularity in the traffic
that is suggestive of a covert timing channel.

4.1.1 Measure 1: Examining patterns in the
variance:

Our first method examines whether the variance in the
inter-arrival (IA) remains constant. To this end, we separate
the traffic into non-overlapping windows of size w packets.
For each window i, we compute the standard deviation σi

of the IA times. To compute our heuristic measure of reg-
ularity, we then calculate the pairwise differences between
σi and σj for each pair of windows i < j. Finally to obtain
a summary statistic, we compute the standard deviation of
the pairwise differences. The following formula summarizes
the process:
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Figure 5: Relative differences of the covert timing
channel inter-arrival times.

regularity= STDEV (
|σi−σj |

σi
, i < j, ∀i, j)

4.1.2 Measure 2: ε-Similarity between adjacent
inter-arrival times

The second measure is derived from the sorted IA times
(see Figure 4(b)). From this sorted list, we compute the
relative difference between each pair of consecutive points.
For example the relative difference between Pi and Pi+1 is
computed as |Pi − Pi+1|/Pi. We show these pairwise rela-
tive differences plotted in Figure 5. We can then compute a
measure of similarity, which we call ε-Similarity by comput-
ing the percentage of relative differences that are less than ε.
For covert channels the majority of the pairwise differences
in the sorted list of IA times will be very small. It is large
only for jumps in the step function (see Figure 4(b)).

4.1.3 A discussion of other approaches:

We also investigated several approaches that were not
fruitful, but were more obvious from a statistical point of
view.

Indexes of dispersion of a point process have been used
as a tool in network characterization [16, 28]. In particular,
index of dispersion for intervals (IDI) can be used to qual-
itatively compare the inter-arrival times of a point process
with the Poisson process serving as the basis (for which the
IDI is unity) [7]. IDI provides a finer measure for defining
the variability of the process than does a second order mo-
ment analysis. In [16], the variability, or the burstiness, of
the network traffic is defined as “the changes in the variance
of the sum of consecutive inter-arrivals.” Although this mea-
sure appears promising, it makes a number of assumptions
including stationarity, which needs to be verified for the cor-
rect interpretation of the results. In this initial study, we do
not impose such assumptions on the distributions of covert
or overt traffic. Our future work includes such analysis of
both types of traffic.

Another avenue we examined was statistical non-
parametric tests similar to those used in other work [26, 4,
6]. Applications of these tests has mainly concentrated on
network traffic characterization and modeling. The goal is
often to determine whether two streams come from the same
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Methods for Detecting 
Regularity in Inter-arrival 

(IA) Times
• A sample size of 2000 packets is used in 

these experiments

• Measure 1: examine patterns in variance

• Measure 2: ε-Similarity between adjacent 
inter-arrival times
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Patterns in Variance
1. Divide traffic into adjacent windows of size 

w packets

2. ∀ window i compute stdev σi of IA times

3. Calculate pairwise differences between σi 

and σj  for all i < j 

4. Calculate the stdev of the pairwise 
differences from (3), this is the metric of 
regularity
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Figure 4: Inter-arrival times for the covert timing
channel. (a) Actual values. (b) Sorted values.

that both of the proposed methods are highly effective at
detecting covert channels. We then explore how well each
method performs when measures are taken to try to hide
the covert channel’s regularity.

4.1 Methods for Detecting Regularity in
Inter-arrival Times

Assume that we have observed n packets (in our exper-
iments we set n to be 2000). Our objective is to develop
metrics that capture any pattern of regularity in the traffic
that is suggestive of a covert timing channel.

4.1.1 Measure 1: Examining patterns in the
variance:

Our first method examines whether the variance in the
inter-arrival (IA) remains constant. To this end, we separate
the traffic into non-overlapping windows of size w packets.
For each window i, we compute the standard deviation σi

of the IA times. To compute our heuristic measure of reg-
ularity, we then calculate the pairwise differences between
σi and σj for each pair of windows i < j. Finally to obtain
a summary statistic, we compute the standard deviation of
the pairwise differences. The following formula summarizes
the process:

Covert channel inter-arrival times (percent differences)
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Figure 5: Relative differences of the covert timing
channel inter-arrival times.

regularity= STDEV (
|σi−σj |

σi
, i < j, ∀i, j)

4.1.2 Measure 2: ε-Similarity between adjacent
inter-arrival times

The second measure is derived from the sorted IA times
(see Figure 4(b)). From this sorted list, we compute the
relative difference between each pair of consecutive points.
For example the relative difference between Pi and Pi+1 is
computed as |Pi − Pi+1|/Pi. We show these pairwise rela-
tive differences plotted in Figure 5. We can then compute a
measure of similarity, which we call ε-Similarity by comput-
ing the percentage of relative differences that are less than ε.
For covert channels the majority of the pairwise differences
in the sorted list of IA times will be very small. It is large
only for jumps in the step function (see Figure 4(b)).

4.1.3 A discussion of other approaches:

We also investigated several approaches that were not
fruitful, but were more obvious from a statistical point of
view.

Indexes of dispersion of a point process have been used
as a tool in network characterization [16, 28]. In particular,
index of dispersion for intervals (IDI) can be used to qual-
itatively compare the inter-arrival times of a point process
with the Poisson process serving as the basis (for which the
IDI is unity) [7]. IDI provides a finer measure for defining
the variability of the process than does a second order mo-
ment analysis. In [16], the variability, or the burstiness, of
the network traffic is defined as “the changes in the variance
of the sum of consecutive inter-arrivals.” Although this mea-
sure appears promising, it makes a number of assumptions
including stationarity, which needs to be verified for the cor-
rect interpretation of the results. In this initial study, we do
not impose such assumptions on the distributions of covert
or overt traffic. Our future work includes such analysis of
both types of traffic.

Another avenue we examined was statistical non-
parametric tests similar to those used in other work [26, 4,
6]. Applications of these tests has mainly concentrated on
network traffic characterization and modeling. The goal is
often to determine whether two streams come from the same
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ε-Similarity between 
adjacent IA times

1. Using sorted IA times, compute the relative 
difference between consecutive points

• |Pi - Pi+1|/Pi for each point Pi and Pi+1

2. ε-Similarity is then computed as the 
percentage of relative differences less than ε
• The pairwise difference is large only for 

jumps in the step function

56



Covert channel inter-arrival times

0

0.05

0.1

0.15

0.2

0.25

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 513 545 577 609 641 673 705 737 769 801 833 865 897 929 961 993

Number of packets

In
te

r-
a

rr
iv

a
l 

ti
m

e
s

Covert channel inter-arrival times (sorted)

0

0.05

0.1

0.15

0.2

0.25

1 33 65 97 129 161 193 225 257 289 321 353 385 417 449 481 513 545 577 609 641 673 705 737 769 801 833 865 897 929 961 993

Number of packets

In
te

r-
a

rr
iv

a
l 

ti
m

e
s

Figure 4: Inter-arrival times for the covert timing
channel. (a) Actual values. (b) Sorted values.

that both of the proposed methods are highly effective at
detecting covert channels. We then explore how well each
method performs when measures are taken to try to hide
the covert channel’s regularity.

4.1 Methods for Detecting Regularity in
Inter-arrival Times

Assume that we have observed n packets (in our exper-
iments we set n to be 2000). Our objective is to develop
metrics that capture any pattern of regularity in the traffic
that is suggestive of a covert timing channel.

4.1.1 Measure 1: Examining patterns in the
variance:

Our first method examines whether the variance in the
inter-arrival (IA) remains constant. To this end, we separate
the traffic into non-overlapping windows of size w packets.
For each window i, we compute the standard deviation σi

of the IA times. To compute our heuristic measure of reg-
ularity, we then calculate the pairwise differences between
σi and σj for each pair of windows i < j. Finally to obtain
a summary statistic, we compute the standard deviation of
the pairwise differences. The following formula summarizes
the process:
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Figure 5: Relative differences of the covert timing
channel inter-arrival times.

regularity= STDEV (
|σi−σj |

σi
, i < j, ∀i, j)

4.1.2 Measure 2: ε-Similarity between adjacent
inter-arrival times

The second measure is derived from the sorted IA times
(see Figure 4(b)). From this sorted list, we compute the
relative difference between each pair of consecutive points.
For example the relative difference between Pi and Pi+1 is
computed as |Pi − Pi+1|/Pi. We show these pairwise rela-
tive differences plotted in Figure 5. We can then compute a
measure of similarity, which we call ε-Similarity by comput-
ing the percentage of relative differences that are less than ε.
For covert channels the majority of the pairwise differences
in the sorted list of IA times will be very small. It is large
only for jumps in the step function (see Figure 4(b)).

4.1.3 A discussion of other approaches:

We also investigated several approaches that were not
fruitful, but were more obvious from a statistical point of
view.

Indexes of dispersion of a point process have been used
as a tool in network characterization [16, 28]. In particular,
index of dispersion for intervals (IDI) can be used to qual-
itatively compare the inter-arrival times of a point process
with the Poisson process serving as the basis (for which the
IDI is unity) [7]. IDI provides a finer measure for defining
the variability of the process than does a second order mo-
ment analysis. In [16], the variability, or the burstiness, of
the network traffic is defined as “the changes in the variance
of the sum of consecutive inter-arrivals.” Although this mea-
sure appears promising, it makes a number of assumptions
including stationarity, which needs to be verified for the cor-
rect interpretation of the results. In this initial study, we do
not impose such assumptions on the distributions of covert
or overt traffic. Our future work includes such analysis of
both types of traffic.

Another avenue we examined was statistical non-
parametric tests similar to those used in other work [26, 4,
6]. Applications of these tests has mainly concentrated on
network traffic characterization and modeling. The goal is
often to determine whether two streams come from the same
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Empirical Evaluation of 
the Detection Metrics
• Three covert channels are used to test the 

efficacy of the aforementioned detection 
metrics 

1. A simple timing channel

2. A timing channel with a varied time 
interval

3. A timing channel with manufactured noise
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• What is the false negative rate for these 
methods in:

1. covert channels?

2. non-covert channels?

• Can these metrics be used to automate 
detection?



• ‘99 DARPA data set

• Telnet and HTTP traffic

• NZIX-II data set

• Telnet, HTTP, FTP, UDP traffic

• Used only flows that were ≥ 2000 packets

• Covert traffic data has a different scale of 
jitter than the trace data sets

Data Sets
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Figure 6: Similarity of different types of traffic (a) Comparison of NZIX-II unhidden and covert traffic. (b)
Comparison of DARPA and unhidden covert traffic.

empirical distribution. For example, there are applications
of the Kolmogorov-Smirnov test. In our research, we are
not seeking to model either the overt or the covert network
traffic. Our goal is to define metrics that differentiate covert
from overt traffic, therefore, these methods are not directly
applicable to the detection of IP timing channels.

4.2 An Empirical Evaluation
The goal of our experiments was to examine the efficacy

of our two metrics. To this end we first report experiments
with a basic covert channel that employs a single timing
interval throughout the communication and does not try to
mask itself in any way. Our second set of experiments looks
at how our metrics fare when the measures are taken to
hide the channel. Our ultimate experimental objective is to
measure not only our method’s false negative rate for covert
channels but also its false positive rate for non-covert traffic.
To this end, our third experiment explores how our metrics
can be combined to form an automated detection method.

4.2.1 Data sets:

In our experiments, we used both synthetic and real traffic
data sets for the sake of completeness. Our synthetic data
set is the ’99 DARPA data set for Telnet and HTTP traffic
[21]. Additionally, we employ the second version of NZIX
data sets (NZIX-II) which is a collection of TCP and UDP
traces collected by the WAND research group [15]. For the
TCP traces, we chose to investigate Telnet, FTP, and HTTP
traffic.

For each experiment we report results for traffic flows of
2000 packets. Our goal is not to model or identify a traffic
distribution, but to determine whether we can accurately de-
tect a covert channel in a window of 2000 packets. In future
work we will investigate what is the minimum length of the
window for which our methods are still effective. Note that
although the covert channel was run between Purdue and
Georgetown Universities, for the non-covert traffic we use
the recorded IA times in the datasets. A drawback is that
we cannot have the same network conditions (e.g., number
of hops, same jitter), but excluding the case of jitter this
does not impact our results. None of our measures look at

Dataset Application w=250 w=100
NZIX-II WWW 22.14 34.32
NZIX-II FTPd 7.77 16.46
NZIX-II Telnet 12.08 18.15
NZIX-II UDP 16.57 27.18
DARPA WWW 21.59 62.32
DARPA Telnet 17.70 52.21

Covert-I 2.18 4.63

Table 1: Regularity of NZIX-II, DARPA, and covert
traffic with windows of size 250 and 100.

absolute IA values, but rather compute measures of regular-
ity in terms of the relative differences among IA values.

4.2.2 Covert Channel I: A simple timing channel:

Our first experiment examines each metric’s ability to de-
tect a covert timing channel that employs a single timing
interval (set to be 0.04 sec) for the entire communication.
In Table 1 we show the regularity of the variance for two
window sizes (100 and 250) within the 2000 packet dataset.
Our results are the average of ten different sets of data for
each protocol, including the covert channel.

Observe that the variance in the pairwise differences be-
tween the variance of each pair of windows is on average less
for the covert channel than for the other traffic. However,
one FTP and one UDP dataset had similarly low scores.
This is to be expected because FTP and UDP send streams
of data as fast as possible resulting in a uniform IA. Note
that the smaller window size appears to better differentiate
the covert channel’s regularity from the other protocols. In
other words, there is a larger difference between the value
(4.63) for the covert channel and the values for the non-
covert channels.

In Figure 6 we show the results for the second metric,
ε-Similarity. The x-axis shows ε and the y-axis shows the
percentage of all pairs of sorted IA values whose difference
is less than ε. For a covert channel we would anticipate that
the majority of the traffic would have small differences in the
sorted IA values. For both the NZIX-II and the DARPA
datasets, the graph show the results for Telnet, WWW,
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Figure 6: Similarity of different types of traffic (a) Comparison of NZIX-II unhidden and covert traffic. (b)
Comparison of DARPA and unhidden covert traffic.

empirical distribution. For example, there are applications
of the Kolmogorov-Smirnov test. In our research, we are
not seeking to model either the overt or the covert network
traffic. Our goal is to define metrics that differentiate covert
from overt traffic, therefore, these methods are not directly
applicable to the detection of IP timing channels.

4.2 An Empirical Evaluation
The goal of our experiments was to examine the efficacy

of our two metrics. To this end we first report experiments
with a basic covert channel that employs a single timing
interval throughout the communication and does not try to
mask itself in any way. Our second set of experiments looks
at how our metrics fare when the measures are taken to
hide the channel. Our ultimate experimental objective is to
measure not only our method’s false negative rate for covert
channels but also its false positive rate for non-covert traffic.
To this end, our third experiment explores how our metrics
can be combined to form an automated detection method.

4.2.1 Data sets:

In our experiments, we used both synthetic and real traffic
data sets for the sake of completeness. Our synthetic data
set is the ’99 DARPA data set for Telnet and HTTP traffic
[21]. Additionally, we employ the second version of NZIX
data sets (NZIX-II) which is a collection of TCP and UDP
traces collected by the WAND research group [15]. For the
TCP traces, we chose to investigate Telnet, FTP, and HTTP
traffic.

For each experiment we report results for traffic flows of
2000 packets. Our goal is not to model or identify a traffic
distribution, but to determine whether we can accurately de-
tect a covert channel in a window of 2000 packets. In future
work we will investigate what is the minimum length of the
window for which our methods are still effective. Note that
although the covert channel was run between Purdue and
Georgetown Universities, for the non-covert traffic we use
the recorded IA times in the datasets. A drawback is that
we cannot have the same network conditions (e.g., number
of hops, same jitter), but excluding the case of jitter this
does not impact our results. None of our measures look at

Dataset Application w=250 w=100
NZIX-II WWW 22.14 34.32
NZIX-II FTPd 7.77 16.46
NZIX-II Telnet 12.08 18.15
NZIX-II UDP 16.57 27.18
DARPA WWW 21.59 62.32
DARPA Telnet 17.70 52.21

Covert-I 2.18 4.63

Table 1: Regularity of NZIX-II, DARPA, and covert
traffic with windows of size 250 and 100.

absolute IA values, but rather compute measures of regular-
ity in terms of the relative differences among IA values.

4.2.2 Covert Channel I: A simple timing channel:

Our first experiment examines each metric’s ability to de-
tect a covert timing channel that employs a single timing
interval (set to be 0.04 sec) for the entire communication.
In Table 1 we show the regularity of the variance for two
window sizes (100 and 250) within the 2000 packet dataset.
Our results are the average of ten different sets of data for
each protocol, including the covert channel.

Observe that the variance in the pairwise differences be-
tween the variance of each pair of windows is on average less
for the covert channel than for the other traffic. However,
one FTP and one UDP dataset had similarly low scores.
This is to be expected because FTP and UDP send streams
of data as fast as possible resulting in a uniform IA. Note
that the smaller window size appears to better differentiate
the covert channel’s regularity from the other protocols. In
other words, there is a larger difference between the value
(4.63) for the covert channel and the values for the non-
covert channels.

In Figure 6 we show the results for the second metric,
ε-Similarity. The x-axis shows ε and the y-axis shows the
percentage of all pairs of sorted IA values whose difference
is less than ε. For a covert channel we would anticipate that
the majority of the traffic would have small differences in the
sorted IA values. For both the NZIX-II and the DARPA
datasets, the graph show the results for Telnet, WWW,
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• 40% of the covert traffic has difference of 
less than ε = 0.005

• less than 15% of the non-covert traffic 
matches this difference

• The DARPA data appears far more regular 
than the NZIX-II data

• the DARPA dataset was synthetically 
generated



• Motivation: obfuscate regularity

• Three interval values are chosen, cycled 
every t packets

Varying the Time Interval 
(Channel II)
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Varying the Time 
Interval (Channel II)

• If t is larger than w, we can no longer 
compare the variance of windows (measure 
1) to discover the channel

• Even if t is much smaller than w, the 
variance between each window would be 
similar 
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ε-Similarity Score
Method t 0.005 0.008 0.01 0.02 0.03 0.1 >0.1
Sequential 250 34.17 45.17 51.23 67.38 75.29 90.75 9.25

100 34.12 45.77 52.78 67.53 75.54 90.50 9.50
50 34.22 46.87 53.68 67.68 75.09 89.89 10.11
10 34.87 46.37 51.83 67.58 76.19 90.65 9.35

Random 250 36.51 48.02 53.47 68.30 76.20 90.49 9.51
10 35.21 46.88 52.55 68.29 75.67 90.28 9.72

Original 39.92 52.83 58.58 72.79 79.74 91.85 8.15

Table 2: ε-Similarity scores for Covert Channel II. For each window of t packets, the interval is selected to
be from the set (0.04, 0.06, 0.08). Results are shown for both selection methods (Sequential and Random)
and for the original covert channel that employs a single interval (0.04).

FTP-data, UDP and the covert channel. The reported val-
ues are averaged over ten runs. The results show a striking
difference between the covert channel and non-covert flows
for the NZIX-II data. For example, 40% of the covert traf-
fic has a difference of less than ε = 0.005. Whereas for the
non-covert channel less than 15% are this similar. What
is interesting is that although the trend is similar for the
DARPA dataset, there is far more regularity in the DARPA
data than in the NZIX-II data. Indeed, studies have shown
that because the normal traffic in the DARPA dataset was
synthetically generated, it is not entirely representative of
real traffic [24, 22]. Although previous studies have not
examined the specific inter-arrival times, they have illus-
trated that 1) many attributes of DARPA network traffic
are more predictable than the real traffic, and 2) the syn-
thetic dataset shows different statistical characteristics than
real data. Hence we conjecture that the regularity shown in
Figure 6 for ε-Similarity for the DARPA dataset is a direct
consequence of the nature of the synthetic data.

4.2.3 Covert Channel II: Varying the timing interval:

To understand how our metrics work when the sender
tries to hide the covert channel, we first experimented with
covert channels where the sender alternates between differ-
ent intervals. The motivation from the sender’s viewpoint
is to obfuscate the regularity. In our experiment, we chose
three different interval values 0.04, 0.06, and 0.08. After t
packets, we switch to a new interval. We experimented with
two different methods of specifying the new interval: cycling
through them sequentially or random selection.

Varying the interval impacts Measure I (regularity) be-
cause the variance of the windows are no longer comparable
unless t is much smaller than w. In this case, all three inter-
vals would be observed several times in each window of w
packets, and therefore the variance for each window would
be similar. However, for cases where t approaches or exceeds
w this metric cannot detect covert timing channels and hence
due to space we do not show the actual numbers.

On the other hand, our second metric (ε-Similarity) still
shows differences in values for the covert versus the non-
covert traffic. In Table 2 we show the results for the original
single-interval covert channel, and for several choices of t
for both methods for selecting a new interval period after
t frames. Note that the results are averaged over ten runs
for each parameter setting. Looking at each of the seven
values of ε, we see little difference for either the sequential
or random method. These results show that the ε-Similarity
metric is robust for this method of hiding covert traffic.

4.2.4 Covert Channel III: Injecting noise:

Our third experiment examines how our measures fare
when we explicitly introduce irregularity into the covert
channel. We inject noise into the channel as follows. For
a covert channel operating on a port typically associated
with a particular application X, we insert portions of inter-
arrival times from a non-covert traffic stream for application
X. For example, if the covert channel runs on Port 80, we
use WWW traffic. We then break the covert channel into
blocks of 100 packets, and randomly replace blocks of the
covert traffic with the non-covert traffic of application X un-
til we achieve the desired noise level (e.g., for 10% noise, the
IA times for two randomly selected blocks of 100 packets
would be replaced in our 2000 packet stream).

This scheme again impacts our first measure because of
the random nature of noise injection. Because a window may
include components from the noisy traffic, the windows are
no longer comparable and our regularity measure fails to
discriminate covert from non-covert traffic.

Our second measure, however, fares better. In Table 3 we
show the ε-Similarity values for the original covert channel
(Covert Channel I – shown in the 0% noise row), and for
noise levels of 10, 25 and 50%. In addition, we include
the values for the non-covert traffic in the bottom three
rows of the table. Note that as the noise level increases
the covert traffic begins to have ε-Similarity values close
to the non-covert traffic. However, a drawback from the
sender/receiver’s viewpoints is that the covert bandwidth
decreases linearly with the noise level.

4.3 Automatic Detection of IP Covert Timing
Channels

In this section, we present the results of an experiment
designed to evaluate our metrics’ ability to be used to auto-
matically detect covert timing channels. Both of our meth-
ods require that we set a threshold. For ε-Similarity, we
need to choose a threshold for each value of ε 1. For our
regularity metric, values below the threshold are considered
to have been generated by covert traffic. To set the pa-
rameters, we first ran experiments with ten flows from each
protocol type. Note that we experimented only with WWW
and FTPd traffic, as in the NZIX-II dataset there is insuf-
ficient data for the other protocols to find ten flows of 2000
packets. After we collected the data from the ten train-

1Note that for values of ε < 0.1 observations above our
threshold are considered covert traffic and for ε > 0.1 val-
ues below our threshold are considered covert, because the
majority of covert traffic has a similarity ≤ 0.1
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ε-Similarity Score
Method t 0.005 0.008 0.01 0.02 0.03 0.1 >0.1
Sequential 250 34.17 45.17 51.23 67.38 75.29 90.75 9.25

100 34.12 45.77 52.78 67.53 75.54 90.50 9.50
50 34.22 46.87 53.68 67.68 75.09 89.89 10.11
10 34.87 46.37 51.83 67.58 76.19 90.65 9.35

Random 250 36.51 48.02 53.47 68.30 76.20 90.49 9.51
10 35.21 46.88 52.55 68.29 75.67 90.28 9.72

Original 39.92 52.83 58.58 72.79 79.74 91.85 8.15

Table 2: ε-Similarity scores for Covert Channel II. For each window of t packets, the interval is selected to
be from the set (0.04, 0.06, 0.08). Results are shown for both selection methods (Sequential and Random)
and for the original covert channel that employs a single interval (0.04).
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three different interval values 0.04, 0.06, and 0.08. After t
packets, we switch to a new interval. We experimented with
two different methods of specifying the new interval: cycling
through them sequentially or random selection.

Varying the interval impacts Measure I (regularity) be-
cause the variance of the windows are no longer comparable
unless t is much smaller than w. In this case, all three inter-
vals would be observed several times in each window of w
packets, and therefore the variance for each window would
be similar. However, for cases where t approaches or exceeds
w this metric cannot detect covert timing channels and hence
due to space we do not show the actual numbers.

On the other hand, our second metric (ε-Similarity) still
shows differences in values for the covert versus the non-
covert traffic. In Table 2 we show the results for the original
single-interval covert channel, and for several choices of t
for both methods for selecting a new interval period after
t frames. Note that the results are averaged over ten runs
for each parameter setting. Looking at each of the seven
values of ε, we see little difference for either the sequential
or random method. These results show that the ε-Similarity
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4.2.4 Covert Channel III: Injecting noise:

Our third experiment examines how our measures fare
when we explicitly introduce irregularity into the covert
channel. We inject noise into the channel as follows. For
a covert channel operating on a port typically associated
with a particular application X, we insert portions of inter-
arrival times from a non-covert traffic stream for application
X. For example, if the covert channel runs on Port 80, we
use WWW traffic. We then break the covert channel into
blocks of 100 packets, and randomly replace blocks of the
covert traffic with the non-covert traffic of application X un-
til we achieve the desired noise level (e.g., for 10% noise, the
IA times for two randomly selected blocks of 100 packets
would be replaced in our 2000 packet stream).

This scheme again impacts our first measure because of
the random nature of noise injection. Because a window may
include components from the noisy traffic, the windows are
no longer comparable and our regularity measure fails to
discriminate covert from non-covert traffic.

Our second measure, however, fares better. In Table 3 we
show the ε-Similarity values for the original covert channel
(Covert Channel I – shown in the 0% noise row), and for
noise levels of 10, 25 and 50%. In addition, we include
the values for the non-covert traffic in the bottom three
rows of the table. Note that as the noise level increases
the covert traffic begins to have ε-Similarity values close
to the non-covert traffic. However, a drawback from the
sender/receiver’s viewpoints is that the covert bandwidth
decreases linearly with the noise level.

4.3 Automatic Detection of IP Covert Timing
Channels

In this section, we present the results of an experiment
designed to evaluate our metrics’ ability to be used to auto-
matically detect covert timing channels. Both of our meth-
ods require that we set a threshold. For ε-Similarity, we
need to choose a threshold for each value of ε 1. For our
regularity metric, values below the threshold are considered
to have been generated by covert traffic. To set the pa-
rameters, we first ran experiments with ten flows from each
protocol type. Note that we experimented only with WWW
and FTPd traffic, as in the NZIX-II dataset there is insuf-
ficient data for the other protocols to find ten flows of 2000
packets. After we collected the data from the ten train-

1Note that for values of ε < 0.1 observations above our
threshold are considered covert traffic and for ε > 0.1 val-
ues below our threshold are considered covert, because the
majority of covert traffic has a similarity ≤ 0.1
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ε-Similarity for Channel II

ε-Similarity metric is robust for detecting channel II



Introducing Irregularity 
(Channel III)

• Insert portions of IA times from a non-
covert traffic stream of the same cover type

• e.g., if channel is run over port 80, use 
WWW traffic to inject noise at random 
blocks

• Measure 1 fails because windows are no 
longer comparable

• Measure 2 succeeds in distinguishing the 
channel
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Noise Type of ε-Similarity Score
Level Noise 0.005 0.008 0.01 0.02 0.03 0.1 >0.1

0% 39.92 52.83 58.58 72.79 79.74 91.85 8.15
10% WWW 36.54 47.50 52.67 66.46 73.39 87.46 12.54
10% FTPd 35.03 46.05 51.30 64.89 71.45 84.94 15.06
10% Telnet 34.89 45.83 51.14 64.29 70.70 83.17 16.83
25% WWW 31.88 40.93 44.45 58.96 65.76 83.01 16.99
25% FTPd 30.69 39.93 44.43 56.88 63.14 78.80 21.20
25% Telnet 29.06 38.34 42.61 54.12 60.04 73.27 26.73
50% WWW 31.70 37.31 40.33 53.15 59.52 79.32 20.68
50% FTPd 26.12 32.21 35.60 46.35 52.39 70.53 29.47
50% Telnet 24.21 30.31 33.31 42.47 47.72 61.40 38.60

Non-covert Traffic
WWW 10.81 13.49 14.96 23.76 28.70 52.69 47.31
Telnet 7.54 10.25 12.04 18.69 23.65 46.99 53.01
FTPd 8.20 13.19 15.19 25.36 33.20 62.05 37.95

Table 3: ε-Similarity scores with different classes and levels of noise.

WWW Threshold FP Cov-I Cov-II Cov-III(10%) Cov-III(25%) Cov-III(50%)
µ + 2σ 10.0 0.0 0.0 86.6 100.0 100.0
µ + 1.5σ 10.0 0.0 0.0 0.0 53.0 86.6
µ + 1σ 10.0 0.0 0.0 0.0 0.0 86.6
> Max 10.0 0.0 0.0 0.0 20.0 86.6

FTPd Threshold FP Cov-I Cov-II Cov-III(10%) Cov-III(25%) Cov-III(50%)
µ + 2σ 10.0 0.0 66.7 86.6 100.0 100.0
µ + 1.5σ 10.0 0.0 0.0 0.0 80.0 93.3
µ + 1σ 30.0 0.0 0.0 0.0 6.7 93.3
> Max 10.0 0.0 0.0 0.0 33.3 86.6

Table 4: False positive (FP) and false negative (FN) rates for covert channel detection.

ing flows, we compute various statistics to determine our
thresholds. Specifically we calculate the mean and standard
deviation, and record the minimum and maximum observed
values for each of our metrics. We then applied several dif-
ferent thresholds to a new set of independent testing data.
For each protocol we collected ten new flows (we did not
examine them until after parameter selection).

The results for ε-Similarity are shown in Table 4. For each
protocol, we show the results for several different choices
of threshold. Specifically, values smaller than 2, 1.5 or 1
standard deviation(s) away from the mean value observed
for the non-covert traffic. We also show values for thresholds
set to be greater than the largest observed value for ε < 0.1
(and less than the smallest observed value for ε > 0.1). To
be classified as a covert channel all seven ε-Similarity metrics
are computed and we take a majority vote.

In the third column of the table we show the results for the
non-covert traffic, which gives us the false positive rate (FP).
Our results show that the false positive rate for both WWW
and FTPd traffic is 10% for most choices of the threshold
value.

We also report the false negative rates for several differ-
ent types of covert channel. Specifically we report the false
negative rate for the basic channel (Cov-I), for a channel for
which the interval is varied randomly between three choices
(Cov-II), and for channels with noise injected (Cov-III). For
the original covert timing channel (Cov-I) our false negative
rate is 0%. For the interval varying covert channel (Covert
II), all values of our thresholds work well except for the
strictest test which is µ+2σ, in this case the covert channel
begins to resemble the normal FTPd traffic. Finally, for the
channels in which noise is injected (Covert III) the higher

the level of noise the more difficulty our method has in rec-
ognizing that it is a covert channel. However, for both the
WWW and FTP traffic at 10% noise, most values of the
threshold work well.

We also ran experiments for our measure of regularity. For
the simple timing channel without any noise, our method
is able to detect it with 100% accuracy with a 0.0% false
positive rate. However, as discussed earlier this method fails
when attempts are made to obfuscate the channel (Cov-II
and Cov-III).

5. CONCLUSIONS AND FUTUREWORK

In this paper we have presented the design and imple-
mentation of a network covert timing channel; developed
methods of distinguishing the covert traffic generated by our
channel from normal traffic; and examined the efficacy of our
detection methods in the face of counter-measures attackers
seem likely to pursue.

The implementation of the timing channel raised a num-
ber of non-obvious issues in its design, particularly in meth-
ods of determining timing intervals in the absence of an ac-
curate, shared clock. Our implementation uses a variety of
mechanisms to synchronize the data stream, including use
of blocking and non-blocking sockets; periodic idle intervals;
and dynamic adjustment of the intervals. We then evaluated
the performance of the channel to determine the maximum
dependable speed of transmission.

We then collected data while our timing channel com-
municated between two remote locations on the Internet,
and using this data, developed two methods to differenti-
ate covert traffic traces from normal traffic traces obtained
from widely used research data. The first method measures
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Automatic Detection of IP 
Covert Timing Channels

• Choose a threshold for each value of ε
• values below ε are generated by covert 

traffic

• threshold value is initialized by some 
number of training flows
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Noise Type of ε-Similarity Score
Level Noise 0.005 0.008 0.01 0.02 0.03 0.1 >0.1

0% 39.92 52.83 58.58 72.79 79.74 91.85 8.15
10% WWW 36.54 47.50 52.67 66.46 73.39 87.46 12.54
10% FTPd 35.03 46.05 51.30 64.89 71.45 84.94 15.06
10% Telnet 34.89 45.83 51.14 64.29 70.70 83.17 16.83
25% WWW 31.88 40.93 44.45 58.96 65.76 83.01 16.99
25% FTPd 30.69 39.93 44.43 56.88 63.14 78.80 21.20
25% Telnet 29.06 38.34 42.61 54.12 60.04 73.27 26.73
50% WWW 31.70 37.31 40.33 53.15 59.52 79.32 20.68
50% FTPd 26.12 32.21 35.60 46.35 52.39 70.53 29.47
50% Telnet 24.21 30.31 33.31 42.47 47.72 61.40 38.60

Non-covert Traffic
WWW 10.81 13.49 14.96 23.76 28.70 52.69 47.31
Telnet 7.54 10.25 12.04 18.69 23.65 46.99 53.01
FTPd 8.20 13.19 15.19 25.36 33.20 62.05 37.95

Table 3: ε-Similarity scores with different classes and levels of noise.

WWW Threshold FP Cov-I Cov-II Cov-III(10%) Cov-III(25%) Cov-III(50%)
µ + 2σ 10.0 0.0 0.0 86.6 100.0 100.0
µ + 1.5σ 10.0 0.0 0.0 0.0 53.0 86.6
µ + 1σ 10.0 0.0 0.0 0.0 0.0 86.6
> Max 10.0 0.0 0.0 0.0 20.0 86.6

FTPd Threshold FP Cov-I Cov-II Cov-III(10%) Cov-III(25%) Cov-III(50%)
µ + 2σ 10.0 0.0 66.7 86.6 100.0 100.0
µ + 1.5σ 10.0 0.0 0.0 0.0 80.0 93.3
µ + 1σ 30.0 0.0 0.0 0.0 6.7 93.3
> Max 10.0 0.0 0.0 0.0 33.3 86.6

Table 4: False positive (FP) and false negative (FN) rates for covert channel detection.

ing flows, we compute various statistics to determine our
thresholds. Specifically we calculate the mean and standard
deviation, and record the minimum and maximum observed
values for each of our metrics. We then applied several dif-
ferent thresholds to a new set of independent testing data.
For each protocol we collected ten new flows (we did not
examine them until after parameter selection).

The results for ε-Similarity are shown in Table 4. For each
protocol, we show the results for several different choices
of threshold. Specifically, values smaller than 2, 1.5 or 1
standard deviation(s) away from the mean value observed
for the non-covert traffic. We also show values for thresholds
set to be greater than the largest observed value for ε < 0.1
(and less than the smallest observed value for ε > 0.1). To
be classified as a covert channel all seven ε-Similarity metrics
are computed and we take a majority vote.

In the third column of the table we show the results for the
non-covert traffic, which gives us the false positive rate (FP).
Our results show that the false positive rate for both WWW
and FTPd traffic is 10% for most choices of the threshold
value.

We also report the false negative rates for several differ-
ent types of covert channel. Specifically we report the false
negative rate for the basic channel (Cov-I), for a channel for
which the interval is varied randomly between three choices
(Cov-II), and for channels with noise injected (Cov-III). For
the original covert timing channel (Cov-I) our false negative
rate is 0%. For the interval varying covert channel (Covert
II), all values of our thresholds work well except for the
strictest test which is µ+2σ, in this case the covert channel
begins to resemble the normal FTPd traffic. Finally, for the
channels in which noise is injected (Covert III) the higher

the level of noise the more difficulty our method has in rec-
ognizing that it is a covert channel. However, for both the
WWW and FTP traffic at 10% noise, most values of the
threshold work well.

We also ran experiments for our measure of regularity. For
the simple timing channel without any noise, our method
is able to detect it with 100% accuracy with a 0.0% false
positive rate. However, as discussed earlier this method fails
when attempts are made to obfuscate the channel (Cov-II
and Cov-III).

5. CONCLUSIONS AND FUTUREWORK

In this paper we have presented the design and imple-
mentation of a network covert timing channel; developed
methods of distinguishing the covert traffic generated by our
channel from normal traffic; and examined the efficacy of our
detection methods in the face of counter-measures attackers
seem likely to pursue.

The implementation of the timing channel raised a num-
ber of non-obvious issues in its design, particularly in meth-
ods of determining timing intervals in the absence of an ac-
curate, shared clock. Our implementation uses a variety of
mechanisms to synchronize the data stream, including use
of blocking and non-blocking sockets; periodic idle intervals;
and dynamic adjustment of the intervals. We then evaluated
the performance of the channel to determine the maximum
dependable speed of transmission.

We then collected data while our timing channel com-
municated between two remote locations on the Internet,
and using this data, developed two methods to differenti-
ate covert traffic traces from normal traffic traces obtained
from widely used research data. The first method measures
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Automatic Detection

What about false negatives?



What have the authors told us?

• High bandwidth, undetectable covert 
channels are hard to make

• as we reduce the bandwidth of our 
channel, we reduce the observability of 
the channel by statistical means

• We’ll discuss our own conclusions 
tomorrow
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Proposed Future Work

• Add error-correction

• Develop better synchronization techniques 
for increased channel bandwidth

• Investigate other detection methods for 
robust detection

• What would you propose?
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