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Multicast Overview

• Multicast enabled routers
• 224.0.0.0 - 239.255.255.255 (class D)
• IGMP (Internet Group Management 

Protocol)
• Subscribe to groups and unsubscribe



Applications

• Interactive applications
– Teleconferencing
– Video conferencing

• Information broadcasts
– News
– Stocks

• Updates
– Software
– Viruses



Challenges

• Authenticity
• Malicious users
• Tolerate packet loss
• Minimal delay
• (DoS attacks)
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Naive Solution 1
Symmetric Authentication

Review of MAC

MACKa,b

Alice Bob

Ka,b Ka,b

Examples

• hmac (sha1, md5)

• umac

• cbc mac (aes, 3des)



Naive Solution 1
Symmetric Authentication
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Naive Solution 1
Symmetric Authentication

• Pros
– Fast
– Low space overhead
– Virtually no delay
– Simple

• Cons
– Any member of the group can “authenticate 

packets”



Naive Solution 2
Sign Every Packet

Alice Bob
SigA

Kpriv_A

(Kpub_A)
Kpub_A

Review of Signature

Examples

• RSA-1024  (2048, etc.)

• DSA

• IBE short signatures



Naive Solution 2
Sign Every Packet

SigS
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Naive Solution 2
Sign Every Packet

• Pros
– Guarantees authenticity
– Perfect loss tolerance
– Almost no delay

• Cons
– Computationally expensive for sender and 

receiver
– High bandwidth overhead



Naive Solution 3
Basic Signature Amortization

SigS(P1,…Pn)

Server

Router

Client Client Client
Kpub_S

Kpriv_S

Kpub_S Kpub_S

P1
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. . . 



Naive Solution 3
Basic Signature Amortization

• Pros
– Unforgeable
– Low computational cost
– Low bandwidth overhead

• Cons
– No packet loss tolerance
– Delay at receiver
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Related Work

• “Asymmetric MACs”
– TESLA [12,13]
– Biba “signature” [11]

• Signature amortization…



Signature Amortization

• Signature generations are expensive
• Boneh, Durfee, and Franklin showed can’t use 

MACs entirely… [2]
• Break single signature into multiple packets
• Fundamental issues

– Packet loss
– Maliciously inserted packets (DoS)

• Some work done
– Accumulators [16]
– Erasure Codes [9,10]



How to Sign Digital Streams [4]

• Objectives
– Stream signing (not necessarily multicast)
– Authenticity
– Non-repudiation (even for partial streams)
– Inexpensive
– Low delay

• General approach
– Authentication chain bootstrapped with 

signature

CRYPTO ‘97



How to Sign Digital Streams
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Packet 2

Packet 3
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How to Sign Digital Streams

• Pros
– Simple
– Low computation (single signature)
– Low overhead
– Authenticity
– Non-repudiation (even for partial streams)
– Low delay (if packets are sent at high 

frequency)
• Cons

– No loss tolerance



Digital Signatures for Flows and Multicasts [16]

• Objectives
– Authenticity
– “High” signing and verification rates
– Loss tolerant
– Non-repudiation
– Inexpensive
– Low delay

• General approach
– Create a common signature for blocks of packets
– Self authenticating packets

IEEE/ACM Transactions on Networking 1999



Packet 1 Packet 2 Packet 3 . . .

Signature

h(p1)

Star Chaining

Appended to every
packet

Digital Signatures for Flows and Multicasts

Packet formation

(per block)

Send

Packet 1 Signature
Packet 1 Signature

Packet 1 Signature



Packet i Signature

h(pi)

Star Chaining

Digital Signatures for Flows and Multicasts

Packet authentication
Cached digests

block 1

block 2

block 4

from block j



• Pros
– Authenticity
– “High” signing and verification rates
– Perfect loss tolerance
– Non-repudiation

• Cons
– Small sender delay
– Extremely high bandwidth overhead

Digital Signatures for Flows and Multicasts



Summary of Related Work

• Still significant deficiencies
– No loss tolerance
– Extremely high bandwidth overhead
– Vulnerable to DoS attacks

• Computational
• Memory exhaustion
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Efficient Multicast Stream Authentication 
using Erasure Codes [10]

• Objectives
– Ensure authenticity (non-repudiation)
– Robustness to packet loss
– Minimal overhead & delay
– Robust against en route packet modification or 

insertion of small number of bogus packets
• General approach

– Amortize a signature over several packets using 
erasure codes

ACM Transactions on Information and Systems Security 2003



Erasure Codes
• Sender

– Take m objects (the original data) and creates 
n “erasure encoded objects”

• Receiver
– Needs any m of the n objects sent, and can 

reconstruct “erasure decode” the original data
• Space optimal



Information Dispersal Algorithm (IDA) [14]

• Basics
– Create an n row matrix A such that any m of the n

rows are linearly independent
– Multiply that by our data
– On receipt of m chunks, grab the corresponding m

rows of A, A’
– Multiply received data by A’-1

• Kevin will cover…
• Pretty light computationally

– One matrix multiplication at each end (matrix 
inversion at receiver)

– O(n2) encode
– O(m2) decode



Signature Amortization using IDA -
Description

P2,1 . . .

Break a stream up into blocks

P2,2 P2,mP1,1 . . .P1,2 P1,m P3,1 . . .P3,2 P3,m P4,1



Signature Amortization using IDA

For each block

P1 P2 Pn. . .

. . . Packet digest

h

F = h(P1)|| h(P2)|| … ||h(Pn)

F



Signature Amortization using IDA

Erasure encode F using IDA

. . . Packet digest   
(broken into m chucks)F 1 2 m

IDA Erasure Encode

c1 c2 c3 c4 cn. . . Encoded packet digest



Signature Amortization using IDA

Sign F
. . . Packet digestF 1 2 m

h(F)

h

sign(Kpriv)

sigK_priv(F)

IDA Erasure Encode

!1 !2 !3 !4 !n. . .

(m symbols)

Encoded signature

Erasure
Encode
Signature



Signature Amortization using IDA

Form each packet

Pi !i

P1 P2 Pn. . .

c1 c2 c3 c4 cn. . .

!1 !2 !3 !4 !n. . .

ci



Signature Amortization using IDA

Reconstruction

Pi !i

c1 c2 cm. . . !1 !2 !m. . .

ciNeed m packets:

IDA Erasure Decode IDA Erasure Decode

sigK_priv(F)F = h(P1)|| h(P2)|| … ||h(Pn) Packet 
digest

Digest 
signature



Signature Amortization using IDA

Verification

sigK_priv(F)

F = h(P1)|| h(P2)|| … ||h(Pn)
Packet 
digest

Digest 
signature

h(F)

h

Signature Verify y/n

For each packet Pi, verify:
F = h(P1)|| h(P2)|| … ||h(Pn) Pi

h(Pi) h(Pi)

extract compute hash

=



Delays

• Sender
– Must append information to n packets before sending

• Receiver
– Must receive m packets to authenticate and use
– (Frequently, all m packets should arrive 

approximately at the same time)
• Consequences

– Approximate additional delay of the time span of each 
block

– For minimal delay, we need smaller block size



Practical Costs - Computation
Computational costs per block 

10RSA-1024 
signature 
verifications

01RSA-1024 
signature 
generations

10Erasure 
decodes

01Erasure 
encodes

ReceiverSender

1,170

25

3,700

2,755

Pentium 
2.4 GHz

We can send approximately one block every 40 ms.

Operations 
possible per 

second



Acceptable Delay
The International Telecommunications Union –
Telecommunications Standardization Sector states the 
following maximum end to end transmission times that 
they consider “allowable” with echo control.  
(Recommendation G.114) [5]

unacceptable400 ms

acceptable when the 
impact on quality is 
aware of.

150 - 400 ms

acceptable to most 
user application.0 - 150 ms

Acceptability.Delay



Practical Costs - Bandwidth

Bandwidth overhead =
2112 bytes per block
3.2%

n/m = 1.5

using RSA-1024

20 byte SHA-1 hash

blocks of 64 packets (unencoded) of size 1024 bytes (65536 bytes total)

Conclusion: Costs are extremely reasonable in 
the simple case.

Given:



Authentication Probability

• Burst losses are an important part of their 
analysis

• 2 models
– 2 state Markov chain model (2-MC)
– “Biased coin toss”



2 State Markov Chain
Model (2-MC)

Packet arrives Packet lost

p0,0

p0,1

p1,0

p1,1

used:  !0 = 0.8

" = 8



Biased Coin Toss Model

Packet
arrives

Packet
lost

Packet
lost

Packet
lost. . .

1-q

q

q

q

1-q1-q1-q1-q

1 2 b



Internet Traffic Loss

2.5 hrs

2.5 hrs

8 hrs

8 hrs

duration

13:39

13:41

09:53

09:52

time

20 ms

20 ms

80 ms

80 ms

sending 
interval

3.8%SeattlemulticastDec ’97

1.7%SeattleunicastDec ’97

11.0%SICS, 
Sweeden

multicastNov ’97

2.7%SICS, 
Sweeden

unicastNov ’97

loss %destinationtypedate

“probe” packets sent from University of Massachusetts, Amherst [17]

number of destinations in multicast is unknown…

time given in eastern daylight time



Internet Traffic Loss
Distribution of packet loss bursts for the Seattle unicast data



Authentication Probability Results

Authentication probability      #(k)
as   n $
normal distribution

( )
n

k n mumble
m

!

0.5

0
0-5 5k



Authentication Probability vs. Block 
Size

1.5
n

m
!

20% packet 
loss rate

Expected 
burst length 
of 8

2-MC model



Problem – DoS on SAIDA

A single bogus packet will prevent the 
authentication of an entire block.



Problem – DoS on SAIDA

Simple attack

c1 c2 cm. . . !1 !2 !m. . .

Insert bogus packet pj

IDA Erasure Decode IDA Erasure Decode

*!?#%F = h(P1)|| h(P2)|| … ||h(Pn) Packet 
digest

Garbage 
signature

Pj !j’cj

!j’

Will not verify!



Possible Solution –
Error Correcting Codes (ECCs)

• Similar to erasure codes
– Encode m objects to n (n>m)
– Receiver decodes back to original message

• Allow for a certain number of errors
• More expensive

– Computation
– Size

• Common example: Reed-Solomon [15]
– Plots a polynomial of degree m-1 in a field
– Over-plots the polynomial with redundant points 

(sends them)
– Can interpolate through a number of bad points



Addition of Error Correcting Codes

!1c1

For each block

. . .

. . . “fingerprint”

h

% = (h(c1||&1)|| h(c2||&2)|| . . . ||h(cn||&n))

%

!2c2 !ncn



. . .%

Encode with ECC

Addition of Error Correcting Codes

(Broken into m’ chunks)

"1 "2 "3 "4 "n. . .

Encode with ECC

Append to each 
packet Pi !ici "i



. . .%

Decode with ECC

Addition of Error Correcting Codes

"1 "2 "m. . .Verification

For each candidate packet: Pj’ !j’cj’

verify %j = h(cj’||&j’)

#1 #2 #n

% = (h(c1||&1)|| h(c2||&2)|| . . . ||h(cn||&n))



DoS on SAIDA

Claim –
The addition of error correcting codes can 
prevent the attack where an adversary 
injects a “small” number of bogus packets 
into the stream.



DoS on SAIDA with Error 
Correcting Codes

Attempt attack again
Insert bogus packet pj Pj’ !j’cj’

Packet is bogus!

"j’

. . .%

Decode with ECC

"1 "2 "m’. . .

%i = h(si||&i)#1 #2 #m

"j’

decoding works

!j’cj’

#j’

h

#j #j’'



SAIDA Summary

• Pros
– Ensures use of legitimate packets only
– Computationally feasible
– Low bandwidth overhead
– Good verification probability in burst loss model
– Withstand attacks when a small number of garbage 

packets are injected
• Cons

– Delay at the sender and receiver
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Distillation Codes and Applications to DoS
Resistant Multicast Authentication [6]

• Objectives
– Introduce and address a new adversarial 

model
• Robustness against pollution attacks 

(adversary injects many invalid symbols)
– “Loss model independent”

NDSS 2004



Pollution Attack on SAIDA

Claim –
If an adversary injects sufficiently many 
packets (a number equal to that of the 
legitimate sender) into a multicast stream, 
she will launch a complete denial of 
service attack on the receivers. 



Pollution Attack on SAIDA
Insert many bogus packets pj Pj* !j*Sj*

Use bad packet

"j*

. . .%

Decode with ECC

"1 "5 "m’. . .

normally
%i = h(si||&i)

#1’#2’ #m’

"t’

Decoding 
fails

!j’cj’

#j’

h

#j’ #j’

(as many as sender)
Pj* !j*Sj* "j*Pj* !j’cj’ "j’

"2’"3’

=

!jcj

#j

h

Reject good 
packet

#j #j’'

(possibly)



Strawman Solutions

• Decode all possibilities (using erasure 
code scheme)

–(  ) possibilities (exponential)

• Digitally sign every symbol
– Very expensive (computational, bandwidth)
– Computational DoS attacks

t
m



Distillation Codes

• GOAL: Solve pollution attack vulnerability with 
“distillation codes”

• General approach
– Break the packets into groups where all the good 

packets are exclusively in the same group
– Compute at most one signature per group
– Only compute signatures for groups that are 

sufficiently large
– This will force a maximum number of signature 

verifications of only one per X packets received. 



General Idea
Partition the symbols

S1

S3
S4

S2 S5

S2

S4
S9

S1
S5

S7

S6

S1

S3

S11

S2S5

S2

S4

S9S1

S5

S7

S6



Partitioning the Symbols

• Want one partition to contain exactly all 
the valid symbols (distillation property)
– If it is valid, we want it in the right partition
– Don’t want anyone to be able to create a 

symbol that could be placed in the same 
partition as another symbol they simply saw

• Challenges
– Need secure set membership computed at 

the receiver’s end



One Way Accumulators

One way accumulator
Assume set S of symbols {s1, … sn}

Accumulate(S)      a          (accumulator)
Witness(s,S)      w
Verify(s,w,a)      b             (true,false)
Recover(s,w)      a



One Way Accumulators

• Must be hard to forge an element of the 
set

Must be hard to find s’, w’  where s’    S and
Recover(s’,w’) = Accumulate(S)

"



One Way Accumulator Examples

• Merkle hash trees [7]

• Benalod and de Mare quasi-
commutative one way accumulators 
[1]

• Camenisch and Lysyanskaya
dynamic accumulators [3]



Claim: Given a One Way Accumulator, 
We Can Partition Symbols

s1

s3

s2

s7

s6

Assume D is our set of valid 
symbols.

Accumulate(D)      a
Witness(s,D)      w
Verify(s,w,a)      b
Recover(s,w)      a

Can’t find s’    D,  and w’ 
where
Recover(s’,w’) = 
Accumulate(D)

"

w7

w1

w6
w2

w3

Run Recover(s,w) on each

s1 s3

s2

s7

s6

w7

w1 w6

w2

w3

a a’ a’’

Receive symbols with appended 
witnesses



Claim: Given a One Way Accumulator, 
We Can Partition Symbols

• The definition of Recover(s,w) ensures that all “good” 
symbols will end up in the same partition.

• The unforgeability property of the accumulator ensures 
that a “bad” symbol cannot be placed in the same 
partition as the good ones.

• Therefore, with a one way accumulator, we obtain the 
distillation property (by placing each symbol in the 
partition indexed by its accumulator).



Merkle Hash Trees – Our One Way 
Accumulator



Merkle Hash Trees – Our One Way 
Accumulator

Merkle hash trees are a valid one 
way accumulator.



Finding a Solution to Pollution 
Attacks…

Putting it all together…



Distillation Code – Definition

An (n,t) distillation code encodes a message D into 
a set of n symbols {s1, s2, … sn} and transmits them 
over a polluted erasure channel ensuring:

Authenticity. It will never give an invalid 
reconstruction.

Correctness. If given set of symbols T contains at 
least n-t (m) valid symbols of D, then an 
execution of the decoder on T will output a valid 
reconstruction.



Distillation Codes - Encoding

D sigK_priv(D)

Sign the message D

Break D’ into m symbols

d1 d2 dm. . .

D’ = 

d3 d4

Erasure encode the m symbols

s1 s2 sn. . .s3 s4 s5 s6

Append witness information

(make single packets) w1s1 w2s2 wnsn
. . .



w2s4

Distillation Codes - Decoding

Partition the received 
symbols (packets)

Remove witness 
information

Throw away partitions 
with less than m (say 2)

w1s1

w2s2

wnsn

s’1

s’2

s’’2 s’’’2

s’’’5

s’’’4

s’’’2

s’’’5

s’’’4

s’1

s’2



Distillation Codes – Decoding (cont’)
For each remaining 
partition: s’1 s’2 s’m. . .

Erasure decode the m symbols

d’m. . .d’3 d’4

D’ sigK_priv(D’)

Verify whether D’ has a 
valid signature

valid
sig?yes no

Use it Discard

s’3 s’4

d’1 d’2



Distillation Codes
Our construction now satisfies the authenticity and 

correctness properties. (It is a valid distillation code.)

Authenticity.  The last step of the decoding is a signature 
verification.  We assume a false signature cannot be 
generated. (Note that the signature also gives us non-
repudiation here.)

Correctness.  We know our partitioning scheme satisfies 
the distillation property.  Therefore, there is one partition 
that contains exactly the valid symbols.  Since we verify 
each partition, we will verify this one.



Resistance to Pollution Attacks

Claim –
A receiver using distillation codes will 
compute at most one signature for 
every m packets, she receives.



Distillation Codes – Attack Example

s5

s3

s2

s7

s2

w7

w5

w2

w2

w3

a’ a’’ a’’’

s2 w2

s4 w4

s4 w4

s1 w1s2 w2

s6 w6

s1 w1

s5

s3

s2

s7

s6

s2

s4

s4

s1

s2

s7

s1

a’’’’

s7 w7

s2



Distillation Codes – Attack Example

s5

s3

s2

s7

s2

w7

w5

w2

w2

w3

a’ a’’ a’’’

s2 w2

s4 w4

s4 w4

s1 w1s2 w2

s6 w6

s1 w1

s5

s3

s2

s7

s6

s2

s4

s4

s1

s2

s7

s1

a’’’’

s7 w7

s2Say m = 4



Distillation Codes – Attack Example
a’ a’’’

s5s3 s2 s7s4s1s2s1

Erasure 
decode

d4’d3’d2’d1’ d4’’’d3’’’d2’’’d1’’’

D’ sig D’’’ sig

Verify 
signature

bad signature

Discard

good signature

Use

a’’

s4 s7s6s2

d7’’d6’’d4’’d2’’

D’’ sig

bad signature

Discard



Attack Resilience Snapshot

• They claimed attack factor of 10 with 4 
Mbs stream required at most 13% CPU in 
the worst case.

• Assuming a maximum packet delay of 2 
seconds, that same stream requires at 
most 11.87 MB of memory.



Distillation Codes Summary

• Pros
– Robust against pollution attacks (with an attack factor 

of no more than 10)
– Ensures authenticity (with non-repudiation)
– Robust to packet loss
– Small overhead

• Cons
– (Loss model dependent)
– Delay at both the sender and receiver
– Still vulnerable to attacks with more packets



Conclusion

• Information assurance through multicast is 
challenging

• Can be done at various costs
• Still no perfect solution
• They fit applications well
• Many tools out there that can be useful in 

various situations
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