
Client Puzzles

Defending Against Denial-of-
Service Attacks with Puzzle
Auctions

Outline

 Motivation

 Auction Protocol

 TCP Puzzle Auction

 TCP Client Puzzle

 Implementation

 Experiment Results

 Questions

Defending Against Denial-of-Service Attacks
with Puzzle Auctions
[Wang & Reiter, IEEE Symposium on Security and Privacy ‘03]

 Clients choose puzzle difficulty

 Whoever solves hardest puzzle, gets
server resources

Auction Protocol Motivation

 Determining if a server is under attack
is difficult

 Clients determine whether server is
under attack (based on request
fulfillment)

 Clients don’t have to do work unless
server is under attack

 Adversaries resources unknown

Auction Protocol

 Why client chooses difficulty?
– Client and adversary resources unknown
– Relative amount of resources yields the

puzzle difficulty
– Adversary can only do so much damage

(maximum amount of work to do minimum
damage)

 How do bids interfere with future
resources?

Biggest Challenge: Deployment

 Legitimate clients have to implement
this system for this to be used

 Without legitimate servers, legitimate
clients won’t install it

 If servers install it first, adversaries can
take advantage of it

Auction Protocol
Client:
Sets target puzzle difficulty to 0
and puzzle solution X to 0, generates Nc

Creates request rc and sends to Server

Server:
Upon receipt of rc,
checks if Ncexists in any of the
service requests in buffer,
if so sends service failure to client,
with current server nonce Ns

Client

Server

Auction Protocol
Client

Server

Server:
Checks buffer queue of service
requests. If it’s not full, adds rc
to buffer queue

Server:
1) Checks puzzle difficulty of
existing service requests in buffer
2) If there is a difficulty lower than rc’s,
drop that request and add rc

3) Otherwise, send notification of service
failure with server nonce Ns

Auction Protocol
Client

Server

Client:
Brute force searches puzzle
solution, until puzzle difficulty
is either greater than the
target puzzle difficulty or its
maximum number of hash operations

Server:
Periodically checks buffer queue
for completed requests
and clears them

Auction Protocol
Client

Server

Client:
Upon notification of service
failure, extracts Ns and increases
its bid

Client:
Brute force searches puzzle
solution, until puzzle difficulty
is either greater than the
target puzzle difficulty or its
maximum number of hash operations

TCP Puzzle Auction

 Defends against connection-depletion
attacks on TCP

 Negligible overhead to server

 Interoperable with clients that have
unmodified kernels

TCP Client Puzzle

 X: Puzzle solution

 Nc: source IP address (SIP), destination IP
address (DIP), source port (SP), destination port
(DP), initial sequence number (ISN)

 Ns: hash function with client IP address and
server secret as input
– Changes after each nonce period
– Server secret increases for each nonce

period

HASHHASH
Ns

Secret
Timer

SIP

TCP Client Puzzle

HASHHASH

000000001MMMMMMMMMMM000000001MMMMMMMMMMM

Ns DIP SP DP ISN X

Puzzle Difficulty

Replace first x bits of hash with 0 to modify difficulty

TCP Puzzle Auction

Client Server

First SYN

SYN(X0)

RST(Ns)

SYN (X1)

SYN/ACK

ACK

Raise the bid and
re-transit SYN

If Dif(X) <= minimum
bid, in the buffer, drop
request

If Dif(X) > minimum bid,
queue the request

Implementation

 Client
– Pentium Pro 199 Mhz machine with 64MB

memory

 Server
– Intel PIII/600 with 256MB memory

 Attacker
– Two Intel PIII/1GHz CPUs and 1GB memory

 All have 2.4.17 Linux kernel
 On 100Mbps campus network

Experiment Results

 Study 1: Puzzle overhead
– Connection time of 255.4 µs vs. 250.8 µs

ν Study 2: System Performance
– Two server settings

• 9 seconds to discard half-open connections (Setting 2)

• 3 seconds to discard half-open connections (Setting 1)

– Two strategies
• Bid & Query (BQ)

• Incremental Bidding (IB)

Server Performance
Average connection time under attacks

0

10

20

30

40

50

60

70

0 5 10 15

Level of difficulty to which attacker set puzzles

A
v
e
ra

g
e
 c

o
n

n
e
ct

io
n

ti

m
e
 o

f
th

e
 l
e
g

it
im

a
te

cl

ie
n

t
(m

il
li
se

co
n

d
s)

BQ in Setting 2

BQ in Setting 1

IB in Setting 2

IB in Setting 1

Analysis of Results

 IB & BQ so close

 Why does this happen?

 What does this mean?

Summary (Technical
Contributions)

 Applies auction protocol to client
puzzles

 Compatible with unmodified kernels

 Server does not have to determine
when it is under attack

 Evens playing field between legitimate
clients and adversaries

Waters, et al. paper

Questions

Critique

Client Puzzle Reuse

 Client can tailor puzzles to a specific
server

 Each puzzle can be “re-used” at
different servers

 Adversary can take advantage of this
side effect

Bastion

 Bastion is integral to this scheme

 No analysis of bastion in the author’s
implementation
– How secure is the bastion?

– Will this scheme work if the bastion is
compromised?

Offline computation

 How does client know which servers it
will access a priori?

 Is it possible to modify the scheme so
that offline computation is practical?

Calculating T

 Paper sets T at 20 mins.
– Client may have to wait 20 mins. at startup

– Is this practical?

 Why not decrease T?

Calculating T
 Empirical Results: Finding 100, 20 bit partial

collisions

 Brute force on the slowest machine was 260s
vs. 20 mins. wait time

CPU Speed Memory Size HashCash (in seconds)
398.252MHz 128MB 269.904
1.6GHz 256MB 149.962
3.2GHz 1GB 36.818
2GHz 3GB 69.290
797MHz 512MB 47.544

Figure 1 - 100% CPU?
Performance During TCP SYN Flood Attacks

0

20000

40000

60000

80000

100000

0 25 50 75 100

System Load (%)

A
tt

a
ck

S

tr
e
n

g
th

(p

a
ck

e
ts

/
se

c)

Linux syncookies Our scheme

Our scheme with solving SHA-1 puzzles

Linear (Linux syncookies) Linear (Our scheme)

Linear (Our scheme with solving) Linear (SHA-1 puzzles)

Figure 1 Modified
Performance During TCP SYN Flood Attacks

0

5000

10000

15000

20000

0 5 10 15 20

System Load (%)

A
tt

a
c
k

S
tr

e
n

g
th

(p

a
c
k
e
ts

/
s
e

c
)

Linux syncookies Our scheme

Our scheme with solving SHA-1 puzzles

Linear (Linux syncookies) Linear (Our scheme)

Linear (Our scheme with solving) Linear (SHA-1 puzzles)

Analysis & Assumptions

 Channels not varied at all

 Computing advances will benefit clients
– Doesn’t it benefit adversaries also?

Assumptions

 Adversary has 50 zombie machines
– “Know your Enemy: Tracking Botnets”

http://www.honeynet.org/papers/bots/

– Tracked 100 botnets over 4 months

– 226,585 unique IP addresses joining at
least one of the channels

– Some large botnets up to 50,000 hosts

Additional comments/questions?

