Client Puzzles

E D RN R e

Defending Against Denial-of-
Service Attacks with Puzzle
Auctions

TN NI s

Outline

= Motivation

= Auction Protocol

m TCP Puzzle Auction
m TCP Client Puzzle
® Implementation

m Experiment Results
m Questions

Defending Against Denial-of-Service Attacks
with Puzzle Auctions
[Wang & Reiter, IEEE Symposium on Security and Privacy ‘03]

m Clients choose puzzle difficulty

m Whoever solves hardest puzzle, gets
- server resources

a

Auction Protocol Motivation

m Determining if a server is under attack
is difficult

m Clients determine whether server is

under attack (based on request
fulfillment)

m Clients don’t have to do work unless
server is under attack

m Adversaries resources unknown

Auction Protocol

m Why client chooses difficulty?
— Client and adversary resources unknown

— Relative amount of resources yields the
puzzle difficulty

— Adversary can only do so much damage
(maximum amount of work to do minimum
damage)

m How do bids interfere with future
resources?

_l RENE mn

Biggest Challenge: Deployment

m Legitimate clients have to implement
this system for this to be used

m Without legitimate servers, legitimate
clients won't install it

m |f servers install it first, adversaries can
take advantage of it

Auction Protocol

Client Client:
Sets target puzzle difficulty to O

and puzzle solution X to 0, generates N,
Creates request r, and sends to Server

Server:
Upon receipt of r,

checks if N_exists in any of the
service requests in buffer,
if so sends service failure to client, Server
with current server nonce N

Auction Protocol

Client Server:
Checks buffer queue of service

requests. If it's not full, adds r,
to buffer queue

Server:
1) Checks puzzle difficulty of
existing service requests in buffer
2) If there is a difficulty lower than r_'s,
drop that request and add r,

3) Otherwise, send notification of service
failure with server nonce N,

Auction Protocol

Client Server:

Periodically checks buffer queue
for completed requests
and clears them

Client:
Brute force searches puzzle
solution, until puzzle difficulty
is either greater than the
target puzzle difficulty or its
maximum number of hash operations

Auction Protocol

Client Client:
Upon notification of service

failure, extracts N, and increases
its bid

Client:
Brute force searches puzzle
solution, until puzzle difficulty
is either greater than the
target puzzle difficulty or its
maximum number of hash operations

TCP Puzzle Auction

m Defends against connection-depletion
attacks on TCP

m Negligible overhead to server

m Interoperable with clients that have
unmodified kernels

TN NI s

TCP Client Puzzle

m X: Puzzle solution

O NCZ source |IP address (SIP), destination IP

address (DIP), source port (SP), destination port
(DP), initial sequence number (ISN)

m N, hash function with client IP address and
server secret as input

— Changes after each nonce period

— Server secret increases for each nonce
period

Secret
N
Timer S _,
SIP

Puzzle Difficulty

Replace first x bits of hash with 0 to modify difficulty

E TCP Client Puzzle
]

TCP Puzzle Auction

' Server
Client SYN(XO) .
First SYN If Dif(X) <= minimum
< RST(N,) bid, in the buffer, drop
: : SYN (X1) request
Raise the bid and >
re-transit SYN
SYN/ACK _ o _
< If Dif(X) > minimum bid,

ACK , queue the request

Implementation

m Client

— Pentium Pro 199 Mhz machine with 64MB
memory

m Server
— Intel PI1l/600 with 256 MB memory

m Attacker
— Two Intel PllII/1GHz CPUs and 1GB memory

m All have 2.4.17 Linux kernel
m On 100Mbps campus network

a

Experiment Results

m Study 1: Puzzle overhead
— Connection time of 255.4 us vs. 250.8 us

v Study 2: System Performance

— Two server settings
* 9 seconds to discard half-open connections (Setting 2)
« 3 seconds to discard half-open connections (Setting 1)
— Two strategies
» Bid & Query (BQ)
 Incremental Bidding (IB)

Server Performance

Average connection time under attacks
70
D~
S TB' W 6o
- O
= £ £
QB 9 5o
Do BQ in Setting 2
£ 9 °
O o= Ny \ —#—-BQ in Setting 1
oS E IB in Setting 2
(=) IR ®
C o o 20 | IB in Setting 1
QoOg
2 E =10 -
= o
0 = ‘ : b3

0 5 10 15

- Level of difficulty to which attacker set puzzles

Analysis of Results

m |IB & BQ so close
m Why does this happen?
» What does this mean?

Summary (Technical
Contributions)

m Applies auction protocol to client
puzzles

m Compatible with unmodified kernels

m Server does not have to determine
when it Is under attack

m Evens playing field between legitimate
] clients and adversaries

a

Waters, et al. paper

DE) RN e

mQuestions
uCritique

Client Puzzle Reuse

m Client can tailor puzzles to a specific
server

m Each puzzle can be “re-used” at
different servers

m Adversary can take advantage of this
side effect

Bastion

m Bastion is integral to this scheme

m No analysis of bastion in the author’s
implementation
— How secure is the bastion?

— Will this scheme work if the bastion is
compromised?

Offline computation

m How does client know which servers it
will access a priori?

m [s it possible to modify the scheme so
that offline computation is practical?

Calculating T

m Paper sets T at 20 mins.
— Client may have to wait 20 mins. at startup
— Is this practical?

m Why not decrease T7?

Calculating T

m Empirical Results: Finding 100, 20 bit partial
collisions

g CPU Speed Memory Size HashCash (in seconds)
398.252MHz 128MB 269.904
1.6GHz 256MB 149.962
3.2GHz 1GB 36.818
2GHz 3GB 69.290
797MHz 512MB 47.544
=

m Brute force on the slowest machine was 260s
vsS. 20 mins. wait time

TN NI s

Figure 1 - 100% CPU?

Performance During TCP SYN Flood Attacks

—_ 100000
O
- 8 80000
= =
QO O 5 60000
0 C w
599 L0000
-
< e U - x
VW © 20000 [
= 4/‘.“'{‘-'&'
Nt 0 = =-= I I I
0 25 50 75 100
System Load (%)
Linux syncookies ® Qur scheme
Our scheme with solving SHA-1 puzzles
------ Linear (Linux syncookies) ———-Linear (Our scheme)
Linear (Our scheme with solving) —--—-Linear (SHA-1 puzzles)

TN NI s

Figure 1 Modified

Attack
Strength
(packets/se
c)

Performance During TCP SYN Flood Attacks

20000

15000

10000

5000

0 ¢

System Load (%)

Linux syncookies ® Qur scheme
Our scheme with solving SHA-1 puzzles

------ Linear (Linux syncookies) ———-Linear (Our scheme)
Linear (Our scheme with solving) —--—-Linear (SHA-1 puzzles)

Analysis & Assumptions

m Channels not varied at all

m Computing advances will benefit clients
— Doesn’t it benefit adversaries also?

Assumptions

m Adversary has 50 zombie machines
— "Know your Enemy: Tracking Botnets”
http://www.honeynet.org/papers/bots/
— Tracked 100 botnets over 4 months

— 226,585 unique IP addresses joining at
least one of the channels

— Some large botnets up to 50,000 hosts

Additional comments/questions?

DE) RN e

