Building an Encrypted
and Searchable Audit Log

Waters, Balfanz, Durfee & Smetters

Presenter: Matthew Green

Talk Outline

@ Searches on Encrypted Data:
Background & Previous Work

@ Secure Audit Logs, The Scheme
@ Extensions and Recent Work
@ Implementation: Where is i1?

@ Open Problems

Searching Encrypted Data?

@ Search ciphertexts based on contents

@ Maintain confidentiality, allow searchers tfo
detect certain elements, e.qg. keyword

@ Notions of security, Dictionary attacks?

E "3100 Wyman Park
k Drive, Baltimore”

Delegated Searching

@& Contact the Keyholder for authorization to

search on a particular term

Let me search for “Water”?

- Authorization

Keyholder

Secret Keys

Delegating: Motivation

@ Motivation is twofold:

@ Efficiency: keyholder can offload search
workloads to somebody else, reduce
bandwidth

@ Reduce size of Trusted Computing Base

Keyholder

Trusted Computing Base

D) DB DB DB
Creator Se“‘.”Ch
Device

) = Fully Trusted

Reducing a Trusted
Computing Base

Keyholder
DB| (online?) | DB

/ |

Search
Device

) = Fully Trusted Q) = semi-Trusted

DB DB

Creator

Song, Wagner & Perrig

@ Plaintext is divided into words, wi ... wp

@ Encrypted with a symmeftric-key stream
cipher

Song, Wagner & Perrig

Plaintext

Ciphertext

Stream Cipher

SW&P, Searching

(now s the time for all i)

XOR XOR XOR

Search delegation: keyholder reveals Kk, to allow tests on
<Si, fk(Si)>

Secure Indexes (Goh)

® Goh introduces IND-CKA, IND2-CKA model
for ciphertexts

@ IND-CKA: A ciphertext reveals no
information unless you search for the
precise keyword

@ IND-CKAZ2: As above, reveals no
information about the # of keywords

Audit Logs

@ Record activity that takes place on a
server/device.

@ Log attacks/unauthorized usage

@ Should be efficiently searchable by
authorized users (e.g., searches by username
or activity type)

Audit Log Attacks

@ Attacker gains total control of machine and
all of its secrets. There are three primary
threats to the audit log:

@ Destruction (total or selective)
@ Modification, e.g. to cover attack ftrail

@ Examination, e.g. to recover usage data &
other potentially useful information

Protecting Log Integrity

@ Schneier & Kelsey: Cryptographic Protection
for Audit Logs

@ Ensures integrity & privacy of log entries
written before compromise

@ (cant save entries written afterwards!)

Schneier/Kelsey

— Y = H(Y:?'—lﬂEKj (Dj), W;)

MAC 4, (Y;) ~—
]

Y; Zj

Integrity & Privacy

® S&K use a hash-chain to guarantee security/
integrity of older log entries

® Forward Secure

Ay

kn - F(An)
kmn - F’(An)

Integrity & Privacy

@ Decryption requires the original secret (or
some intermediate version)

@ Search requires full decryption

® Must be absolutely sure Aq. is eradicated

h h h

Ay

kn - F(An)
kmn - F,(An)

Selective Record Types

@ We can limit which records a user can
decrypt, by deriving keys based on public
record types

h

h h

Ay

Type = (critical) (routine) (private) (routine)

kn - F(Type, An)
kmn = F’(Type, An)

Decrypting a Log

@ Contact the Trusted Manager for a
decryption key on any log entries you want

@ Specify entry types (or keys wont work)

Might I decrypt entries 40-800 of types {....}?

y
Kso, ..., Kgoo

Secret Keys

Time-based Access

@ Schneier/Kelsey can provide time-based
decryptions (or search)

A, h h
I
A1
!
AI,Z kn = F(An) A4,2

} Kmn = £'(An) |

Identity Based Encryption

@ First proposed by Shamir in 1984, actual
schemes by Cox, then Boneh & Franklin

@ Anyone can compute a Public Key from
some public Info + a string

@ PKG can generate a Secret Key from the
string + some secret Info

*mareen@cs. jhu.edu” *mareen@cs. jhu.edu”

PK: + SK= +
PKm SKm

Elliptic Curves

@ Based on Curve Points (e.g, P, Q.)

@ Point Addition, similar to integer
multiplication:
P+Q)=(@Q+P),(@Q + <unity>) = Q

@ Scalar Multiplication, similar to
exponentiation:
eg:5*P=FP+P+P+P+P)
FERD SR
q * P = P (where q is the order)

Cryptographic
Assumptions

@ Discrete Logarithm Problem:
Given g® mod p, find a

@ Computational Diffie-Hellman Problem:

Given g° & g@° find g*° (mod p)

Elliptic Curve
Assumptions

@ EC-Discrete Logarithm Problem:
Given aP, find a

@ EC-Computational Diffie-Hellman Problem:
Given aP & bP, find abP

Bilinear Pairings

@ A Bilinear Pairing is a function
e(Gl, Gl) -> G2 with the following properties:

@® Non-degeneracy. For generator points
<P, Q> in Gl, e(P, Q) is a generator of G2

@ Bilinearity. e(aP, bQ) = e(P, Q)%

@ One Way. No way to map back from G2 to
Gl

Pairings != CDH

e(aP, bP) e(P, P)ab

Fun With Pairings

Public Key = sP

Gl

e(P, P)=
Hash_to_Point(“foobar”) = zP

Boneh & Franklins IBE

@ A pairing e(P, Q) -> Z,
Two hash functions: Hash__to_Point(), H()

@ Public Parameters: (curve params, p, q, P)

@ SKm = S, PKM = o

B & F's IBE Encryption

® GET_PK(PKm = sP, “<keystring>“):
PK = e(Hash_to_Point(“<keystring>“, sP)
= e(zP , SP)
= e(P, P)*z

® GET_SK(SKm = s, “<keystring>”):

SK = s * Hash_to_Point("<keystring>”)
=s * zpP
= szP

B & F's IBE Decryption

@ IBE_ENC(M, PK = e(P, P)%):
r = random int from Z,
C = <rP, M XOR H(PK")>

@ IBE_DEC(C, SK = szP):
e(rP, szP) = e(P, P)sz"
Hash e(P, P)s?", then XOR to recover M

Boneh, Crescenzo,
Ostrovsky & Persiano

® Same scheme as Waters (independently discovered)

@ Provides a real security model

Creating a Log Entry

 IBE-ENC(PK(“Gas"), <flag | K»)

IBE-ENC(PK("Water”), <flag | K>)

Searching, Step 1

@ Contact the Trusted Manager for a search

key on a parfticular term

Let me search for “Water”?

- SK(“Water”)

Manager

SKm

Searching, Step 2

SK("Water”) | IBE-ENC(PK(“Gas ag | K>)

\\ ;
IBE-ENC(PK("Water”), <flag | K>)

Adding Time

@ Simple approach: append a Time period to
IBE keystrings, e.g.:

IBE-ENC(PK(“Gas || 9-14-04"), <flag | K>)

@ Searcher indicates fime period when
requesting IBE Secret Key

® Must still fry all records

Caching IBE Public Keys

@ To produce an IBE ciphertext, we generate
an IBE Public Key.

@ Key Gen is the most expensive operation,
requiring up to 175ms (thats per
keyword!)

@ To save time, we could cache these keys
for later reuse

@ The downside: If an adversary captures this
cache, they learn which keywords have been
active recently

Batching Keywords

@ n * m Keyword Ciphertexts
n = total log entries

m = average

of keywords per entry

@ Log generation & Search time proportional

@ Many common keywords will be repeated,
can we be more efficient than?

Does Batching Help?

@ Batching reduces the number of ciphertexts

from (m)n to t, where t is total
keywords in the block

of unique

@ Batching reduces waste for the most
common keywords, but what about the

uncommon ones?

® Who searches on common words, anyway?

Block Batching Example

“water”: 1,2,4 | ki, k2, ks Ko

“electricity”: 3, 49 | ks, Kag
“snorkles”: 24 | ka4

| “spork”: 33 | kss3 |

Davis, Monrose & Reiter

entry; .

entry; .

entry; .

entry; .

\/

@ Uses “backpointers” to link groups of
keywords within a time period

@ Advantages of batching, but doesnt keep the
log open (unwritten) for long periods

Randomness Re-use

@ To search a block of n keywords requires n
pairing computations
C = <rP, M XOR h(e(P, P)*)>
e(rp, SK(HKQYWOFd”)) = e(p, p)szr

® We can reduce this if we re-use the same
value r for each keyword in a batch

Randomness Re-use

@ We can use <rP> for a group of ciphertexts,
and only store the second term:

cl = <flag | k> XOR h(e(P, P)?)
c2 = <flag | k> XOR h(e(P, P)s?)
c3 = <flag | k> XOR h(e(P, P)sz")

@ Only one pairing, but still have to XOR with
many ciphertexts

A Slightly Better Approach

o PK("water”) = e(sP, Hash_to_Point(“water®))
= e(P, P)*=

o SK(“water”) = s * Hash_to_Point(“water”)) = szP

h'(e(P, p)szr) “wa’rer": 1,2,4 | k1,k2,k4,|(19

“qas”: 14, 20, 27 | Kis,Kz0,K27

“electricity”: 3, 49 | ks, K

\ “snorkles”: 24 | ks

“ "petunia”: 4 | k4

h'(e(P, P)=") “spork”: 33 | K3

Waters’ Implementation

@ Waters et al. implemented the IBE-based
scheme to log SQL queries (MySQL Proxy)

@ Used Stanford IBE Library, 1024-bit
supersingular curves (q=160); AES 128-bit
2.8GHz Pentium 1V

@ Hash-chain integrity checking

Implementation:
Optimizations Used

@ IBE Public Key Caching:
PK generation + encryption = 180ms

encryption only (cached key) = 5ms
100MB Cache -> 800,000 Public Keys

Websters Dictionary: 300,000 words

® Randomness Re-use

Implementation: Ok, and...?

@ Implementation reveals the pairing
computation time, encryption time-- and not
much else

@ Is it practical? Where are your
performance numbers and graphs? What
data are you storing? Can we have the
source code?

Open Problems

@ Reducing storage & computational costs

® Better security models, reduced involvement
of keyholder

@ New approaches, or incremental
Improvements?

Other Problems

@ In the Song scheme, all keywords in the
document are searchable

@ In the Goh scheme (and many others),
relevant keywords chosen by data creator

@ Subtler concerns: What if keywords are
not chosen correctly? What if data
creator is malicious?

Revoking Search Keys

@ We might want to revoke a search key after
we've given it out

@ A possible approach:

@ Re-encrypt all keywords under new IBE
Keys

@ e.g.: 'Gas” -> "Gas || 2”

Revoking through Dumb
Re-encryption

D —

Keyholder DB

—>

(Decrypt) «<— IBE-ENC(PK(“Gas”), ...)
!

<plaintext>

}
(Encrypt) — IBE-ENC(PK(“Gasl|2”), ...)

Revoking through Proxy
Re-encryption?

RK
Keyholder| — DB

IBE-ENC(PK(“Gas”), ...)
}
(Re-Encrypt)

|
IBE-ENC(PK(“Gasll2”), ...)

Trusted Computing Base

DB DB DB DB

Waters et al.
Symmetric-Key Scheme

 hs("Gas”) XOR <flag | K>

hs(“Water”) XOR <flag | K>

Secret Key = S

Waters et al.
Symmetric-Key Scheme

4 cl = hqa(r) XOR <flag | K'l>

c3 = ha3(r) XOR <flag | K>

Master Secret = S

-"C11=h5("GGS")
a>=hs(“Food”)

as=hs("Water”)

Symmetric, Searching

Let me search for “Water”?

>

a=hs("Water”)

Keyholder

cl XOR a = "?2??"

c2 XOR a = <flag | key>

c3 XOR a = "?2??”

S

Reducing a Trusted
Computing Base

Keyholder

Reducing a Trusted
Computing Base

wh,
% S
i, Faid
- L Tl
¥ E gy
T

-1

SK(“Water”)

