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Searching Encrypted Data?

Search ciphertexts based on contents

Maintain confidentiality, allow searchers to 
detect certain elements, e.g. keyword

Notions of security, Dictionary attacks?

“3100 Wyman Park 
Drive, Baltimore”Ek( )



Delegated Searching

Contact the Keyholder for authorization to 
search on a particular term

 
Searcher Keyholder

Let me search for “Water”?

Authorization
Secret Keys



Delegating: Motivation

Motivation is twofold:

Efficiency: keyholder can offload search 
workloads to somebody else, reduce 
bandwidth

Reduce size of Trusted Computing Base

Keyholder



Trusted Computing Base

DB DB

Search 
Device

= Fully Trusted

DB DB

Creator



Reducing a Trusted 
Computing Base

DB DB

Search 
Device

= Fully Trusted

DB
Keyholder
(online?) DB

= Semi-Trusted

Creator



Schemes



Song, Wagner & Perrig

Plaintext is divided into words, w1 ... wn

Encrypted with a symmetric-key stream 
cipher

“now” “is” “the” “time” “all” ...

c1 c2 c3 c4 c6 c7

<keystream>
+

=

“for”

c5



Song, Wagner & Perrig



SW&P, Searching

“time”
XOR

S4,fk(S4)

=
“time”
XOR

<???>

=

c1 c2 c3 c4 c6 c7c5

“time”
XOR

<???>

=

(now    is     the   time    for    all     ...)

Search delegation: keyholder reveals k, to allow tests on 
<Si,fk(Si)>



Secure Indexes (Goh)

Goh introduces IND-CKA, IND2-CKA model 
for ciphertexts

IND-CKA: A ciphertext reveals no 
information unless you search for the 
precise keyword

IND-CKA2: As above, reveals no 
information about the # of keywords



Audit Logs

Record activity that takes place on a 
server/device.

Log attacks/unauthorized usage

Should be efficiently searchable by 
authorized users (e.g., searches by username 
or activity type)



Audit Log Attacks

Attacker gains total control of machine and 
all of its secrets.  There are three primary 
threats to the audit log:

Destruction (total or selective)

Modification, e.g. to cover attack trail

Examination, e.g. to recover usage data & 
other potentially useful information



Protecting Log Integrity

Schneier & Kelsey: Cryptographic Protection 
for Audit Logs

Ensures integrity & privacy of log entries 
written before compromise

(can’t save entries written afterwards!)



Schneier/Kelsey



Integrity & Privacy

S&K use a hash-chain to guarantee security/
integrity of older log entries

Forward Secure

A1 A2 A3 A4
h h h

kn = f(An)
kmn = f’(An)



Integrity & Privacy

Decryption requires the original secret (or 
some intermediate version)

Search requires full decryption

Must be absolutely sure An-1 is eradicated

A2 A3 A4
h h h

kn = f(An)
kmn = f’(An)

A1



Selective Record Types

We can limit which records a user can 
decrypt, by deriving keys based on public 
record types

A2 A3 A4
h h h

kn = f(Type, An)
kmn = f’(Type, An)

A1

Type =  (critical)  (routine)  (private)  (routine)  



Decrypting a Log
Contact the Trusted Manager for a 
decryption key on any log entries you want

Specify entry types (or keys won’t work)

Auditor Manager

Might I decrypt entries 40-800 of types {....}?  

k40, ..., k800
Secret Keys



Time-based Access

Schneier/Kelsey can provide time-based 
decryptions (or search)

A2 A3 A4
h h h

kn = f(An)
kmn = f’(An)

A1

A1,1

A1,2

A4,1

A4,2



Identity Based Encryption
First proposed by Shamir in 1984, actual 
schemes by Cox, then Boneh & Franklin

Anyone can compute a Public Key from 
some public Info + a string

PKG can generate a Secret Key from the 
string + some secret Info

“mgreen@cs.jhu.edu”
+

PKM

PK= SK=
“mgreen@cs.jhu.edu”

+
SKM PKG



Elliptic Curves

Based on Curve Points (e.g, P, Q.)

Point Addition, similar to integer 
multiplication:
  (P + Q) = (Q + P), (Q + <unity>) = Q

Scalar Multiplication, similar to 
exponentiation:
  e.g.: 5 * P = (P + P + P + P + P)
  1 * P = P
  q * P = P (where q is the order)



Cryptographic 
Assumptions

Discrete Logarithm Problem:
  Given ga mod p, find a

Computational Diffie-Hellman Problem:
  Given ga & gb, find gab (mod p)
  



Elliptic Curve 
Assumptions

EC-Discrete Logarithm Problem:
  Given aP, find a

EC-Computational Diffie-Hellman Problem:
  Given aP & bP, find abP
  



Bilinear Pairings

A Bilinear Pairing is a function 
e(G1, G1) -> G2 with the following properties:

Non-degeneracy.  For generator points 
<P, Q> in G1, e(P, Q) is a generator of G2

Bilinearity.  e(aP, bQ) = e(P, Q)ab

One Way. No way to map back from G2 to 
G1



Pairings != CDH

G1 G2

e(aP, bP) e(P, P)ab



Fun With Pairings

G1 G2

Hash_to_Point(”foobar”) = zP

e(P, P)sz

Public Key = sP



Boneh & Franklin’s IBE

A pairing e(P, Q) -> Zq

Two hash functions: Hash_to_Point(), H()

Public Parameters: (curve params, p, q, P) 

SKM = s, PKM = sP



B & F’s IBE Encryption

GET_PK(PKM = sP, “<keystring>”):
PK = e(Hash_to_Point(”<keystring>”, sP)
    = e(zP                            , sP)
    = e(P, P)sz

GET_SK(SKM = s, “<keystring>”):
SK = s * Hash_to_Point(”<keystring>”)
    = s * zP 
    = szP



B & F’s IBE Decryption

IBE_ENC(M, PK = e(P, P)sz):
r = random int from Zq

C = <rP, M XOR H(PKr)>

IBE_DEC(C, SK = szP):
e(rP, szP) = e(P, P)szr
Hash e(P, P)szr, then XOR to recover M



Boneh, Crescenzo, 
Ostrovsky & Persiano

Same scheme as Waters (independently discovered)

Provides a real security model



Creating a Log Entry

EK(”mgreen searched for ... ‘Gas’, 
‘Electricity’, ‘Water’ ... ”)

IBE-ENC(PK(”Gas”), <flag | K>)

IBE-ENC(PK(”Electricity”), <flag | K>)

IBE-ENC(PK(”Water”), <flag | K>)

EPK(K), H(this record || H(last record))



Searching, Step 1

Contact the Trusted Manager for a search 
key on a particular term

 
Searcher Manager

Let me search for “Water”?

SK(”Water”)
SKM



Searching, Step 2

EK(”mgreen searched for ... ‘Gas’, 
‘Electricity’, ‘Water’ ... ”)

IBE-ENC(PK(”Gas”), <flag | K>)

IBE-ENC(PK(”Electricity”), <flag | K>)

IBE-ENC(PK(”Water”), <flag | K>)

EPK(K) ...

IBE_DEC
SK(”Water”)



Adding Time

Simple approach: append a Time period to 
IBE keystrings, e.g.:

Searcher indicates time period when 
requesting IBE Secret Key

Must still try all records

IBE-ENC(PK(”Gas || 9-14-04”), <flag | K>)



Caching IBE Public Keys
To produce an IBE ciphertext, we generate 
an IBE Public Key.

Key Gen is the most expensive operation, 
requiring up to 175ms (that’s per 
keyword!)

To save time, we could cache these keys 
for later reuse

The downside: If an adversary captures this 
cache, they learn which keywords have been 
active recently



Batching Keywords

n * m Keyword Ciphertexts
n = total log entries
m = average # of keywords per entry

Log generation & Search time proportional

Many common keywords will be repeated, 
can we be more efficient than?



Does Batching Help?

Batching reduces the number of ciphertexts 
from (m)n to t, where t is total # of unique 
keywords in the block

Batching reduces waste for the most 
common keywords, but what about the 
uncommon ones?

Who searches on common words, anyway?



Block Batching Example

“water”: 1,2,4 | k1,k2,k4,k19

“gas”: 14, 20, 27 | k14,k20,k27

“electricity”: 3, 49 | k3, k49

Entry 1 Entry 50...

“snorkles”: 24 | k24

“petunia”: 4 | k4

“spork”: 33 | k33



Davis, Monrose & Reiter

Uses “backpointers” to link groups of 
keywords within a time period

Advantages of batching, but doesn’t keep the 
log open (unwritten) for long periods

c4entryic3entryic2entryic1entryiA



Randomness Re-use 

To search a block of n keywords requires n 
pairing computations
  C = <rP, M XOR h(e(P, P)szr)>
  e(rP, SK(”keyword”)) = e(P, P)szr

We can reduce this if we re-use the same 
value r for each keyword in a batch
 



Randomness Re-use

We can use <rP> for a group of ciphertexts, 
and only store the second term:

c1 = <flag | k> XOR h(e(P, P)rsz)
c2 = <flag | k> XOR h(e(P, P)rsz’)
c3 = <flag | k> XOR h(e(P, P)rsz’’)

Only one pairing, but still have to XOR with 
many ciphertexts



A Slightly Better Approach
PK(”water”) = e(sP, Hash_to_Point(”water”))
 = e(P, P)sz

SK(”water”) = s * Hash_to_Point(”water”)) = szP

“water”: 1,2,4 | k1,k2,k4,k19

“gas”: 14, 20, 27 | k14,k20,k27

“electricity”: 3, 49 | k3, k49

“snorkles”: 24 | k24

“petunia”: 4 | k4

“spork”: 33 | k33

rP

h’(e(P, P)szr)
...
...
...
...

h’(e(P, P)sz’r)

{



Waters’ Implementation

Waters et al. implemented the IBE-based 
scheme to log SQL queries (MySQL Proxy)

Used Stanford IBE Library, 1024-bit 
supersingular curves (q=160); AES 128-bit
2.8GHz Pentium IV

Hash-chain integrity checking



Implementation:
Optimizations Used

IBE Public Key Caching:
PK generation + encryption = 180ms
encryption only (cached key) = 5ms
100MB Cache -> ~800,000 Public Keys

Webster’s Dictionary: 300,000 words

Randomness Re-use



Implementation: Ok, and...?

Implementation reveals the pairing 
computation time, encryption time-- and not 
much else

Is it practical?  Where are your 
performance numbers and graphs?  What 
data are you storing?  Can we have the 
source code?



Open Problems

Reducing storage & computational costs

Better security models, reduced involvement 
of keyholder

New approaches, or incremental 
improvements?



Other Problems

In the Song scheme, all keywords in the 
document are searchable

In the Goh scheme (and many others), 
relevant keywords chosen by data creator

Subtler concerns: What if keywords are 
not chosen correctly?  What if data 
creator is malicious?



END



Revoking Search Keys

We might want to revoke a search key after 
we’ve given it out

A possible approach:

Re-encrypt all keywords under new IBE 
keys

e.g.: “Gas” -> “Gas || 2”



Revoking through Dumb 
Re-encryption

Keyholder DB

IBE-ENC(PK(”Gas”), ...)

<plaintext>

IBE-ENC(PK(”Gas||2”), ...)

(Decrypt)

(Encrypt)



Revoking through Proxy 
Re-encryption?

Keyholder DB

IBE-ENC(PK(”Gas”), ...)

IBE-ENC(PK(”Gas||2”), ...)

(Re-Encrypt)

RK





Trusted Computing Base

DB DB

= Fully Trusted

DB DB



Waters et al. 
Symmetric-Key Scheme

EK(”mgreen searched for ... ‘Gas’, 
‘Electricity’, ‘Water’ ... ”)

hS(”Gas”) XOR <flag | K>

hS(”Electricity”) XOR <flag | K>

hS(”Water”) XOR <flag | K>

Secret Key = S



Waters et al. 
Symmetric-Key Scheme

EK(”mgreen searched for ... ‘Gas’, 
‘Electricity’, ‘Water’ ... ”), r

c1 = ha1(r) XOR <flag | K>

c2 = ha2(r) XOR <flag | K>

c3 = ha3(r) XOR <flag | K>

Master Secret = S

a1=hS(”Gas”)

a2=hS(”Food”)

a3=hS(”Water”)



Symmetric, Searching

Searcher Keyholder

Let me search for “Water”?

a=hS(”Water”)
S

c1 XOR a = “???”

c2 XOR a = <flag | key>

c3 XOR a = “???”



Reducing a Trusted 
Computing Base

Keyholder



Reducing a Trusted 
Computing Base

DB DB

Search 
Device

DB Keyholder DB

SK(”Water”)


