
Building an Encrypted
and Searchable Audit Log

Waters, Balfanz, Durfee & Smetters

Presenter: Matthew Green

Talk Outline

Searches on Encrypted Data:
Background & Previous Work

Secure Audit Logs, The Scheme

Extensions and Recent Work

Implementation: Where is it?

Open Problems

Searching Encrypted Data?

Search ciphertexts based on contents

Maintain confidentiality, allow searchers to
detect certain elements, e.g. keyword

Notions of security, Dictionary attacks?

“3100 Wyman Park
Drive, Baltimore”Ek()

Delegated Searching

Contact the Keyholder for authorization to
search on a particular term

Searcher Keyholder

Let me search for “Water”?

Authorization
Secret Keys

Delegating: Motivation

Motivation is twofold:

Efficiency: keyholder can offload search
workloads to somebody else, reduce
bandwidth

Reduce size of Trusted Computing Base

Keyholder

Trusted Computing Base

DB DB

Search
Device

= Fully Trusted

DB DB

Creator

Reducing a Trusted
Computing Base

DB DB

Search
Device

= Fully Trusted

DB
Keyholder
(online?) DB

= Semi-Trusted

Creator

Schemes

Song, Wagner & Perrig

Plaintext is divided into words, w1 ... wn

Encrypted with a symmetric-key stream
cipher

“now” “is” “the” “time” “all” ...

c1 c2 c3 c4 c6 c7

<keystream>
+

=

“for”

c5

Song, Wagner & Perrig

SW&P, Searching

“time”
XOR

S4,fk(S4)

=
“time”
XOR

<???>

=

c1 c2 c3 c4 c6 c7c5

“time”
XOR

<???>

=

(now is the time for all ...)

Search delegation: keyholder reveals k, to allow tests on
<Si,fk(Si)>

Secure Indexes (Goh)

Goh introduces IND-CKA, IND2-CKA model
for ciphertexts

IND-CKA: A ciphertext reveals no
information unless you search for the
precise keyword

IND-CKA2: As above, reveals no
information about the # of keywords

Audit Logs

Record activity that takes place on a
server/device.

Log attacks/unauthorized usage

Should be efficiently searchable by
authorized users (e.g., searches by username
or activity type)

Audit Log Attacks

Attacker gains total control of machine and
all of its secrets. There are three primary
threats to the audit log:

Destruction (total or selective)

Modification, e.g. to cover attack trail

Examination, e.g. to recover usage data &
other potentially useful information

Protecting Log Integrity

Schneier & Kelsey: Cryptographic Protection
for Audit Logs

Ensures integrity & privacy of log entries
written before compromise

(can’t save entries written afterwards!)

Schneier/Kelsey

Integrity & Privacy

S&K use a hash-chain to guarantee security/
integrity of older log entries

Forward Secure

A1 A2 A3 A4
h h h

kn = f(An)
kmn = f’(An)

Integrity & Privacy

Decryption requires the original secret (or
some intermediate version)

Search requires full decryption

Must be absolutely sure An-1 is eradicated

A2 A3 A4
h h h

kn = f(An)
kmn = f’(An)

A1

Selective Record Types

We can limit which records a user can
decrypt, by deriving keys based on public
record types

A2 A3 A4
h h h

kn = f(Type, An)
kmn = f’(Type, An)

A1

Type = (critical) (routine) (private) (routine)

Decrypting a Log
Contact the Trusted Manager for a
decryption key on any log entries you want

Specify entry types (or keys won’t work)

Auditor Manager

Might I decrypt entries 40-800 of types {....}?

k40, ..., k800
Secret Keys

Time-based Access

Schneier/Kelsey can provide time-based
decryptions (or search)

A2 A3 A4
h h h

kn = f(An)
kmn = f’(An)

A1

A1,1

A1,2

A4,1

A4,2

Identity Based Encryption
First proposed by Shamir in 1984, actual
schemes by Cox, then Boneh & Franklin

Anyone can compute a Public Key from
some public Info + a string

PKG can generate a Secret Key from the
string + some secret Info

“mgreen@cs.jhu.edu”
+

PKM

PK= SK=
“mgreen@cs.jhu.edu”

+
SKM PKG

Elliptic Curves

Based on Curve Points (e.g, P, Q.)

Point Addition, similar to integer
multiplication:
 (P + Q) = (Q + P), (Q + <unity>) = Q

Scalar Multiplication, similar to
exponentiation:
 e.g.: 5 * P = (P + P + P + P + P)
 1 * P = P
 q * P = P (where q is the order)

Cryptographic
Assumptions

Discrete Logarithm Problem:
 Given ga mod p, find a

Computational Diffie-Hellman Problem:
 Given ga & gb, find gab (mod p)

Elliptic Curve
Assumptions

EC-Discrete Logarithm Problem:
 Given aP, find a

EC-Computational Diffie-Hellman Problem:
 Given aP & bP, find abP

Bilinear Pairings

A Bilinear Pairing is a function
e(G1, G1) -> G2 with the following properties:

Non-degeneracy. For generator points
<P, Q> in G1, e(P, Q) is a generator of G2

Bilinearity. e(aP, bQ) = e(P, Q)ab

One Way. No way to map back from G2 to
G1

Pairings != CDH

G1 G2

e(aP, bP) e(P, P)ab

Fun With Pairings

G1 G2

Hash_to_Point(”foobar”) = zP

e(P, P)sz

Public Key = sP

Boneh & Franklin’s IBE

A pairing e(P, Q) -> Zq

Two hash functions: Hash_to_Point(), H()

Public Parameters: (curve params, p, q, P)

SKM = s, PKM = sP

B & F’s IBE Encryption

GET_PK(PKM = sP, “<keystring>”):
PK = e(Hash_to_Point(”<keystring>”, sP)
 = e(zP , sP)
 = e(P, P)sz

GET_SK(SKM = s, “<keystring>”):
SK = s * Hash_to_Point(”<keystring>”)
 = s * zP
 = szP

B & F’s IBE Decryption

IBE_ENC(M, PK = e(P, P)sz):
r = random int from Zq

C = <rP, M XOR H(PKr)>

IBE_DEC(C, SK = szP):
e(rP, szP) = e(P, P)szr
Hash e(P, P)szr, then XOR to recover M

Boneh, Crescenzo,
Ostrovsky & Persiano

Same scheme as Waters (independently discovered)

Provides a real security model

Creating a Log Entry

EK(”mgreen searched for ... ‘Gas’,
‘Electricity’, ‘Water’ ... ”)

IBE-ENC(PK(”Gas”), <flag | K>)

IBE-ENC(PK(”Electricity”), <flag | K>)

IBE-ENC(PK(”Water”), <flag | K>)

EPK(K), H(this record || H(last record))

Searching, Step 1

Contact the Trusted Manager for a search
key on a particular term

Searcher Manager

Let me search for “Water”?

SK(”Water”)
SKM

Searching, Step 2

EK(”mgreen searched for ... ‘Gas’,
‘Electricity’, ‘Water’ ... ”)

IBE-ENC(PK(”Gas”), <flag | K>)

IBE-ENC(PK(”Electricity”), <flag | K>)

IBE-ENC(PK(”Water”), <flag | K>)

EPK(K) ...

IBE_DEC
SK(”Water”)

Adding Time

Simple approach: append a Time period to
IBE keystrings, e.g.:

Searcher indicates time period when
requesting IBE Secret Key

Must still try all records

IBE-ENC(PK(”Gas || 9-14-04”), <flag | K>)

Caching IBE Public Keys
To produce an IBE ciphertext, we generate
an IBE Public Key.

Key Gen is the most expensive operation,
requiring up to 175ms (that’s per
keyword!)

To save time, we could cache these keys
for later reuse

The downside: If an adversary captures this
cache, they learn which keywords have been
active recently

Batching Keywords

n * m Keyword Ciphertexts
n = total log entries
m = average # of keywords per entry

Log generation & Search time proportional

Many common keywords will be repeated,
can we be more efficient than?

Does Batching Help?

Batching reduces the number of ciphertexts
from (m)n to t, where t is total # of unique
keywords in the block

Batching reduces waste for the most
common keywords, but what about the
uncommon ones?

Who searches on common words, anyway?

Block Batching Example

“water”: 1,2,4 | k1,k2,k4,k19

“gas”: 14, 20, 27 | k14,k20,k27

“electricity”: 3, 49 | k3, k49

Entry 1 Entry 50...

“snorkles”: 24 | k24

“petunia”: 4 | k4

“spork”: 33 | k33

Davis, Monrose & Reiter

Uses “backpointers” to link groups of
keywords within a time period

Advantages of batching, but doesn’t keep the
log open (unwritten) for long periods

c4entryic3entryic2entryic1entryiA

Randomness Re-use

To search a block of n keywords requires n
pairing computations
 C = <rP, M XOR h(e(P, P)szr)>
 e(rP, SK(”keyword”)) = e(P, P)szr

We can reduce this if we re-use the same
value r for each keyword in a batch

Randomness Re-use

We can use <rP> for a group of ciphertexts,
and only store the second term:

c1 = <flag | k> XOR h(e(P, P)rsz)
c2 = <flag | k> XOR h(e(P, P)rsz’)
c3 = <flag | k> XOR h(e(P, P)rsz’’)

Only one pairing, but still have to XOR with
many ciphertexts

A Slightly Better Approach
PK(”water”) = e(sP, Hash_to_Point(”water”))
 = e(P, P)sz

SK(”water”) = s * Hash_to_Point(”water”)) = szP

“water”: 1,2,4 | k1,k2,k4,k19

“gas”: 14, 20, 27 | k14,k20,k27

“electricity”: 3, 49 | k3, k49

“snorkles”: 24 | k24

“petunia”: 4 | k4

“spork”: 33 | k33

rP

h’(e(P, P)szr)
...
...
...
...

h’(e(P, P)sz’r)

{

Waters’ Implementation

Waters et al. implemented the IBE-based
scheme to log SQL queries (MySQL Proxy)

Used Stanford IBE Library, 1024-bit
supersingular curves (q=160); AES 128-bit
2.8GHz Pentium IV

Hash-chain integrity checking

Implementation:
Optimizations Used

IBE Public Key Caching:
PK generation + encryption = 180ms
encryption only (cached key) = 5ms
100MB Cache -> ~800,000 Public Keys

Webster’s Dictionary: 300,000 words

Randomness Re-use

Implementation: Ok, and...?

Implementation reveals the pairing
computation time, encryption time-- and not
much else

Is it practical? Where are your
performance numbers and graphs? What
data are you storing? Can we have the
source code?

Open Problems

Reducing storage & computational costs

Better security models, reduced involvement
of keyholder

New approaches, or incremental
improvements?

Other Problems

In the Song scheme, all keywords in the
document are searchable

In the Goh scheme (and many others),
relevant keywords chosen by data creator

Subtler concerns: What if keywords are
not chosen correctly? What if data
creator is malicious?

END

Revoking Search Keys

We might want to revoke a search key after
we’ve given it out

A possible approach:

Re-encrypt all keywords under new IBE
keys

e.g.: “Gas” -> “Gas || 2”

Revoking through Dumb
Re-encryption

Keyholder DB

IBE-ENC(PK(”Gas”), ...)

<plaintext>

IBE-ENC(PK(”Gas||2”), ...)

(Decrypt)

(Encrypt)

Revoking through Proxy
Re-encryption?

Keyholder DB

IBE-ENC(PK(”Gas”), ...)

IBE-ENC(PK(”Gas||2”), ...)

(Re-Encrypt)

RK

Trusted Computing Base

DB DB

= Fully Trusted

DB DB

Waters et al.
Symmetric-Key Scheme

EK(”mgreen searched for ... ‘Gas’,
‘Electricity’, ‘Water’ ... ”)

hS(”Gas”) XOR <flag | K>

hS(”Electricity”) XOR <flag | K>

hS(”Water”) XOR <flag | K>

Secret Key = S

Waters et al.
Symmetric-Key Scheme

EK(”mgreen searched for ... ‘Gas’,
‘Electricity’, ‘Water’ ... ”), r

c1 = ha1(r) XOR <flag | K>

c2 = ha2(r) XOR <flag | K>

c3 = ha3(r) XOR <flag | K>

Master Secret = S

a1=hS(”Gas”)

a2=hS(”Food”)

a3=hS(”Water”)

Symmetric, Searching

Searcher Keyholder

Let me search for “Water”?

a=hS(”Water”)
S

c1 XOR a = “???”

c2 XOR a = <flag | key>

c3 XOR a = “???”

Reducing a Trusted
Computing Base

Keyholder

Reducing a Trusted
Computing Base

DB DB

Search
Device

DB Keyholder DB

SK(”Water”)

