

Secret Sharing and Visual Cryptography

Outline

- Secret Sharing
- Visual Secret Sharing
- Constructions
- Moiré Cryptography
- Issues

Secret Sharing

Secret Sharing

- Threshold Secret Sharing (Shamir, Blakely 1979)
- Motivation increase confidentiality and availability
- \blacksquare (*k*,*n*) threshold scheme
 - \square Threshold k
 - \square Group Size n
- Confidentiality vs Availability

General Secret Sharing

- \blacksquare *S* Secret to be shared
- $\blacksquare \mathcal{P}$ Set of participants
- lacktriangle Qualified Subsets of \mathcal{P} can reconstruct S
- Access Structure
 - \square Family of qualified subsets $\mathcal{A} \subseteq 2^{\mathcal{P}}$
 - ☐ Generally monotone
 - Superset of a qualified subset is also qualified

$$A \in \mathcal{A}, A \subseteq A' \subseteq \mathcal{P} \Rightarrow A' \in \mathcal{A}$$

Information Theoretically

- Perfect Secret Sharing scheme for S
 - □ Qualified Subset G

$$G \in \mathcal{A}, H(S|G) = 0$$

□ Unqualified Subset B

$$B \notin \mathcal{A}, H(S|B) = H(S)$$

Information Rate of a scheme

$$^{\square} \rho = \frac{\log_2|Secret|}{\max\log_2|Share|}$$

$$\square \rho < 1$$

☐ Measure of efficiency of the scheme

Size of Shares

- Perfect Scheme
 - ☐ Size of share at least size of secret
 - ☐ Larger share size
 - More memory required
 - Lower efficiency
- Ideal Scheme
 - \square Share size = secret size
 - ☐ Information rate/efficiency is high

Shamir's Threshold Scheme

- \blacksquare (*k*,*n*) Threshold scheme
 - \square $s \in F_q$ is the secret to be shared
 - $\square x_1, x_2 \dots x_n$ are distinct non-zero elements chosen from F_q
 - \square Chose coefficients $f_1, \ldots f_{k-1}$ at random from F_q
 - Let $y = f(x) = s + \sum_{j=1}^{k-1} f_j x^j$
 - \Box Share $s_i = (x_i, y_i)$

Lagrange's Interpolation

- \square Need k shares for reconstruction
- □ Figure shows (2,n) scheme
- ☐ Scheme is perfect and ideal
 - 2 shares: secret is defined
 - < 2 shares: secret can be any point on y axis

$$s = \sum_{j=1}^{k} (\prod_{1 \le t \le k, t \ne j} \frac{x_{i_k}}{x_{i_k} - x_{i_j}}) y_{i_j}$$

Blakely's Secret Sharing

- Secret is point in *m*-dimensional space
- Share corresponds to a hyper plane
- Intersection of threshold planes gives the secret
- Less than threshold planes will not intersect to the secret

Blakely's Secret Sharing

- 2 dimensional plane
- Each share is a Line
- Intersection of 2 shares gives the secret

Non-perfect secret sharing scheme

- Motivation
- Semi-qualified subsets
 - ☐ Partial Information about Secret
 - ☐ Size of shares < Size of secret
- \blacksquare (*d*, *k*, *n*) ramp scheme [Blakely, Medows Crypto 84]
 - \square Qualified subset A, $|A| \ge k$
 - $\blacksquare H(S/A) = 0$
 - □ Unqualified subset U, $|U| \le k-d$
 - $\blacksquare H(S/U)=H(S)$
 - \square Semi Qualified subset *P*, k-d</P/<k
 - \bullet 0 < H(S/P) < H(S)

Making Shamir's scheme non-perfect

- Instead of one secret have a vector of secrets
- Each share is also a vector
- Each share reduces by the dimension of the secret space by 1
- Linear gain of information as you compromise more shares

Applications of Secret Sharing

■ Secure and Efficient Metering [Naor and Pinkas,

Applications of Secret Sharing

- Threshold Signature Sharing
 - ☐ Signing key with a single entity can be abused
 - ☐ Distribute the power to sign a document

- RSA Signatures
 - ☐ A Simplified Approach to Threshold and Proactive RSA [Rabin, CRYPTO 98]
 - Signing key shared at all times using additive method

Basic Method of Signature Sharing

Visual Secret Sharing

Visual Secret Sharing

■ Naor and Shamir [1994]

Bob faxes secret message

Ciphertext

No computer needed but other printer constraints involved

Visual Secret Sharing

- Encode secret image *S* in threshold shadow images (shares).
- Shares are represented on transparencies
- Secret is reconstructed visually
- (k,n) visual threshold scheme
 - \square k of the shares (transparencies) are superimposed reveal secret
 - $\square < k$ shares do not reveal any information

Constructing a Threshold Scheme

- Consider (2,2) regular threshold scheme
 - \square Secret $K = s_1 xor s_2$
 - $\square s_1$, s_2 take values (0,1)
 - \bullet 0 xor 0 = 0, 1 xor 1 = 0
 - \bullet 0 xor 1 = 1, 1 xor 0 = 1
 - \square Neither s_1 nor s_2 reveal any information about K

Constructing a Visual Threshold Scheme

- Associate black pixel with binary digit 1
- Associate white pixel with binary digit 0
 - \square 0 on 0 = 0 (good)
 - \square 0 on 1 = 1 (good)
 - \square 1 on 0 = 1 (good)
 - \square 1 on 1 = 1 (oops!)
- Visual system performs Boolean OR instead of XOR

Naor and Shamir Constructions

- Basic Idea
 - □ Replace a pixel with m > 1 subpixels in each share
 - ☐ Gray level of superimposed pixels decides the color (black or white)
- Less than threshold shares do not convey any information about a pixel in final image

Naor and Shamir Construction (2,2) Scheme

pixel		share #1	share #2	superposition of the two shares
	p = .5 p = .5			
	p = .5 $p = .5$			

Note the difference in gray levels of white and black pixels

Example

- (2,2) Threshold Scheme Mona Lisa image
- This is like a one time pad scheme
- Original Picture

Superimposed picture has 50% loss in contrast

Further Naor Shamir Constructions

Will be considering

- \square (3,*n*)
- \Box (k,k)
- \square (k,n)

■ Each has a different properties in terms of pixel expansion and contrast

Preliminary Notation

- \blacksquare *n* \rightarrow Group Size
- lacksquare \rightarrow Threshold
- \blacksquare *m* \rightarrow Pixel Expansion
- \bullet α \rightarrow Relative Contrast
- C_0 → Collection of $n \times m$ boolean matrices for shares of White pixel
- C_1 → Collection of $n \times m$ boolean matrices for shares of Black pixel
- ightharpoonup V
 ightharpoonup OR'ed k rows
- \blacksquare $H(V) \rightarrow$ Hamming weight of V
- $\blacksquare d \rightarrow \text{number in } [1,m]$
- r → Size of collections C_0 and C_1

Properties of (k,n) scheme

- Contrast
 - □ For S in C_0 (WHITE): $H(V) \le d \alpha m$
 - \square For S in C_1 (BLACK): $H(V) \ge d$
- Security
 - □ The two collections of $q \times m$ ($1 \le q < k$) matrices, formed by restricting $n \times m$ matrices in C_0 and C_1 to any q rows, are indistinguishable
- Their constructions are uniform
 - \Box There is a function f such that the for any matrix in C_0 or C_1 the hamming weight of OR'ed q rows is f(q)

Constructing a (3,n), $n \ge 3$ scheme

- = m=2n-2
- $\square \alpha = 1/2n-2$
- **B** is a $n \times (n-2)$ matrix containing 1's
- \blacksquare *I* is a $n \times n$ identity matrix
- BI is a $n \times (2n-2)$ concatenated matrix
- c(BI) is the complement of BI
- C_0 contains matrices obtained by permuting columns of c(BI)
- lacksquare C_I contains matrices obtained by permuting columns of BI

m=4, $\alpha=1/4$, (3,3) Scheme Example

$$B: \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad I: \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad BI: \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \quad c(BI): \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

- Say permutation is $\{2,3,4,1\}$
- Shares
 - ☐ White Pixel
 - □ Black Pixel

Contrast for (3,3) m=4, $\alpha=1/4$

■ White

Share3

Superimposed

Black

■ Can also be seen by Hamming weight

Black
$$H(V) = 4$$

$$\begin{pmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}$$

Security for (3,3) Scheme

- Security
 - □ Superimposing < 3 shares does not reveal if secret pixel is white or black
 - ☐ Hamming weight of 2 superimposed shares is always 3

NA.

Constructing (k,k) scheme

- $m = 2^{k-1}, \alpha = 1/2^{k-1}$
- Base Set $W = \{e_1 \dots e_k\}$
- Even cardinality subsets $\pi_1 \dots \pi_{2^{k-1}}$
- Odd cardinality subsets $\sigma_1 \dots \sigma_{2^{k-1}}$
- $k \times 2^{k-1}$ matrix S^0, S^1
- $lacksquare S^0[i,j] = 1$, if $e_i \in \pi_j$
- $\blacksquare S^1[i,j] = 1 \text{ if } e_i \in \sigma_j$

Example $m = 8 \alpha = 1/8$, (4,4)

- $W = \{1, 2, 3, 4\}$
- Even cardinality subsets
 - $\square \{\{\},\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\},\{1,2,3,4\}\}\}$
- Odd cardinality subsets
 - $\square \{\{1\},\{2\},\{3\},\{4\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}\}$
- Contrast
 - \square H(V) for $S_0 = 7$
 - $\square H(V)$ for $S_1 = 8$
- Security
 - \square Restrict to q < 4 rows (Say q = 3)
 - ☐ The 3 x 8 collections of matrices will be indistinguishable

 S_{o}

 0
 1
 1
 1
 0
 0
 0
 1

 0
 1
 0
 0
 1
 1
 0
 1

 0
 0
 1
 0
 1
 0
 1
 1
 1

 0
 0
 0
 0
 1
 0
 1
 1
 1
 1

 S_1

1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

 $0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 1$

0 0 0 1 0 1 1 1

þΑ

Moving to (k,n) scheme

- \blacksquare C is (k,k) scheme
 - \square Parameters m, r, α
 - $\Box C_0 = T_1^0, T_2^0, \dots T_r^0$
 - $\Box C_1 = T_1^1, T_2^1, \dots T_r^1$
- *H* is collection of *l* functions

$$\forall h \in H, h : \{1 \dots n\} \rightarrow \{1 \dots k\}$$

- \blacksquare B subset of $\{1..n\}$ of size k

DA.

(k,n) scheme

- \blacksquare m'=ml, $\alpha' \geq \beta_k \alpha$, $r'=r^l$
- Each $S_t^b, 1 \le t \le r^l, b \in \{0, 1\}$
 - \square Indexed by $t = (t_1, \dots, t_u), 1 \le t_i \le r$
 - $\square S_t^b[i,(j,u)] = T_{t_u}^b[h(i),j]$
 - $\begin{array}{c}
 \square \ 1 \leq i \leq n \\
 1 \leq u \leq l \\
 1 \leq j \leq m \\
 1 \leq h(i) \leq k
 \end{array}$

NA.

Contrast $\geq \beta_k \alpha$

- k rows is S_t^b mapped to q < k different values by h
- Hamming weight of OR of q rows is f(q)
- Difference αm white and black pixels occurs when h is one to one and happens at β_k
- WHITE:

$$H(V) \le l(\beta_k(d - \alpha m) + \sum_{q=1}^{k-1} \beta_q f(q))$$

■ BLACK:

$$H(V) \ge l(\beta_k d + \sum_{q=1}^{k-1} \beta_q f(q))$$

Security

- You are using (k,k) scheme to create (k,n) scheme
- Security properties of the (k,k) scheme implies the security of (k,n) scheme
- Expected Hamming weight of OR of q rows, q < k is $l \sum_{q=1}^{k-1} \beta_q f(q)$ irrespective of WHITE or BLACK pixel

Visual Cryptography for General Access Structures [Ateniese *et al '96*]

■ Goal:

- ☐ Create a scheme such that qualified combinations of participants can reconstruct secret
- □ Unqualified combinations of participants gain no information about the secret
- For a (2,n) scheme access structure can be represented as Graph
 - \square Share s_i and s_j reveal secret image if ij is edge in Graph

Example (2,4) scheme

- 1 2 3 4
- Qualified Subsets {{1,2},{2,3},{3,4}}
- Forbidden Subsets {{1,3},{1,4},{2,4}}
- Matrices for the scheme
- Some Shares Darker

Example

Original Image

■ Is superset of qualified subset also qualified?

Problem with various schemes

- The shares in the schemes are random transparencies
- A person carrying around these shares is obviously suspicious
- Need to hide the share in innocent looking images

Related works with Natural Images

- M. Nakajima. Y. Yamaguchi.
 - □ Extended Visual Cryptography for natural Images [2002]
- Y. Desmedt and Van. Le.
 - □ Moire Cryptography. [CCS 2000]

Moiré Cryptography

Moiré effect

- Interference of two or more regular structures with different frequencies
- High frequency lattices combined produce a low frequency pattern

Moiré Cryptography [Demedt, Van Le (2000)]

- Use steganography to create secret sharing schemes
- Shares are realistic images
- Utilize moiré patterns to create the images

Moiré Cryptography process

- Randomize Embedded Picture into pre-shares
- Hide the pre-shares in cover picture

Embedded picture Pre-share-1 Pre-share-2 Cover picture Share-1 Share-2 Embedded picture

Note the cryptography lies in X

Moiré Effect ...

- For 0 bit
 - □ Superimposed shares whose dots are oriented at same angle
- For 1 bit
 - □ Superimposed shares where dots are oriented with different angles
- Moire pattern forms the embedded picture and not gray level of shares as in visual cryptography
- Superimposing shares results
 - ☐ Two moire patterns with different textures
 - □ Since textures are visually different we see picture

Example

- FSU Moiré Example
- Robustness against misplacement or orientation

Comparison and Issues

Visual Schemes Seen So Far

- Perfect secrecy ©
- No expensive computer operations ©
- Size of shares large ③
 - \square If secret contains p pixels share contains pm pixels
 - □ Cannot have ideal visual scheme
- Superimposed secret loss in contrast ⊕
- Tedious ⊗

Honest Dealer Issue

- Honest dealer assumed
- Verifiable Secret Sharing schemes tolerate a faulty dealer
 - ☐ Security is computational

Verifiable Secret Sharing for Shamir's scheme [Feldman87] (2,3) VSS scheme

■Can visual VSS schemes be created?

Dynamic Groups

- Old share holder leaves
- New share holder joins
- Threshold changes
- Need to refresh the sharing (k,n) to (k',n')
- Is there any way to do that visually without requiring an online dealer?

Related Works

- Proactive Secret Sharing and public key cryptosystems [Jarecki, 1995]
- Verifiable Secret Redistribution for threshold sharing schemes [Wong *et. al.* 2002]
- Asynchronous verifiable secret sharing and proactive cryptosystems [Cachin *et. al* CCS 2002]

Questions?

M

Visual Cryptography: Hadamard BIBDs

- Constructions for optimal contrast and minimal pixel expansion [Blundo *et. al.* '98]
- (v,p,λ) Balanced Incomplete Block Design (BIBD)
 - \square Pair (X,A)
 - $\square X$ is set of v elements called **points**
 - \square A is collection of subsets of X called **blocks**
 - \square Each block has p points
 - \square Every pair of distinct points is contained in λ blocks

Hadamard Matrices

- \blacksquare n x n matrix H
- Every entry is ± 1 and $HH^T = nI_n$
- Example Hadamard Matrix of order 4

```
      1
      1
      1
      1

      1
      1
      -1
      -1

      1
      -1
      1
      -1

      1
      -1
      -1
      1
```


Hadmard and BIBD equivalence

■ (4t-1,2t-1,t-1)—BIBD exists if and only if Hadamard matrix of order 4t exists

- Blundo et. al. show
 - □ if $n \equiv 3 \mod 4$, there exists a (2,n) visual scheme with optimal α and optimal m if and only if Hadamard matrix of order n+1 exists

NA.

Construction (2,n) $(n \equiv 3 \mod 4)$

Blocks

- $\square A_0 = \{i^2 \mod n: 1 \le i \le (n-1)/2\}$
- $\square A_i = A_0 + i \mod n, 1 \le i \le n-1$
- lacksquare Points Z_n
- Point Block Incidence matrix *M*
 - □ Rows indexed by points and columns indexed by Blocks
 - $\square M[i,j] = 1 \text{ if } i \in A_i$
- \blacksquare M is the basis matrix S^1

Construction (2,11)

- \blacksquare *m*=11, α =3/11
- Basis matrix S^1
- Basis matrix S^0
 - ☐ Each row is (11111000000)
- Contrast
 - □ Black H(V) = 8
 - \square White H(V) = 5
- Security
 - □ 1x11 matrix collections are indistinguishable

 S^1

M

$$m=2^k$$
, $\alpha=1/2^k$ (k,k) scheme

- Two lists of vectors each of length k over GF[2]
- $J_1^0 \dots J_k^0$
 - \square k -1 linearly independent, k are not independent
 - $\Box J_i^0 = 0^{i-1}10^{k-i}, 1 \le i \le k, J_k^0 = 1^{k-1}0$
- $\blacksquare J_1^1 \dots J_k^1$
 - ☐ Linearly independent
- $S^{t}[i,x] = \langle J_{i}^{t}, x \rangle, t \in \{0,1\}$
 - □ Indexing the columns of S with a vector x of length k over GF[2]

Example m= $8, \alpha = 1/8, (3,3)$ scheme

$$J_1^0 = [1 \ 0 \ 0], J_2^0 = [0 \ 1 \ 0], J_3^0 = [1 \ 1 \ 0]$$

$$J_1^1 = [1 \ 0 \ 0], J_2^1 = [0 \ 1 \ 0], J_3^1 = [0 \ 0 \ 1]$$

$$x = [0 \ 0 \ 0], \dots [1 \ 1 \ 1]$$

$$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix} = 0$$