Class Discussion of "BLINC: Multilevel Traffic Classification in the Dark" and related works

Feb. 24, 2006

Original paper by: T. Karagiannis, K. Papagiannaki, and M. Faloutsos in *Proceedings of ACM SIGCOMM, 2005*

> Discussion Moderator: Charles V Wright cvwright@jhu.edu

BLINC - Contrast to Profiling Backbone Traffic

- BLINC --
- Supervised Learning: Classification
 - Given labeled examples of relevant classes, assign labels to new, unlabeled examples
- Profiling Backbone Traffic --Unsupervised Learning: Clustering
 - Given a bunch of unlabeled data, find the dominant subgroups of similar examples

BLINC – Payload Classification: Good or Bad?

- Some comments were positive
 - I liked ... the clean approach of testing the implementation against a full payload inspection scheme...
- Some were more dubious
 - ... the validity of their BLINC methodology is completely dependent on their initial payloadbased classification... I think a strong look should be taken at this ...

BLINC – Payload Classification: Good or Bad?

- Note that some flows are classified without any actual payload analysis (!)
 - They're essentially using the same assumptions or which the BLINC method is founded to set the baseline for BLINC's evaluation.

BLINC – Privacy?

- Claim: inspecting only headers is good for privacy
 - Comment:
 - I'm quite sure that given just packet headers someone could determine the real juicy stuff: what websites you're going to, where you get your streaming video from ---- all those things you don't want your wife to know.

BLINC – Privacy?

- Why can't we protect privacy for real!
 - Can we?
 - Implications for DETER, etc.
 - Anonymization techniques?

R Pang, M Allman, V Paxson and J Lee, The Devil and Packet Trace Anonymization. Computer Communication Review, Jan 2006.

BLINC -- Extensions: Inspecting Actual Flows

- _ Take into account the amount of incoming and outgoing traffic.
- I see [BLINC] as being a secondary test for traffic after it has been attempted to be classified using more detailed application layer analysis.
- Why not experiment with adding the recent 'novel statistical approaches' ... to see if completeness and accuracy can be further increased ...

A Different Perspective: Analysis of Individual Flows Different unit of analysis

- Instead of the whole network, let's look at one flow at a time
- Does this give us a better idea of what's going on?
- Complementary to yesterday's techniques

In Broad Daylight: Payload-based Classification

- Use the actual contents of packets to determine what the flow is doing
- _ This is basically just text classification
- Nevertheless, there are a lot of papers using this kind of approach
 - Example: Y Zhang and V Paxson, Detecting Backdoors. USENIX Security 2000.
 - Others are still trying
 - BLINC uses its own new method

In Broad Daylight: Payload-based Classification

- Problem: Encryption
 - We don't send everything in the clear anymore
- Problem: Privacy
 - Requires reading over everyone's shoulders

Do Internet protocols "look" differen on the wire? in the dark

- V. Paxson, *Empirically-Derived Analytic Models of Wide-Area TCP Connections*. IEEE/ACM Transactions on Networking, Vol. 2 No. 4, August 1994.
- Some relevant features:
 - Duration
 - Bytes transferred
 - Packet interarrivals
 - Connection interarrivals

V. Paxson, *Empirically-Derived Analytic Models of Wide-Area TCP Connections*

Proto.	Variable	Model	Parameters
telnet	originator bytes	\log_2 -extreme (Eqn 1; § 3.2)	$\alpha \approx \log_2 100; \beta \approx \log_2 3.5$
	responder bytes	log ₂ -normal, 80-100%	$\bar{x} = \log_2 4500; \sigma_x = \log_2 7.2$
	duration secs.	log ₂ -normal	$\bar{x} = \log_2 240; \sigma_x = \log_2 7.8$
	resp. / orig.	log ₂ -normal	$\bar{x} = \log_2 21; \sigma_x = \log_2 3.6$
	resp. / dur.	exponential, 0-90% resp.	$\lambda \approx 1/30$
	resp. / dur.	log ₂ -normal, 90-100% resp.	$\bar{x} = 5.3; \sigma_x = 1.5;$
nntp	originator bytes	log ₂ -normal	$\bar{x} \approx 11.5; \sigma_x \approx 3;$
smtp	originator bytes	log ₂ -normal + 300B, 0-80%;	$\bar{x} \approx 10; \sigma_x \approx \log_2 2.75$
		log ₂ -normal + 300B, 80-100%	$\bar{x} pprox 8.5; \sigma_x pprox \log_2 3$
ftp	connection bytes	log ₂ -normal	$\bar{x} \approx \log_2 3000; \sigma_x \approx 4$
	session bytes	log ₂ -normal	$\bar{x} = 15; \sigma_x = 4$
	burst bytes	Pareto (Eqn 2), 95-100%	$\alpha \approx 1; k \approx 10^{5.5}$

At Dusk:

TCP header-based classification

- Look at the 40 bytes of TCP and IP headers in each packet to determine what the flow is doing
- _ More realistic
- _ Privacy-friendly
- _ Good results

At Dusk:

TCP header-based classification

- A.W. Moore and D. Zuev, Internet Traffic Classification Using Bayesian Analysis Techniques ACM SIGMETRICS'05, Banff Canada, June 2005.
 - Uses Naive Bayes with modifications
 - Uses info from TCP headers:
 - _ Flow duration
 - _ TCP port
 - _ Payload size stats (mean, variance, ...)
 - _ Interarrival time

A.W. Moore and D. Zuev, Internet Traffic Classification Using Bayesian Analysis Techniques

- _ Naive Bayes:
 - Classes $C = \{c_1, c_2, ..., c_k\}$
 - Observed flow y
 - For each class c_i in C, calculate

$$p(c_j \mid y) = \frac{p(c_j)f(y \mid c_j)}{\sum_{c_j} p(c_j)f(y \mid c_j)}$$

– Pick the class with the highest $p(c_i|y)$

A.W. Moore and D. Zuev, Internet Traffic Classification Using Bayesian Analysis Techniques

Results (compared to hand-classified data)

- Naive Bayes: 65.26% of flows
- With extensions: 96.29% of flows

Still using port numbers

- Vin Diesel doesn't use port numbers
- Why should we?

At Dusk:

TCP header-based classification

- J. Early et al., Behavioral Authentication of Server Flows in Proceedings of the 19th Annual Computer Security Applications Conference. Las Vegas, NV. December 2003.
 - Uses a Decision Tree Classifier to identify traffic from sapplication protocols
 - Unit of analysis is a sliding window of packets, over which average values are calculated for packet size, interarrival time, and TCP flags

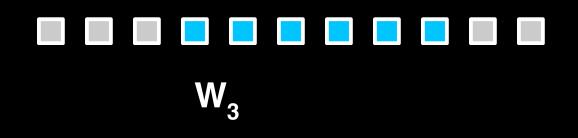
- Sliding window technique
 - Looks at a sliding "window" of packets, calculates average values of packet size, interarrival time, TCP flags, etc
 - Example:

Whew! They dodged a bullet with this one! E Keogh, *et al.*, Clustering of Time Series Subsequences is Meaningless

- Sliding window technique
 - Looks at a sliding "window" of packets, calculates average values of packet size, interarrival time, TCP flags, etc
 - Example:

Whew! They dodged a bullet with this one! E Keogh, *et al.*, Clustering of Time Series Subsequences is Meaningless

- Sliding window technique
 - Looks at a sliding "window" of packets, calculates average values of packet size, interarrival time, TCP flags, etc
 - Example:



Whew! They dodged a bullet with this one! E Keogh, *et al.*, Clustering of Time Series Subsequences is Meaningless

- Decision Tree Classifier (C5.0 Algorithm)
 - automatic feature selection
 - automatically partition the parameter space to achieve maximum information gain on the training set

Procedure:

- Classify each window of packets
- Give the whole flow the label most often assigned its component windows

- The decision tree algorithm finds that the most distinguishing feature of HTTP traffic is the TCP "push" flag (!)
- Recognition rates generally > 90% on synthetic and real-world data
- SMTP is harder to distinguish from FTP and Telnet
 - Multi-modal behaviors and similar-looking protocol can make recognition difficult

It's Getting Dark...

What if we restrict our analysis to info available at the network layer?

We're left with

- Packet Size
- Direction
- Interarrival Time

to guide us in making our decisions

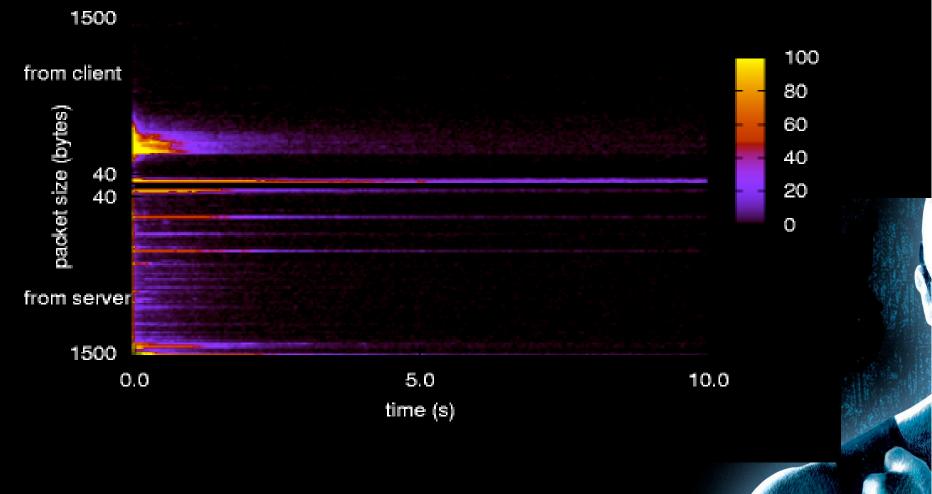
It's Getting Dark...

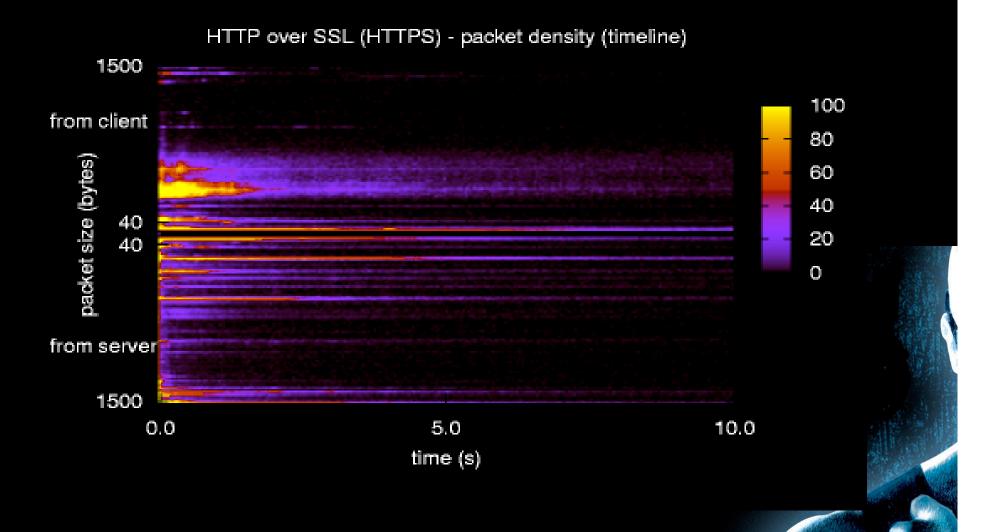
- A. McGregor, *et al.*, Flow Clustering Using Machine Learning Techniques. In PAM 2004.
- Unsupervised technique: uses k-means clustering to group flows together based on
 - Packet size statistics (min, max, quartiles)
 - Interarrival statistics
 - Byte counts
 - Duration
 - Idle time

It's Getting Dark...

- C. Wright, F. Monrose, and G. Masson, HMM Profiles for Network Traffic Classification (Extended Abstract) in DMSEC'04.
 - Very "lean" data: uses only packet size, direction, and interarrival time
 - Key assumption: where in the stream a given packet occurs tells us what it should look like

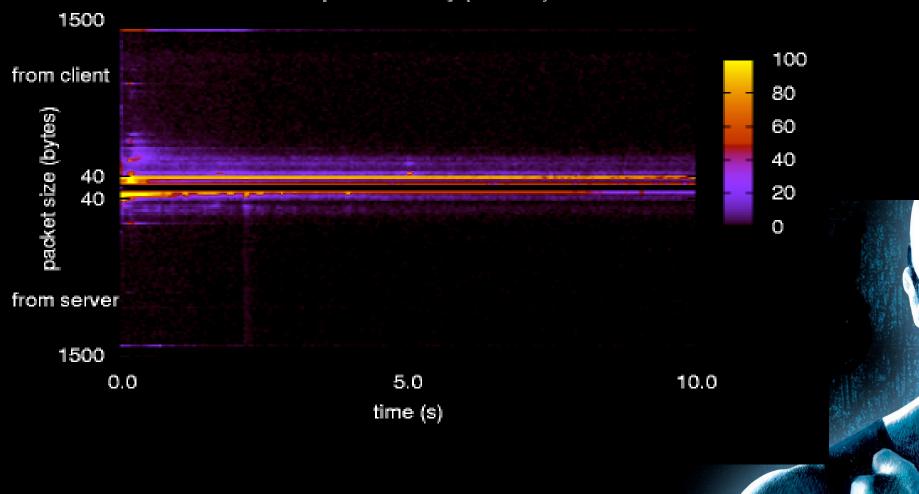
HTTP - packet density (timeline)

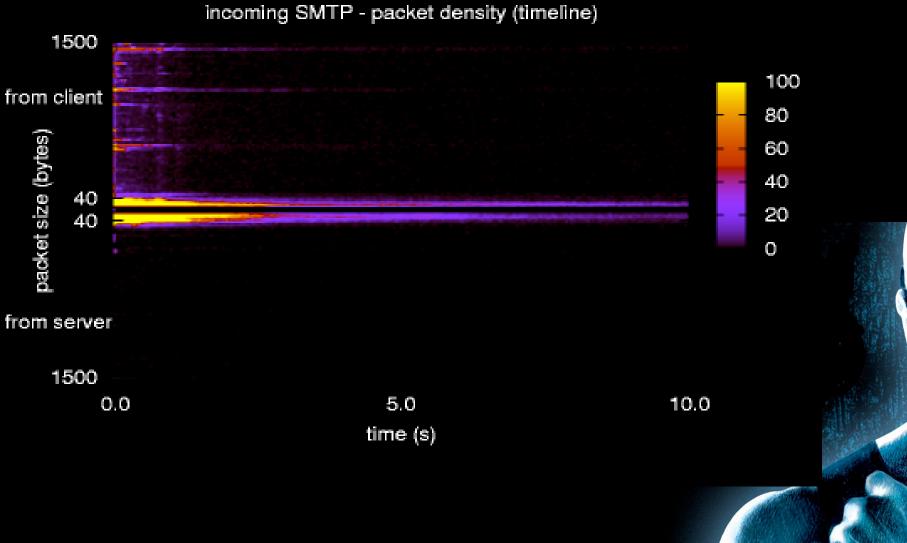




http://www.cs.ihu.edu/~cwright/traffic-viz

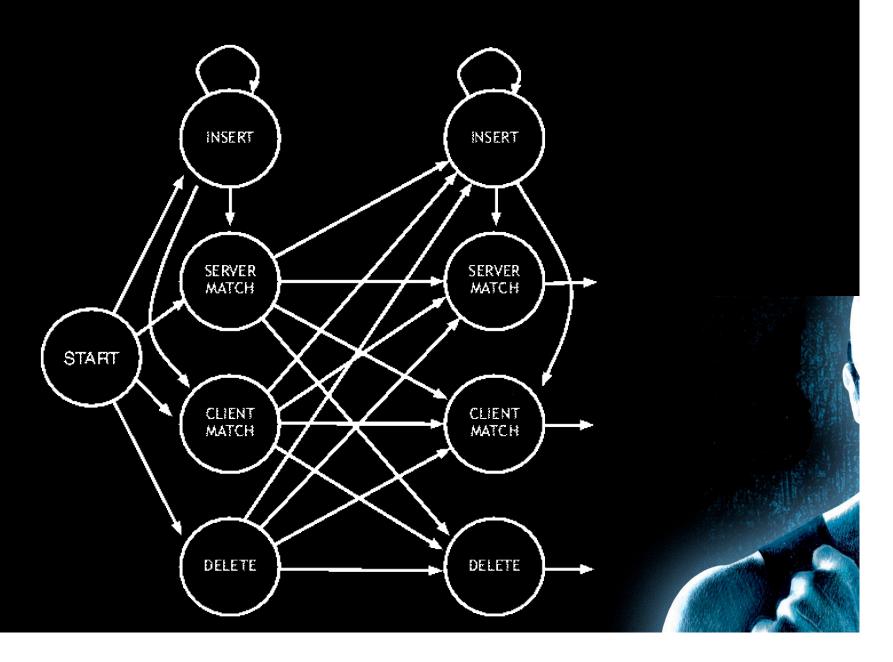
AIM - packet density (timeline)





http://www.cs.ihu.edu/~cwright/traffic-viz

Profile HMMs



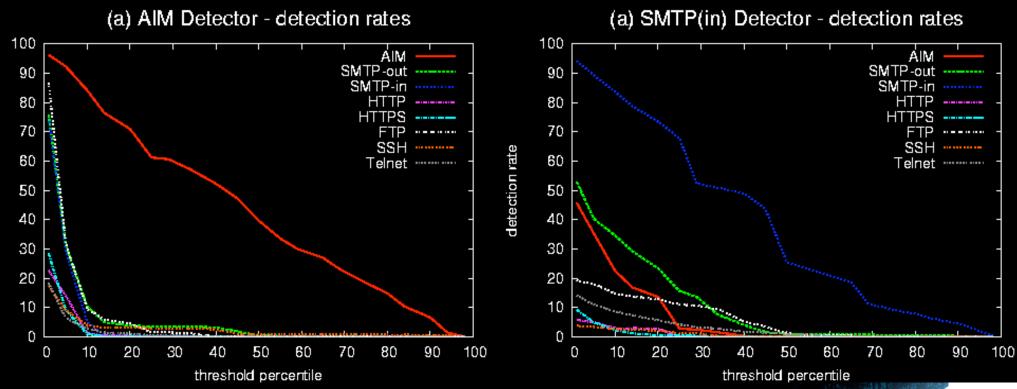
Profile HMMs: Empirical Evaluation

- Ideally, we'd train on one network (GMU), and test on another (JHU? LBL?)
 - And we will! Soon!
- In the mean time, we use data from several days spread over a month
 - Train on one, Test on the others, Repeat
- Therefore, model construction must be highly automated
 - Parameters and thresholds are derived from training data

Profile HMMs: Challenges

- Multi-Modal Behaviors
 - Example: SSH and SCP
 - Solution: mixture models (?)
- Long-Lived Connections
 Non-Linear Behaviors
 - Solution: better topology (?)

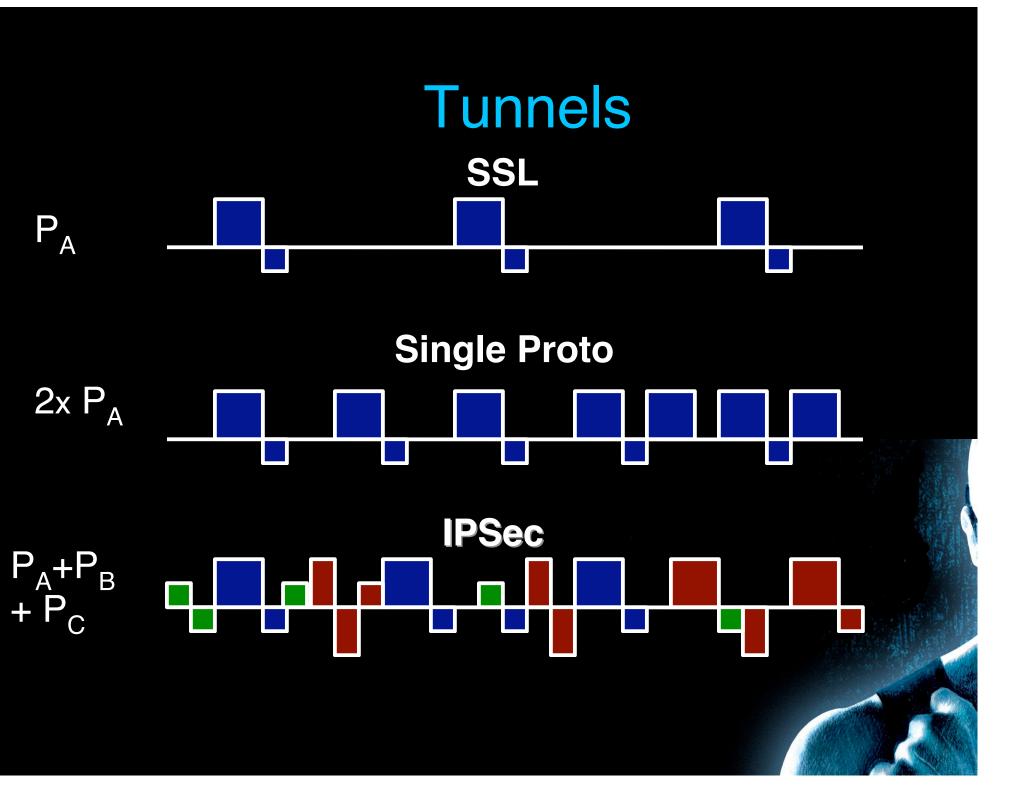
Practical Application: Protocol Detectors



detection rate

It always gets darkest... in a tunnel

- What if we can't tell which packets belong to th same flow?
 - The simplest case: one protocol, many connections passing through one tunnel
 - The realistic case (IPSec): one tunnel, a handful of protocols, many connections



one protocol, one tunnel, many connections

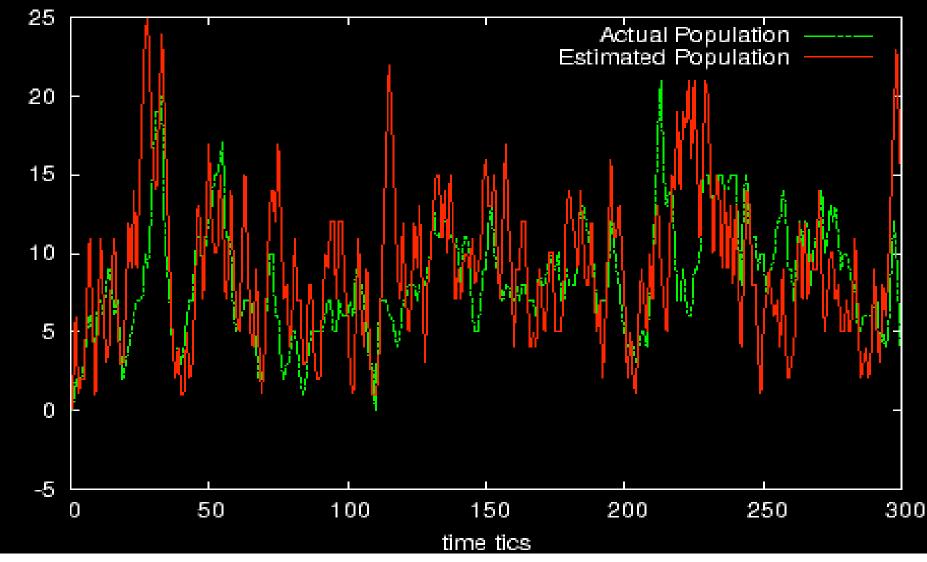
- We can handle this case too
 - Chop the sequence of tunnel packets into many small slices
 - Count up how many packets of each type arrive during each slice of time
 - Use a simple *k*-Nearest Neighbor classifier
- What's more, we can even count the number of connections in the tunnel

one protocol, one tunnel, many connections

- Simplifying assumptions:
 - (see scribe notes)

one protocol, one tunnel, many connections

Simulated HTTP tunnel to www.gmu.edu



number of live connections