An in-depth look at worms, malware, botnets, and

Modeling Botnet Propagation Using Time Zones.

February 16th, 2006 Wyman Park 4th Floor Conference Room

Opening Quote Provided by:

IRC Operator "Wave" on voltagedrop.redirectme.net

Primary Paper Originally by:

David Dagon, Cliff Zou, and Wenke Lee

Presentation by:

Jay Zarfoss

Roadmap

- 1. General overview of a Botnet
- 2. Bot-infections at the lone PC
- 3. Botnets Internet-wide
- 4. How time zones affect Botnets
- 5. Further extensions and explorations

What is a botnet?

CERT Definitions:

- Botnet. A collection of computers infected with malicious code that can be controlled remotely through a command and control (C&C) infrastructure.
- Bot, or Zombie. An individual computer infected with malicious code that participates in a botnet and carries out the commands of the botnet controller (botmaster).

Why do we care?

- Generally speaking, an unpatched Windows machine becomes a bot within 10 minutes of joining the Internet.
- "A botnet is comparable to compulsory military service for windows boxes"
 - Bjorn Stromberg

C&C Infrastructure

- How the botmaster issues commands to his army
- Could be implemented with just about any protocol
 - Telnet
 - Instant Messaging Service
 - P2P Network
 - Web Interface
 - Internet Relay Chat (IRC)

IRC-based Botnet

IRC

 Observation: 25 out of 35 botmasters prefer UnrealIRCd available at: www.unrealircd.com

Sample welcome message from **public** Unreal IRC Server *

```
001 Snarfy :Welcome to the NoDramaIRC IRC Network Snarfy!Snarfy@....
002 Snarfy :Your host is Interbrew.NoDramaIRC.net, running version Unreal3.2.3
003 Snarfy :This server was created Fri Oct 21 2005 at 18:27:15 CEST
004 Snarfy Interbrew.NoDramaIRC.net Unreal3.2.3 iowghraAsORTVSxNCW...

251 Snarfy :There are 69 users and 9015 invisible on 35 servers
252 Snarfy 68 :operator(s) online
253 Snarfy 16 :unknown connection(s)
254 Snarfy 757 :channels formed
255 Snarfy :I have 922 elients and 1 servers
265 Snarfy :Current Local Users: 922 Max: 1005
265 Snarfy :Current Global Users: 9084 Max: 18230
```

*Some botnets use public servers for C&C, in this case, bots join a specific channel.

What are botnets doing?

- Sending spam
- Stealing passwords
- Extorting online businesses
- Hosting phishing websites
- Click-frauding (5-35% of all clicks)
- Proxying
- Being bought and sold
- Patching themselves
- Recruiting
- Better question: what aren't they doing?

Command the minions

IRC Command	Bot action		
login	Authenticate botmaster		
secure	Stop vulnerable services		
opencmd	Open a shell to bot		
synflood	Send a SYN flood		
update	Get new version of malware		
getclip	Send clipboard contents		
scanstats	Send bot scanning stats		
netinfo	Send bot network stats		
sysinfo	Send bot computer stats		

why bother?

Why would the

Bots used as file servers

 How many movies has YOUR Windows box served lately?

```
#HINDI-FILMZ :#1 294x [698M] [Movie] Dil Bechara Pyar Ka Mara DvD-RiP [ Full / AVI / 2001 ]
#HINDI-FILMZ :#2 126x [141K] [English Subtitles] Dil Bechara Pyar Ka Mara
#HINDI-FILMZ :** 2 packs ** 3 of 3 slots open, Record: 45.3KB/s
#HINDI-FILMZ :** Bandwidth Usage ** Current: 0.0KB/s, Record: 304.5KB/s
#HINDI-FILMZ :** To request a file type: /"/msg [HF]-[Street-Hunk]-30 xdcc send #x/" **
#HINDI-FILMZ :** -= #Hindi-Filmz=- **
#HINDI-FILMZ :** I M 100% Desi !! **
#HINDI-FILMZ :** Total Offered: 698.5 MB Total Transferred: 206.57 GB
```

That's a lot of movies served! (~300)

Who are the botmasters?

- 133t h4x0rs?
- Graduate students?
- Scam artists?
- Maybe...

Who are the botmasters?

```
[Diabolic] PRIVMSG #hf-help :enuf for me man

[vtx] PRIVMSG #hf-help :olol

[Diabolic] PRIVMSG #hf-help :hahaha tru

[Diabolic] PRIVMSG #hf-help :i wrote 2 essays 2

[Vtx] PRIVMSG #hf-help :lol

[Diabolic] PRIVMSG #hf-help :1 in class and 1 at home

[Vtx] PRIVMSG #hf-help :thts atleast gud

[Vtx] PRIVMSG #hf-help :i had to write 1 for eng. exam and one for hist. exam

[Vtx] PRIVMSG #hf-help :beat tht
```

```
[D3si_boi] PRIVMSG #hf-help :man

[D3si_boi] PRIVMSG #hf-help :people are so gay

[D3si_boi] PRIVMSG #hf-help :f**k serioulsy

[D3si_boi] PRIVMSG #hf-help :i had to mop the front lobby at my work

[D3si_boi] PRIVMSG #hf-help :nd f**ked up s**t man

[D3si_boi] PRIVMSG #hf-help :people keep walking over it

[D3si_boi] PRIVMSG #hf-help :over it

[D3si_boi] PRIVMSG #hf-help :dont see it

[D3si_boi] PRIVMSG #hf-help :nd dont even say sorrty
```

How is this so easy?

- Botnets use worms to propagate.
 - On many levels, a bot is a worm
 - Like many worms, often spreads with scans
 - Bot can run independent of the C&C
 - Bot can infect (recruit) other machines
 - Botmasters can easily "update" their bots to make sure they have the latest Oday exploits at their disposal
 - And they do!

The single PC recruitment

A Closer Look

A Protocol Perspective, (Simplified) DCOM RPC

DCOM RPC Exploit Recipe*

```
//Get a funky fresh socket
//Fill in sockaddr and resolve host
//Get_shellcode
//Connect to the server
//Send the BIND string
                            Repeat until botnet is of
//Read Reply
                            desired consistency
//Send the evil request
//Read Reply
//Close socket
```

^{*}Derived verbatim from comments in bot source code

Obvious to an IDS

```
char nops∏ =
VERY Distinct
"/x90/x90/x90/x90/x90/x90";
char shellcode_start∏=
"/x46/x00/x58/x00/x4F/x00/x42/x00/x46/x00/x58/x00/x46/x00/x58/x00"
"/x4E/x00/x42/x00/x46/x00/x58/x00/x46/x00/x58/x00/x46/x00/x58/x00"
"/x46/x00/x58/x00"
"/xff/xff/xff/xff" /* return address */
"/xcc/xe0/xfd/x7f" /* primary thread data block*/
"/xcc/xe0/xfd/x7f"; /* primary thread data block */
```

Hide from the IDSes

- NOOPS are a dead giveaway
 - Can be replaced by 55 equivalent ops
- Other key strings are distinct too
 - Can obfuscate in very simple ways
 - Send XORed with another string
 - Use very simple encryption schemes
 - Do anything to change the signature!
 - domain.com/phf? == domain.com/./phf?
- IDSes have a lot to look out for!

Bill Cheswick. An Evening with Berferd In Which a Cracker is Lured, Endured, and Studied. In Proceedings of the Winter Usenix Conference, San Francisco, CA, 1992.

- Observed hacker attempting to break into a computer through Sendmail bug.
- Cheswick emulated exploitable services by hand.
- Sent fake password lists, etc etc.
- Discovered what vulnerabilities the hacker knew about.
- There's got to be an easier way?

Virtual Responders

- Runs non-natively (on BSD or Linux)
 - Simulate known vulnerabilties on well-known ports (DCOM-RPC = port 135)
 - 2. Analyze incoming shellcode, attempt to extract IPs/URLs from payload
 - 3. Download from the embedded URL
 - 4. Submit downloaded file to a database of known malware

"Traditional" honeypot

- www.honeynet.org
 - When "simulating" a protocol just isn't gonna cut it, give them the real thing!
 - Monitor traffic to determine behavior
- But...
 - This is really hard to scale up...
 - Honeypots get attacked so violently their stability quickly approaches 0

Virtual Honeynets

 Run multiple "virtual" instances of vulnerable OS within non-native OS.

Virtual Honeynets

Nice!

- Easy to maintain
- Cheaper, less hardware to buy

But...

- STILL doesn't scale up very well (we've barely been able to run 2 VMs per physical box)
- Can an attacker somehow tell that he's talking to a virtual machine and not the real thing?

How to scale up

Michael Vrable, et al. **Scalability, Fidelity, and Containment in the Potemkin Virtual Honeyfarm**. In SOSP 2005.

- How can we get real honeypot coverage of a large IP space?
- Only create a VM when you NEED to.
- Speed up VM creation with flash cloning
- Share memory between VMs using delta virtualization. (copy-on-write)
- Use faster *paravirtualization*

Potemkin Flash Cloning

Potemkin Δ -Virtualization

- Don't "copy", just make a reference
- If you need to write to memory, do a deep copy into a shadow pagetable
 - Simple ping replies don't need memory
 - Bots may require keeping a lot of state and writing to memory
 - Those movies take up a lot of space!

Potemkin Paravirtualization

- Regular virtualization is too slow!!
 - We pay a huge penalty by simulating the hardware within software

Solution:

- Port the virtualized operating system to use the interface provided by the Virtual Machine Monitor (VMM).
- The virtualized OS is in on the joke!

The Potemkin Gateway

- Gateway must be VERY smart
 - Manage all inbound traffic to appropriate
 VM Servers on internal darknet
 - Provide containment of outbound traffic
 - Not as simple as keeping outbound traffic limited to the source of initial connection
 - Internal reflection between VMs can create cross infections

Cross Infections

Lots of gotchas

- One virtual machine tries scanning other virtual machines?
 - Sometimes we need to see different worms interacting with each other!
- Handle a single ping to all 64k virtualized hosts? All at once?
 - What about 64k random packets?
- When do we destroy a VM and cannibalize the memory?
 - How do we know the attacks are over?
 - Could we ever reclaim a VM on a botnet?

Potemkin in the wild

- /16 coverage
- Aggressive VM recycling
- Windows not yet supported (hopefully soon!)

Filter the "known" traffic

Weidong Cui, Vern Paxson, et al. **Protocol-Independent Adaptive Relay of Application Dialog**. In *NDSS 2006*.

- We are only interested in exploits and malware we haven't seen before
- Developed RolePlayer, a system to mimic most application dialogs
- Honeypots are valuable resources, save them for the malware we don't already know about!

Internet-wide scale

How can we track botnets across the entire Internet?

- Bots often behave just like scanning worms.
- Well then how do we track scanning worms over the Internet?
- Possible Answer: Internet Telescopes

Network Telescopes

David Moore, et al. **Network Telescopes: Technical Report**. Cooperative Association for Internet Data Analysis (CAIDA), 2004.

- Monitored portion of IP space where little or no legitimate traffic exists.
- Observes endemic attacks
 - Backscatter from SYN floods, DOS attacks
- Observes pandemic attacks
 - Scans from an internet-wide worm outbreak

Network Telescopes*

Network Telescopes

 The seismographs of the Internet: can detect even single source of random scans or attacks

Network	95th Perc.	Average	Median	5th Perc.
/8	1.3 min.	25.6 sec.	17.7 sec.	1.31 sec.
:	:	i	:	:
/14	1.4 hours	27.3 min.	18.9 min.	1.40 min.
/15	2.7 hours	54.6 min.	37.9 min.	2.80 min.
/16	5.5 hours	1.82 hours	1.26 hours	5.60 min.
:	:	÷	:	:
/19	1.8 days	14.6 hours	10.1 hours	44.8 min.
/20	3.6 days	29.1 hours	20.8 hours	1.49 hours
/21	7.3 days	58.3 hours	40.4 hours	2.99 hours
/22	14.5 days	4.85 days	3.36 days	5.98 hours
/23	29.1 days	9.71 days	6.73 days	12.0 hours
/24	58.2	19.4 days	13.5 days	23.9 hours

On a /8, will detect 10 scan/sec random scan within seconds! :-)

Assumes uniform, random scans!

On a /24, you're not going to see anything for days...:-(

What can telescopes do for us?

- Witness global worm outbreaks...
- Witness the spread of large botnets?
 - After all, bots act like worms!
 - Right?
- Can data collected by telescopes help us build a model describing the spread of worms and botnets?

Scanning Model worm propagation

- Epidemiological Model
 - First attempt to model worm and virus propagation through the internet.

$$\frac{dn}{dt} = \beta n(1-n) - (d)(n)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \text{`Death Rate'}$$
"Birth rate" of new infections

Change in infected ratio

Epidemiological Model

- No consideration of patching rate
- Considers infections continuously
- In reality, infections follow a more discrete timeflow
 - Units of time to get scan results
 - Units of time to interact with a vulnerable process
 - Units of time to send worm copy

The AAWP Model (2003)

- Analytical Active Worm Propagation
 - Consider time discretely, time in "units"
 - Add a patching rate, p.

Scanning rate

What about non-uniform scanning?

- In reality, many worms use *non-uniform scanning*, eg (Nimba):
 - 50% of the time, scan within same /16
 - 25% of the time, scan within same /8
 - 25% of the time, scan space randomly

Botnet scans

- Our data shows that bot scans are overwhelmingly NON-UNIFORM
- Observed 1040 commands to scan
- 511/1040 scans within a /8
- 492/1040 scans within a /16
- We observed 37 orders (~3.5%) to scan uniformly and randomly within the entire IP space

Model with non-uniform scans

Why do the botmasters care?

AAWP by itself seems to imply that uniform scanning worms propagate faster!

Expected infection speed for a uniformly scanning vs. a non-uniformly scanning worm with same other parameters

Uniform vs. non-uniform

Does uniform scanning REALLY create faster propagation??

- Code Red (uniform scanning)
 - 10,000 infected in 14 hours
- Code Red II (non-uniform scanning)
 - 359,000 infected in 14 hours
- Hmm... what are we doing wrong?

Improving the Model

Moheeb Abu Rajab, et al. **On the Effectiveness of Distributed Worm Monitoring**. Proceeding of the *14th Usenix Security Symposium*, 2005.

- The vulnerable population isn't spread evenly over the entire IP space.
- What happens to our worm propagation models when we use real-world victimdistribution data?

Vulnerable Population

Run the same experiment, but this time consider the vulnerable population to be non-uniformly distributed among IP space.

Worm -> Botnets Model Recap

- Continuous Model
- Discrete Model
- Add Non-Uniform Scanning
- Add Distribution of Vulnerable Pop.
- Add Homogeneity of scanning rate

• *Is there more?*

Time Zones

David Dagon, et al. **Modeling Botnet Propagation Using Time Zones.** Proceedings of *ISOC NDSS 2006.*

- People turn their computers off at night
- Create diurnal pattern in infections
- A bot can't follow orders if he's not turned on!

Time Zone Motivation

1-25-06 to 2-07-06 Bagle Infections by Country

Data Collection Diagram

Data Collection Problems

- Forensics and hand analysis of malware binaries hard to automate
- Assumes cooperative DNS owners
- Claim all 50/50 of bots used DNS
 - We have observed 9/35 with no DNS
 - Other sample of botnets shows over
 40/300 with no DNS.

Measuring Botnet Size

Count SYNs coming into the sinkhole.

Claim is that these SYNs are the result of bots trying to connect.

True size?

- Need to look at the application (IRC) layer to be sure of the actual size.
- Would require creating an IRC-like server at the end of the sinkhole.
- Is this really representative of the true botnet size??

The diurnal model

- Start with Epidemiological Model
- Add $\alpha(t)$ function
 - "diurnal shaping function"
 - Fraction of vulnerable computers in time zone t, due to powered off PCs
 - $-\alpha(t)$ peak at midday, valley at night
 - Use observed traffic to calculate $\alpha(t)$

The Diurnal Model

Multiple Time Zones

Consider how all time zones *j* affect one time zone *i*.

$$\frac{\partial l_{i}(t)}{\partial t} = \alpha_{i}(t)[N(t) - l(t) - R(t)] \sum_{j=1}^{K} \beta_{ji} \alpha_{j}(t) I_{j}(t) - \gamma_{i} \alpha_{i} l_{i}(t)$$

Birth rate has to consider that scans may be coming from different time zones, sum all possibilities.

Diurnal Model Motivation

- Is an updated model necessary?
 - Authors claim we may better choose which outbreak to focus on
- Does this really apply to botnets?
 - Botnets can change activities on the fly!

Is the model right?

Well, the graphs look good...

Data seems to fit relatively well...

Alternative method

We joined a botnet server, let it tell us how many online users (infected bots) via its 'welcome' message.

What does model say?

Optimal time to release worm (launch bot scans):

If we believe this, then release time doesn't matter all that much.

Is this model complete?

- Current Diurnal Model
 - Is continuous, not discrete
 - Assumes uniform distribution of vulnerable hosts (we know this is false)
 - Assumes that bot-related scans are performed uniformly (also false!)

Assumptions Matter!!!

Remember what happened when we changed one "little" assumption about the distribution of the vulnerable population?

Propagation rates for non-uniform scanning worms changed drastically.

Assumptions Matter!!

Making better assumptions

- We saw last week the importance of assumptions about our adversary
- This week, we see the importance of assumptions in bot behavior.
- How important would time zones be if we changed our assumptions?

Other good resources

- The Honeynet Project
 - www.honeynet.org
- Know Your Enemy: Tracking Botnets
 - www.honeynet.org/papers/bots/
- Botnets as a Vehicle for Online Crime
 - www.cert.org/archive/pdf/Botnets.pdf
- Moheeb
 - Down the hall

Papers, papers, papers

Evan Cooke, et al. **The Zombie Roundup: Understanding, Detecting, and Disrupting Botnets.** Proceedings of *SRUTI 2005.*

Felix C. Freiling, et al. Botnet Tracking: Exploring a Root-Cause Methodology to Prevent Distributed Denial-of-Service Attacks. ESORICS 2005.

Barford, Paul and Yegneswaran, Vinod. **A Look Inside Botnets.** To appear in *Advances in Information Security, Springer, 2006.*