
Structured Overlays:

 Attacks, Defenses, and all things Proximity

April 27th, 2006
Wyman Park 4th Floor Conference Room

Presentation by:

Jay Zarfoss

2

Our roadmap

• General overview of Overlays / DHTs
– Chord [13]
– Pastry [7]

• Location, Location, Location
• General Attacks and Defenses
• Eclipse Attacks: Churn as Shelter [4]
• Targeted Attacks: LocationGuard [11]

3

What is an Overlay Network?

Logical Network that sits
“on top of” another network.

Can be structured, or
unstructured.

Used for P2P systems,
multicast broadcasts, etc.

4

Distributed Hash Table (DHT)

• Decentralized network where each node takes
responsibility for a certain portion of a keyspace.
Example: [0, 2160-1].

• Given a key, any member of the DHT should be
able to efficiently lookup whatever node is
responsible for that key.

• For our purposes, we can think of a DHT as
being an overlay network on top of the Internet,
with Overlay NodeID = hash(IP address)

5

The “Big 4” DHTs

• Chord [13] (MIT)
• Pastry [7] (Microsoft)
• CAN [9] (UC Berkeley)
• Tapestry [14] (UC Santa Barbara)

• All released roughly the same time ~ 2001
• Numerous others variants since then…

6

Chord

• Use a hash function to map each node
and key into an m-bit identifier circle,
modulo 2m.

• Key k is assigned to the first node whose
identifier is equal to or greater than k.

• Nodes keep track of their successors,
predecessors along the ring, in addition to
log(n) other nodes on the ring.

7

Chord Routing Example

Node 32 looks up key 82

10296-3196

40Successor

NodeIntervalStart
Node 32 Finger Table

113Predecessor

7064-9564
5248-6348
4040-4740
4036-3936
4034-3534
4033-3333

m = 7 / 2m = 128

8

Chord Overview

• Very nice, easy-to-analyze properties:
– O(log(n)) overlay hops to perform lookup
– O(log(n)) sized routing tables
– O(log2(n)) steps to join a network

• Extremely reliable in event of node failure
– Can record multiple predecessors, successors
– Handles concurrent joins/leaves well

• No fudging with extra parameters!

9

Pastry

• Also uses a ring structure
• Performs lookups with:

– Routing Table (Chord’s Finger Table)
– Leaf Set (Chord’s Successors/Predecessors)
– Neighborhood Set (More on this later)

• Keys thought of as sequence of digits with base
2b. Route lookups to “numerically closest” node,
rather than successor node.

10

Pastry Routing, Single Hop

11032111

31123001

10233033

b = 2 Example
Base = 2b = 22 = 4

11

Pastry Routing, Total Path

• Different view with b = 4

• Lookup key d46a1c from
node 65a1fc

•At each step, matching
prefix gets larger

12

Pastry Overview

• Configuration parameters
• Slightly harder analysis (still reasonable)

– O(log2b(n)) overlay hops
– log2b(n)(2b-1) sized routing tables
– 2b+1(log2b(n)) messages for a proper join

• Routing tables are proximity-optimized
– Potentially faster lookups in practice
– Standard Chord makes no such optimizations

13

Proximity Neighbor Selection

• Many choices for upper entries of the
routing tables, which node do we pick?
– Pick the one closest to us in the network
– Use proximity metric: networks hops / latency

Many Choices - Close Proximity
….
….
….
….
Few Choices - Not-as-close Proximity

Routing
Table

14

Proximity Affects Hops [3]

Many nodes to choose from for the initial hops, so we can
probably get very close neighbors.

15

No Proximity for Chord?

• Chord uses a constrained table
– No wiggle room to proximity optimize table

entries without violating the rules
– Can we still use proximity even if we’re stuck

with a constrained table?
• Proximity Route Selection

– At route-time, compromise some progress in
the overlay lookup if shorter network trip

16

Is constrained “good enough”?

Latency data from [13], no proximity consideration

Gaming

VOIP

Bulk Transfer

!!!

17

How about a 2nd opinion? [6]

16k nodes
Using a proximity-optimized table has
DRASTIC effect on lookup time!

18

The Adversarial Model

• Assume the network layer is secure.
• Freeloader Model

– Not coordinated with other adversaries
– Simply drops routing requests
– Can handle adversarial nodes as failed nodes

• How many freeloaders before our lookups
begin to fail?

19

Try One Lookup…

!

Pr(success) = (1" f)
M

Fraction of lazy nodes

Expected number of overlay hops

!

Pr(failure) =1" (1" f)
M

20

Discover a lookup failure

• How long until we realize lookup failed?
– Depends - Iterative or Recursive Routing?

Is this faster?

21

Try, try again

• If a single lookup fails, hand to a neighbor
and let him try: redundant routing.

• Final success rests on overlay structure
and resulting independent paths to target

!

Pr(failure) " (1# (1# f)
M
)
I

Assumes we don’t care about latency!!!

22

Stronger Adversary

• What if our adversary can lie?
• What if adversaries collude?

115

102

Lookup k = 114

Node 119 is your fin
al ta

rget

If network layer is secure,
node can’t lie about his own
overlay identifier.

119

23

How to detect lying

• At intermediate hop, next hop always
needs to get closer the key

• At final hop, the final node ID should be
reasonably close to the lookup key.
– Assuming uniform hash, distance between

nodes follows an exponential distribution.
– Declare shenanigans if lookup result is not

close enough to the key value.

24

DHT Probability

Distance is Exponential Distribution

Reason: Walking along outer ring, frequency of
node occurrences is a Poisson Process

!

f (x;") =
"e#"x , x $ 0

0 , x < 0

%
&
'

!

p(x;") =
e
#""x

x!

!

" =1

CDF
PDF

Probability of “x” occurrences within one interval

Rate w/ interval of one nth of the ring

25

Simplistic Lie Detection

Pr(Travel around (1/n)th of ring without seeing a node) = e-1

Simple algorithm:

Pick a threshold, T.

If distance(node, key) ≥ T/n

Declare Shenanigans!

Pr(Travel around (T/n)th of ring without seeing a node) = e-T

26

Simplistic Lie Detection [12]

False Positives and False Negatives are substantial

> 25% error Other (more
complicated) ways to
significantly reduce
the error.

27

Final Word on Lie Detection

• If we need to lookup one key in particular,
error rates are probably too high

• If we can replicate functionality among
many nodes (r file replicas), unlikely that:
– False negatives on all lies
– False positives on all well-behaved nodes

• Works for optimized or constrained routing

28

More Powerful Adversaries

• Until now, assumed that if f fraction of the
overlay is malicious means f fraction of
my routing table points to adversaries.

• What if adversaries can “poison” routing
tables to increase their influence?

29

The Sybil Attack [5]

• Without a trusted third party, one attacker
may assume an unbounded number of
identities on the overlay network.

• Chord and Pastry imply trust of IANA to
somewhat mitigate this
– Owners of large IP space yield more power
– Will really become a problem with IPv6

30

The Eclipse Attack [10]

• If an attacker can “appear” to be closer
than good nodes in the underlying
network, the attacker will be chosen to
populate the proximity-optimized table.

• Not nearly as effective on a constrained
routing table, since routing table IDs are
chosen by strict rules.

31

How to “appear” closer

The Internet isn’t a
Euclidian space, use
alternate reply routes!

100ms

10ms

10ms

Launch DoS attacks
against good nodes to
slow them down slightly

100ms

90ms110ms

32

C’mon -- is this feasible? [6]

Over 40% of requests within 100ms latency

33

Feasibility Test

• From home cable modem, performed 50
pings of www.google.com
– Average Round Trip: 29.429ms

• 1 minute later, 50 pings again, this time
performing two downloads over SSL.
– Average Round Trip: 127.107ms

Difference ~ 100ms -- This attack is VERY feasible!!

34

The Eclipse Attack

• This attack is DEVASTATING against
overlays with optimized routing tables

• If we assume malicious nodes can always
use proximity in their favor, initial tests
show adversary can achieve 100% routing
table control with f = 20%

• More details tomorrow by Dan

35

Shelter from Eclipse Attack

• Solution #1 [2]
– Use optimized routing table unless we detect

lying. Then switch to highly redundant and
constrained routing table.

• But…
– Redundancy causes a lot of overhead.
– No proximity considerations may cause

unacceptable delay.

36

Shelter from Eclipse Attack

• Solution #2 [10]
– Perform auditing of all nodes to determine

that their in-degree and out-degree are
appropriate

– May allow for us to retain the use of our
optimized routing table

– Dan will address this in depth tomorrow

37

Churn as Shelter [4]

• Completely off-the-wall solution (if you ask me)
• Force nodes to leave and rejoin the overlay at

regular intervals
• When nodes rejoin, Overlay NodeID =
hash(random || IP), so both the victim and
adversary are put in new random location within
the overlay.

• Rejoins are staggered to maintain stability

38

Churn as Shelter

Group 0 - ID = hash('0xf01b’ || IP)

Cert(timestep 100 - nonce '0xf01b’)
Cert(timestep 101 - nonce '0xb33f’)
Cert(timestep 102 - nonce '0x4e33’)
Cert(timestep 103 - nonce '0xa30b’)

G = 4 total groups
k = 4 timesteps per epoch

At time t, group g uses:

!

t " ((t "
gk

G
)modk)

Group 1 - ID = hash('0xb33f’ || IP)
Group 2 - ID = hash('0x4e33’ || IP)
Group 3 - ID = hash('0xa30b’ || IP)

39

Tale of 2 Routing Tables

• Constrained Routing Table (CONS)
– No proximity consideration
– Highly redundant
– Can precompute CONS for next time epoch

• Churn-Optimized Routing Table (CHURN)
– Proximity consideration
– Flushed at the beginning of every epoch
– Changes and Updates are rate-limited

40

The Intuition

• Forced rejoins (resets) reduce average
poisoning level in the CHURN table

Thrice?

Poisoning has flat slope due to limiting of
the update rates

41

Not all updates made equal

If you can poison one entry, which one should it be?

Upper entries carry exponentially more importance,
both in an attack and in an optimization on node
initiating a lookup on the overlay!!

!

1

2
b

=
1

4

routes affected

!

1

2
b

"

$

%

&
'

7

=
1

16384

42

How do you measure poisoning?

Measure by fraction of poisoned entries:
Poisoning(A) = Poisoning(B) ~~ 1 / 25

A B

Measure by effective control over routing table:
Poisoning(A) = 1/4
Poisoning(B) = 1/25

“Churn” Metric

43

Can “Churn” be the answer?

• We are essentially giving up some optimization
for some protection against eclipse attacks.

• We need to quantify this trade-off!

OPT CONSCHURN
?

Speed of lookups

Resistance to Eclipse attacks

44

Table Poisoning in an Attack

OPT -- CHURN -- CONS

.5

Still lose additional 20% of
table entries over CONS

45

Lookup Success in an Attack

OPT -- CHURN -- CONS

Hmmm…..
We seem to be
missing something…

?

What is the lookup
cost of using
CHURN over a
simple CONS?

46

CHURN resistance to attack

• Churn gives us “some” shelter against
Eclipse attacks as compared to a fully
optimized routing table (OPT)

• Using only a constrained (CONS) routing
table presumably performs much better in
the face of an Eclipse attack
– Not particularly clear as to exactly where

CHURN sits between CONS and OPT when
handling Eclipse attacks

47

CHURN in good conditions

• What if there is no attack? How much do we pay
for using CHURN in lieu of OPT? How much
better is CHURN than simply using CONS?

OPT -- CHURN -- CONS

Hmm….

Can we at least make an
educated guess?

48

Cost of CHURN

OPT -- CHURN -- CONS

There is absolutely no reason why I should have to do this guesswork!

49

Cost of CHURN

• It’s just not clear how much faster this hybrid
approach is over a CONS table.

• Can CHURN keep up with applications that
demand low latency?
– Difference between 200ms and 400ms is substantial

for applications like VOIP.
– If your application easily tolerates 600ms of delay

with CHURN, couldn’t it probably handle 1000ms just
as easily?

50

Final word on CHURN

• In well-behaved network:
– How much faster is CHURN than CONS?
– How much faster is OPT than CHURN?

• Under Eclipse attack:
– How much safer is CONS than CHURN?
– How much safer is CHURN than OPT?

The only question that was well addressed
in the paper -- did they sell it to you?

51

Different Adversarial Model

• Until now, we assumed that our adversary
wanted to cause as much havoc as
possible on the overlay as a whole

• What if our adversary is less greedy?
– We consider the example where our overlay

is used as a distributed file system
– Can our adversary target one particular file

so as to deny us access to it?

52

DHT File Systems

• Farsite [1]
• OceanStore [8]

• Generally protect data with cryptography
• Adversary can still launch DoS attack against

specific files
• An attack of this nature is analogous to

censorship over a distributed file system

53

LocationGuard [11]

• Adversary can’t target a specific file if he doesn’t
know what to look for

• Assume we have i replicas of a file on an overlay
• We first protect our filename with a LocationKey

!

Identifieri = Ek (filename || i)

We still don’t want to perform a simple
Lookup(Identifieri) -- why not??

54

LookupGuard

• We want file ID = ‘45600’

45610

45500

Lookup(45550) Overlay

Network
Layer

Get(45600)

IP(45610)

55

LookupGuard

• How much we can shift our lookup value
and still find the right node?

• Use same probabilistic properties that
were used to detect lying!

!

Pr(safe) = e
"rN

Amount of (relative) shift in lookup value

!

r "
#ln(Pr(safe))

N

Total number of nodes in the overlay

56

Obfuscation Example

• N = 1 million (220)
• Want a correct lookup 999,999 times out of 1 million tries

!

r "
#ln(1# 2

#20
)

2
20

$ r " 2
#40

Suppose a Chord ring of keyspace 2160

Max safe obfuscation offset = (2160)(2-40) = 2120

57

Sieve Attack

• Given enough queries, can’t the adversary
sieve the space to discover the true token?

Given x samples, we expect an adversary to narrow the
range to a size of ((initial range) / x)

58

Sieve Attack

• Obfuscation range is HUGE ~ 2120

• Even after 1 million lookups, adversary
has only narrowed range to 2100

• Attack has to be performed on-line, not at
all feasible for keyspaces this large

Of course, all of this analysis is meaningless if our
adversary owns the keyspace with our file in it…

59

Inference Attack

• We should further guarantee that an
adversary cannot infer statistics from:
– Lookup frequency
– End-user IP address
– File replicas
– File size

• Important that two adversaries can’t tell
they own copies of the same original file

60

Survivability

• LocationGuard mitigates the DoS attacks
of today -- but data will degrade over time!
– Malicious nodes can corrupt data they

control, and churn means that over time
adversaries could corrupt a lot

– Nodes crash (maybe I wrote the code)
• LocationGuard’s replication offers no

means by which to replenish our data

61

Universal re-encryption [15]

• Can nodes automatically re-publish data
before it degrades?

• Current construction of universal re-
encryption allows for nodes to re-encrypt
without any knowledge of the public key

• Requires the definition of semantic
security under re-encryption

62

Universal Re-encryption

Can be done with variation of ElGamal -- construction is not
particularly complicated, refer to [15] for more details

C1 = Epk(M)
C1

C2 = R(C1)

C3 = R(C2)

C4 = R(C3)

C5 = R(C4)

M = E-1
sk(C5)

C2

C3

C4 C5

? C2 = C1 ?

63

The big picture

• We want to design a DHT that is:
– Highly optimized WRT proximity
– Resistant to Eclipse Attacks
– Supports strong data protection (crypto)
– Is resilient against targeted attacked
– Has very good survivability for application-level

content stored on the overlay

How much free time does everyone have?

64

References
[1] Adya, W. J. Bolosky, M. Castro, R. Chaiken, G. Cermak, J. R. Douceur, J. Howell, J. R. Lorch, M.

Theimer, R. P. Wattenhofer, "FARSITE: Federated, Available, and Reliable Storage for an
Incompletely Trusted Environment", 5th OSDI, Dec 2002.

[2] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, and D. Wallach. Secure routing for structured
peer-to-peer overlay networks. In OSDI '02, Boston, MA, 2002.

[3] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting Network Proximity in Peer-to-Peer
Overlay Networks. In Technical Report MSR-TR-2003-82, Microsoft Research, 2002.

[4] T. Condie, V. Kacholia, S. Sankararaman, J. M. Hellerstein, and P. Maniatis. Induced Churn as
Shelter from RoutingTable Poisoning. In Proceedings of the 13th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, USA, Feb. 2006.

[5] John R. Douceur. The sybil attack. In Proc. of the IPTPS02 Workshop, Cambridge, MA (USA),
March 2002.

[6] R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica. The impact of dht routing
geometry on resilience and proximity. In Proc. ACM SIGCOMM'03, Karlsruhe, Germany,
2003.

[7] Antony I. T. Rowstron and Peter Druschel, "Pastry: Scalable, distributed object location and
routing for large-scale peer-topeer systems," in Middleware, 2001.

65

References
[8] J. Kubiatowicz, et al. OceanStore: An Architecture for Global-Scale Persistent Storage. ASPLOS,

December 2000.
[9] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A scalable

content-addressable network. In Proc. ACM SIGCOMM 2001, August 2001.
[10] Singh, M. Castro, P. Druschel, and A. Rowstron. Defending against Eclipse attacks on overlay

networks. In Proceedings of the 11th ACM SIGOPS European Workshop, pages 115--120,
Leuven, Belgium, Sept. 2004.

[11] Mudhakar Srivatsa and Ling Liu. Countering Targeted File Attacks using LocationGuard. In
Proceedings of the 14th USENIX Security Symposium, to appear August 2005.

[12] Mudhakar Srivatsa and Ling Liu, Vulnerabilities and Security Threats in Structured Overlay
Networks: A Quantitative Analysis , In the Proceedings of the 20th IEEE Annual Computer
Security Applications Conference (ACSAC 2004)

[13] Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A scalable peer-to-
peer lookup service for Internet applications. Technical Report TR-819, MIT, March 2001.

[14] Ben Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical Report UCB/CSD-01-1141, Computer Science
Division, U. C. Berkeley, April 2001.

[15] Philippe Golle, Markus Jakobsson, Ari Juels, and Paul Syverson. Universal Re-encryption for
Mixnets, 2003.

Fin.

67

After reset, must update quickly

• Global Tuning
– Perform lookups at random, test your replies

• Local Tuning (Network Neighbor)
– Ask nodes in your routing table for their tables

• Network Inverse Neighbor
– Ask nodes in your table for their backpointers

• Recursive variants

68

Which update method is best?

Just getting our
neighbors’ routing
tables is cheap and
easy

But doing
random lookups
is much more
effective!

