
Revisiting Bloom Filters
Payload attribution via Hierarchiecal Bloom Filters

Kulesh Shanmugasundaram, Herve Bronnimann, Nasir Memon

600.624 - Advanced Network Security

version 3

Overview

• Questions

• Collaborative Intrusion Detection

• Compressed Bloom filters

2

When to flush the Bloom filter?

“They said they have to refresh the filters at least
every 60 seconds. Is it pretty standard?”

In general, FP chosen ⇒ m/n and k (minimum values)
Given m ⇒ maxim for n

m/n k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

2 1.39 0.393 0.400

3 2.08 0.283 0.237 0.253

4 2.77 0.221 0.155 0.147 0.160

5 3.46 0.181 0.109 0.092 0.092 0.101

6 4.16 0.154 0.0804 0.0609 0.0561 0.0578 0.0638

How many functions?
“They report using MD5 as the hashing function but only use two bytes of it to achieve
the FP . I don’t follow why this is the case.”

Paper says: “Each MD5 operation yields 4 32-bit integers and two of them to
achieve the required FP .”

o

o

m/n k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

2 1.39 0.393 0.400

3 2.08 0.283 0.237 0.253

4 2.77 0.221 0.155 0.147 0.160

5 3.46 0.181 0.109 0.092 0.092 0.101

6 4.16 0.154 0.0804 0.0609 0.0561 0.0578 0.0638

How do we know source IP addresses?

“[...] what do they mean by source and destination? [...] the ‘use of
zombie or stepping stone hosts’ makes attribution difficult”.

“[...] the attribution system needs a list of ‘candidate hostIDs’.
Honestly, I am not sure what they mean by this.”

Paper says:

“For most practical purposes hostID can simply be (SourceIP,
Destination IP)”

More accuracy with block digest?

“The block digest is a HBF as all the others and the
number of inserted values are the same as the offset
digest. Why is then the accuracy better?”

The number of entries is the same but think
about how you do a query? How is FP rate
influenced by that?

Query time /space tradeoff
(block digest)

“[...] such an extension (block digest) would shorten
query times, but increase the storage requirement.
What is the tradeoff between querying time and
space storage?”

What payload attribution?
(aka Spoofed addresses)

“I am unsure of the specific contribution that this
paper makes. The authors purport to have a method
for attributing payload to source, destinations pairs,
yet the system itself has no properties that allow you
to correlate a payload with a specific sender”.

What would you prefer: a system like this one or
one which requires global deployment (like
SPIE)?

Various comments

How do you find it?

“smart and simple”
“quite ingenious with regard to storage and querying”
“The authors seem to skip any analysis that doesn’t come up in the
actual implementation.”

 Fabian’s answer: “That’s fine :-)”

“seem to be a useful construction”
“I thought this was a decent paper overall. [...] I think it is also poorly
written and lacks a good number of details.”

“I liked this paper very much.”

Extensions

Ryan:
 “Large Batch Authentication”

Scott:
Use a variable length block size (hm...)

Razvan:
Save the space for hostIDs using a global IP list?

Jay’s crazy idea:
Address the spoofed address problem using hop-
count-filtering?

Collaborative Intrusion
Detection

IDS are typically constrained within one administrative
domain.

- single-point perspective cause slow scans to go
undetected

- low-frequency events are easily lost

Sharing IDS alerts among sites will enrich the information on
each site and will reveal more detail about the behavior of
the attacker

11

Benefits

• Better understanding of the attacker intent

• Precise models of adversarial behavior

• Better view or global network attack activity

12

“Worminator” Project

Developed by IDS group at Columbia University

• Collaborative Distributed Intrusion Detection, M. Locasto, J. Parekh, S.
Stolfo, A. Keromytis, T. Malkin, V. Misra, CU Tech Report CUCS-012-04, 2004.

• Towards Collaborative Security and P2P Intrusion Detectiom, M.
Locasto, J. Parekh, A. Keromytis, S. Stolfo, Workshop on Information Assurance
and Security, June 2005.

• On the Feasibility of Distributed Intrusion Detection, CUCS D-NAD
Group, Technical report, Sept. 2004.

• Secure “Selecticast” for Collaborative Intrusion Detection System, P.
Gross, J. Parekh, G. Kaiser, DEBS 2004.

13

Terminology

1. Network event

2. Alert

3. Sensor node

4. Correlation node

5. Threat assessment node

14

Challenges

• Large alert rates

• A centralized system to aggregate and correlate
alert information is not feasible.

• Exchanging alert data in a full mesh
quadratically increases bandwidth requirements

• If alert data is partitioned in distinct sets, some
correlations may be lost

• Privacy considerations

15

Privacy Implications

Alerts may contain sensitive information: IP
addresses, ports, protocol, timestamps etc.

Problem: Reveal internal topology, configurations,
site vulnerabilities.

From here the idea of “anonymization”:

- Don’t reveal sensitive information

- Tradeoff between anonymity and utility

16

Assumptions

• Alerts from Snort

• Focus on detection of scanning and probing activity

• Integrity and confidentiality of exchange messages
can be addressed with IPsec, TLS/SSL & friends

• Unless compromised, any participant provides
entire alert information to others (they don’t
disclose partial data)

17

Threat model

• Attacker attempts to evade the system by
performing very low rate scans and probes

• Attacker can compromise a subset of nodes to
discover information about the organization he
is targeting

18

Bloom filters
to the Rescue

IDS parses alerts output and hashes IP/port
information into a Bloom filter. Sites exchange
filters (“watchlists”) to aggregate the information

Advantages:

• Compactness (e.g. 10k for thousands of entries)

• Resiliency (never gives false negatives)

• Security (actual information is not revealed)

19

Distributed correlation

1. Fully connected mesh

2. DHT

3. Dynamic overlay network

- Whirlpool

20

Approaches:

1. Fully connected mesh

Each node communicates with
each other node

21

2. Distributed Hash Tables

DHT design goals:
 - Decentralization
 - Scalability
 - Fault tolerance
Idea:

 Keys are distributed among the participants
 Given a key, find which node is the owner

Example:
(filename, data) ⇒ SHA1(filename) = k, put(k, data)
Search: get(k)

22

Chord

Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications
Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan, MIT
ACM SIGCOMM 2001

• Each node has an unique identifier ID in range [0,] (hash) and is responsible
to cover objects with keys between previous ID and his own ID.

• Each node maintains a table (finger table) that stores identifiers of other m
overlay nodes.

• Node s is in finger table of t is it is closest node to

• Lookup will take at most m steps.

2m

1

t + 2i mod 2m

1

23

Chord
1

5

12

40

7

19
18

25

5+1: 7
5+2: 7
5+4: 12
5+8: 18
5+16: 25

18+1: 19
18+2: 25
18+4: 25
18+8: 40
18+16: 40

19+1: 25
19+2: 25

...

Search for 21:

24

DHT for correlations

Map alert data (IP addresses, ports) to
correlation nodes.

Limitations:

• nodes are single point of failure for specific IPs

• too much trust in a single node (collects highly
related information at one node)

25

Dynamic Overlay Networks

Idea: Use a dynamic mapping between the nodes
and content.

Requirement: Need to have the correct subset of nodes
that must communicate given a particular alert.

There is a theoretical optimal schedule for
communication information (correct subsets are always
communicating).

Naive solution: pick relationships at random.

26

Whirlpool

Mechanism for coordinating the exchange of
information between the members of a
correlation group.

Approximates “optimal” scheduler by using a
mechanism which allows a good balance between
traffic exchange and information loss.

27

Whirlpool

• N nodes arranged in concentric circles of size

• Inner circles spin with higher rates than outer circles

• A radius that crosses all circles will define a “family” of nodes that will
exchange their filters.

Provides stability of the correlation mechanism and brings fresh information
into each family.

28

Multihome Routing in Wireless Mesh Network with

Fast Handoff

Abstract—This paper presents the multihome routing proto-
cols of a wireless mesh system that offers intra-domain and inter-
domain handoff with real-time performance. The system consists
of several access points where some are connected to the Internet

while others rely on multi-hop wireless communication. Internet
and peer-to-peer communication take advantage of wired con-
nections to minimize the number of wireless transmissions. New
Internet connected flows use the closest Internet connected access
point, while existing flows are forwarded using the wired network
to their original wired connected access point, to maintain
external connectivity. The wireless mesh network provides fast
handoff, supporting VoIP and other real-time application traffic.
Continuous Internet connectivity and real-time response during
handoffs is maintained by using an overlay network between
wireless access points. During handoff transitions, our system
ensures that the Internet flows are routed through at least one
Internet connected access point at any time.

I. INTRODUCTION
√

N Despite an extensive body of research in multi-hop

wireless routing, most of the Wi-Fi connectivity today resem-

bles the use of a cordless phone; a mobile device, e.g. laptop,

connects to an access point, which relays the communication

either to remote devices, via a wired infrastructure, or to other

wireless devices that are located in the range of the access

point. Wireless mesh networks provide a promising paradigm

to increase the mobility range of wireless devices by extending

the coverage area to more than the range of a single access

point. They use muliple access points that create a mesh

topology and forward packets using multiple wireless hops.

Some of the access points may be connected to the Internet,

while others may not. We say that a wireless mesh network is

multihomed if more than one access point in the topology is

connected to the Internet with a wired link.

Wireless mesh networks are usually self-organizing, easily

deployable, and therefore are useful for providing peer-to-peer

and Internet connectivity in remote geographical areas or for

first responders in disaster affected areas that lack the wired

infrastructure. In such scenarios, providing support for real-

time applications such as VoIP is often critical.

While the access points are usually static, mobile devices

that connect to the mesh network can roam throughout the cov-

erage area and require both peer-to-peer and external, Internet

connectivity. In a multihomed mesh network efficient routing

protocols are required to use the wired connectivity as much as

possible to reduce the number of wireless transmissions and to

forward packets to the closest Internet connected Access point.

The challenge resides in maintaining existing connections as

a mobile device moves closer to a different wired access

point, allowing packets to flow with real-time response, and

minimizing the usage of wireless hops, even during the times

when access points are changed.

This paper presents a practical handoff routing protocol

for multihomed wireless mesh networks that maintains real-

time characteristics of traffic such as VoIP, even when mobile

clients move closer to a different wired connected accass

point. Continue the paragraph with technical details of

the approach.

We implemented our approach in a wireless mesh net-

work prototype and deployed it over three buildings in a

university campus, providing daily Internet connectivity to

multiple users. Experimental results on our testbed show that...

Continue the paragraph with performance resullts.

The main contribution of this work are:

• A fast handoff protocol for multihomed wireless mesh

networks that supports real-time applications such as

VoIP.

• A routing mechanism that integrates seamlessly both

wired and wireless connectivity in multihomed mesh

networks.

• A routing protocol for mesh peer-to-peer communication

that optimizes the number hops in inter-domain commu-

nication.

The rest of the paper is organized as follows: Section II

presents related work. In Section III we describe the archi-

tecture of our multihomed mesh network approach, and in

Section IV we present the real-time handoff routing protocol

between the wired connected access points. Experimental

results are presented in Section V, and Section VI concludes

the paper.

II. RELATED WORK

One of the first approaches to provide mobile connectivity

while moving between different wireless domains was Mobile

IP [1], [2]. The approach preserves a permanent home IP

address for each mobile client, bound by an agent at its home

domain. As the mobile client moves to a different network

domain it receives a Care-of-Address (CoA) from an agent

in the foreign network. The mobile client then registers its

new address with its home agent, and tunnels all its data

through the home agent. This approach is useful for clients

that are mostly located in a home domain, and occasionally

move to other domains, otherwise it may result in an inefficient

path of the packets. Several improvements have been proposed

to cope with this problem [][]. However, in the general case

Mobile IP does not provide a real-time handoff and can use

more hops than the optimal routing solution. For example, two

“Practical” results

Preliminaries:

Bandwidth Effective Utilization Metric,

Comparison between (for 100 nodes):

• Full mesh distribution strategy,

• Randomized distribution strategy,
 5-6 time slots to detect an attack

• Whirlpool
 6 time slots on average

29

t + 2i mod 2m BEUM = 1

t∗N
√

N

1

t + 2i mod 2m

BEUM =
1

t ∗ N
√

N

BEUM = 1/(t ∗ B)

BEUM = 1/10000

1

t + 2i mod 2m

BEUM =
1

t ∗ N
√

N

BEUM = 1/(t ∗ B)

BEUM = 1/10000

1

“Practical” results

 Whirlpool doesn’t need to keep a long history (9 versus 90)

30

0

10

20

30

40

50

60

70

80

90

100

0 100 200 300 400 500 600 700 800 900 1000

#
 o

f
ti
m

e
 s

li
c
e
s
 b

e
fo

re
 a

tt
a
c
k
 d

e
te

c
te

d

trial #

random detection

time slices

Figure 4: Number of time slices until random distribution detects an attack. The average number
for this particular data plot is 6 time slices.

same output is intended for all parties). The crucial point is that the protocol must be secure even
when an adversary controls the actions of some of the parties. In particular, the output should be
computed correctly, and privacy of the inputs should be maintained: no information should leak to
any party, beyond what inevitably follows from seeing their own input and output.
The full definition of security for such a protocol is quite complex, and we do not detail it here.

However, we note that the definition is based on a comparison to an ”ideal model”, where there is
a centralized trusted entity with a secure connection to each of the parties, who can compute the
function for them and deliver the output securely (clearly such a fully trusted party does not exist in
the real world). A protocol is considered secure, if there is nothing that an attacker can achieve by
attacking the protocol in the real world, beyond what could be done in the ideal world (essentially,
nothing).
One of the most celebrated results in cryptography, is that in fact any function that can be

computed, can be computed securely, assuming at most one third of the parties are compromised.4
This is a very general result , allowing to secure any protocol. The overhead may be prohibitive,
depending on the context where the technique is employed, and we address this issue below.
We next discuss the advantages gained by using secure multi-party computation techniques in

our context, namely robustness and privacy.
4There are several other flavors of this result. For example, it holds even when up to half the parties are compro-

mised, provided there is a broadcast channel.

19

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0 1 2 3 4 5 6 7 8 9

fr
e

q
u

e
n

c
y
 o

f
ti
m

e
 s

lic
e

 v
a

lu
e

of time slices until detection

Attack Detection with Whirlpool

whirlpool

Figure 5: The number of time slices to detect an attack with Whirlpool over 1000 trials. For this
graph, the average number of time slices was 6. This is not surprising, since the Whirlpool is a
special case of a random schedule. Note, however, that Whirlpool does not have the outliers that a
random schedule has because it converges.

ROBUSTNESS. Reliability of the system must be maintained in the presence of accidental
failures and malicious attacks. As we explained above, reliability against accidental failures is
achieved by designing our system in a fault tolerant way, using self-healing systems. Further, to
protect malicious attacks on the network, strong cryptography (e.g., TLS) can be used to assure
authenticity and integrity of the data sent. However, these methods are not sufficient if actual nodes
are compromised together with all their pertaining secret key material, which is made available to a
malicious attacker. In this case, secure multi-party computation can be used, under the assumption
that no more than one third of all nodes are compromised in this strong way. The resulting protocol
assures that no matter how the compromised nodes behave, they cannot disrupt the computation
(e.g., they cannot thwart the outputted correlated list).
PRIVACY. Another important advantage of secure multi-party computation, is that of main-

taining privacy of the data. Indeed, when the communicating nodes wish to correlate their data to
create alerts, it is often desirable that the data is not leaked to other participating nodes, beyond
the unavoidable information that can be obtained from the outcome of the computation, such as
the watchlist. The distributed nature of our system, as well as our use of Bloom filters and data
reduction mechanisms, already facilitate some amount of privacy, as compared to the centralized
or full-mesh communication solutions. If higher degree of privacy is desired, secure multi-party
computation assures privacy to the highest possible degree, namely a proof that no information

20

Secure "Selecticast" for Collaborative
Intrusion Detection Systems

Philip Gross, Janak Parekh and Gail Kaiser, Columbia University
 International Workshop on Distributed Event-Based Systems 2004

• Share intrusion detection data among organizations to
predict attacks earlier.

• Participants collects lists of suspect IPs and want to be
notified if others suspect the same IPs.

• Alerts regarding external probes should be visible only to
participants which experienced probes from the same
source address.

31

Selecticast

System concerns:

• size of submissions and notifications in transit

• size of the subscription representations in
router memory

• speed to compute intersections

• what service to offer? (number, identities list)

32

Attempt #1: Plain Hash Tables

• Clients hash alerts and submit the lists to the
router

• The router maintains a hash table, each entry
points to the list of the clients who sent that alert

No false positives

Allows deletion of alerts

Size

33

Attempt #1: Plain Hash Tables

1. size of submissions and notifications in transit

small, hashes of alerts

2. size of the subscription representations in router memory

takes a lot of space

3. speed to compute intersections

very easy, an entry contains directly the list of participants
subscribed to that alert

4. service

notifies which participants submitted the same alert

34

Attempt #2: Pure Bloom Filters

• Clients submit a Bloom filter representing their
alerts

• How does the router look for matches?

35

Attempt #2: Pure Bloom Filters

Bloom filter of size m storing n distinct values, k bits per
item.

A bit is set with probability p =

One bit matches a bit from the other filter is a Bernoulli
trial with chance of success p.

Expected number of successes in kn trials is knp

Ex:

 Problem: it will require 7000+ bits/item !!!

!

"#$$%&'!('!)*+'! ,(%!-.%%/! 01.,'2&!%0! &13'!m! 41,&5! '*6)!

&,%2178!n!91&,176,!+*.#'&!:1;';5!7%!+*.#'&!17!6%//%7<!#&178!

k! 41,&! $'2! 1,'/;! ! =! 41,! 17! ,)'! 01.,'2! (1..! 4'! &',! (1,)!

$2%4*41.1,>!p5!2%#8).>! ! "kn
m??? ## ;!!@%2!%$,1/*.!-.%%/!

01.,'2&5! p! &)%#.9! 4'! 7'*2! A;B5! *.,)%#8)! ('! 6*7! /*C'! 1,!

/#6)!&$*2&'2!*,!,)'!6%&,!%0!1762'*&'9!/'/%2>!#&*8';!!!

@%2!%#2!6*7919*,'!-.%%/!01.,'25!('!6*7!+1'(!,)'!6*&'!

,)*,!%7'!%0!%#2!41,&!6%17619'7,.>!/*,6)'&!*!41,!17!,)'!%,)'2!

01.,'2!*&!*!-'27%#..1!,21*.!(1,)!6)*76'!%0!DB'&&E!p;!!F)'!

7#/4'2! %0! /*,6)178! 41,&! (1..! ,)'7! 0%..%(! *! 417%/1*.!

91&,214#,1%75!(1,)!,)'!'G$'6,'9!7#/4'2!%0!B'&&'&!17!kn!

,21*.&! 'H#*.! ,%! knp;! ! I%/$#,'2! &1/#.*,1%7! 6%7012/&! ,)'!

*66#2*6>!%0!,)1&!*7*.>&1&;!!knp!(1..!4'!+*&,.>!82'*,'2!,)*7!

k5! *79! ,)#&! ,)'! 7#/4'2! %0! 0*.&'! $%&1,1+'&! (1..! 4'!

'7%2/%#&;! ! J+'7! 10! ('! ,2>! ,%! .%('2! knp! 4>! /*C178! p!

'G,2'/'.>!&/*..!:*79!/*C178!,)'!01.,'2!'G,2'/'.>!&$*2&'<5!

.*28'! +*.#'&! %0! n! (1..! 2*$19.>! /*C'! ,)'! &1,#*,1%7!

#7(%2C*4.';!!!

@%2!17&,*76'5!10!k!1&!K5!*79!,)#&!('!(*7,!%#2!'G$'6,'9!

7#/4'2!%0!6%..1&1%7&!,%!4'!.'&&!,)*7!K5!('!/#&,!$#,!0'('2!

,)*7!?LAA!1,'/&!17,%!*7!M!/1..1%7!41,!:?N-<!-.%%/!01.,'2!

:kOK5!nO??MP5!mOLLP5!p!A;AAAM5!knp!K;A<;!!Q%,'!,)*,!,)1&!

6%&,! 1&! %7.>! 176#22'9! 17!/'/%2>;! !R'! 6*7! 6%/$2'&&! ,)'!

01.,'2!9#2178!7',(%2C!,2*7&/1&&1%7!4>!*!.*28'!0*6,%2!#&178!

&,*79*29!6%/$2'&&1%7!,%%.&;!!Q%7',)'.'&&5!*79!'+'7!81+'7!

,)'!&$''9!%0!&1/$.>!=QS178!,)'!,(%!.*28'!-.%%/!01.,'2&!

,%8',)'25! TAAAU! 41,&! $'2! 1,'/! &,%2'9! 1&! *!)18).>!

#7*,,2*6,1+'!2*,1%;!

!

Hybrid Bloom Filter

R'! 6*7! B'&&0#..>! .'+'2*8'! ,)'! &13'! *9+*7,*8'! %0!

-.%%/! 01.,'2&! 4>! 6%/417178! ,)'/! (1,)! ,)'! &',V%0V)*&)V

+*.#'&! *$$2%*6);! ! W*2,161$*7,&! /1,! ,)'! .1&,! %0!)*&)!

+*.#'&! %0! 17,'2'&,5! 2'$2'&'7,178! 7%,'9! 17&,*76'&! %0!

&#&$161%#&! 7',(%2C! *6,1+1,>;! ! F)'! 2%#,'2! #&'&! ,)'! *6,#*.!

)*&)!+*.#'&!,%!6)'6C!*8*17&,!,)'!-.%%/!01.,'2&!%0!,)'!%,)'2!

$*2,161$*7,&!,%!0179!/*,6)'&!(1,)!2'*&%7*4.'!*66#2*6>;!!X0!

/*,6)'&! *2'! 0%#795! ,)'! 2%#,'2! &'79&! ,)'!/*,6)178!+*.#'&!

*&! *! 7%,1016*,1%7! ,%! *..! /*,6)178! $*2,161$*7,&;!!

=991,1%7*..>5!,)'!2%#,'2!6%7+'2,&!,)'!/1,,'9!&',!%0!)*&)!

+*.#'&!17,%!*!-.%%/!01.,'2!%0!&13'! nYM !41,&5!()'2'! nY !1&!,)'!

'&,1/*,'9! ,%,*.!7#/4'2!%0!+*.#'&!$'2!$*2,161$*7,!:/*C178!

..! 01.,'2&! ,)'! &/'! &13'5! *79! 81+178! *! 6)*76'! %0! 0*.&'!

$%&1,1+'! *2%#79! LZ<;! ! F)1&! 01.,'2! 1&! ,)'7! &,%2'9! *79!

&&%61,'9!(1,)! ,)'!/1,,'2;! !=0,'2!*..!%0! ,)'!/1,,'9!

)*&)! +*.#'&!)*+'! 4''7! 6)'6C'9! *8*17&,! '+'2>%7'! '.&'[&!

-.%%/! 01.,'2&5! ,)'! 2%#,'2! 6*7! ,)'7! 91&6*29! ,)'! /1,,'9!

)*&)! +*.#'! .1&,5! .'*+178! %7.>! ,)'! &6214'2[&! :/#6)!

&/*..'2<!-.%%/!01.,'2;!!!

F)#&! $#4.1&)'2&! /1,! .*28'! &',&! %0!)*&)! +*.#'&5!

()16)! *2'! #&'9! ,%! 0179! /*,6)'&5! *79! ,)'7! .'*+'! 4')179!

/#6)! &/*..'2! -.%%/! 01.,'2! D2'&19#'&E! ,)*,! *6,! *&!

&621$,1%7&;! ! N*,6)178!)*&)! +*.#'! &',&! :%$,1%7*..>!

,*88'9!(1,)!,)'!19'7,1,>!%0!,)'12!/1,,'2<!*2'!&'7,!%#,!*&!

,)'!*6,#*.!7%,1016*,1%7&;!!@%2!,)1&!9%/*175!('!*&&#/'!,)*,!

,)'!7#/4'2!%0!7%,1016*,1%7&!1&!+'2>!&/*..!17!2'.*,1%7!,%!,)'!

7#/4'2! %0! +*.#'&! /1,,'9! :'G$'21/'7,&! &)%(!

6%22'.*,1%7! 2*,'&! %0! A;A?Z! %2! .%('2<;! ! X0! ,)'! 7#/4'2! %0!

/*,6)'&! 1&!'G$'6,'9! ,%!4'! .*28'5! ,)'!/*,6)178!&',&!6%#.9!

,)'/&'.+'&! 4'! 6%7+'2,'9! ,%! -.%%/! 01.,'2&! 4'0%2'! 4'178!

&'7,!*&!7%,1016*,1%7&5!(1,)!,)'!*,,'79*7,!&$*6'!&*+178&;!!!

Q%,'! ,)*,! ,)'!)*&)! +*.#'&! #&'9! 0%2! -.%%/! 01.,'2!

8'7'2*,1%7!*2'!/#6)!.*28'2!,)*7!,)'!)*&)!+*.#'&!#&'9!4>!*!

$.*17!)*&),*4.'5!'+'7! ,)%#8)! ,)'! 2'&#.,178! 01.,'2!&,2#6,#2'!

1&! &/*..'2! ,)*7! ,)'! 6%22'&$%79178!)*&),*4.';! ! @%2! '*6)!

1,'/! '7,'2'95! -.%%/! 01.,'2&! 7''9! k! 17916'&! 17,%! *7!mV41,!

,*4.'5! *79! ,)#&! *! ,%,*.! %0!k.7m! 41,&! %0!)*&)!$'2! 1,'/;! ! X0!

mOMn5! ,)'7! k:PU.7n<! 41,&;! ! @%2! &',&! %0! L5AAA! ,%! ?LM5AAA!

1,'/&!*79!COK5!,)1&!(%2C&!%#,!,%!M\V?LA!41,&!$'2!1,'/5!%2!*!

0*6,%2! %0! PV\! 1762'*&'! %+'2! ,)'! &13'! %0! ,)'!)*&)! +*.#'&!

7''9'9!0%2!$.*17!)*&),*4.'&;!!F)1&!(%#.9!$%,'7,1*..>!4'!*!

$2%4.'/!0%2!,)'!/1&&1%7!%0!.*28'!&',&!%0!)*&)'9!+*.#'&!

17!,)'!)>4219!6*&';!

]%('+'25!('! 6*7! *+%19! ,)1&! $2%4.'/!4>!)*&)178!%#2!

*.'2,&!,%!PL!41,&!0%2!,2*7&/1&&1%75!*79!,)'7!2')*&)178!'*6)!

,%!?LAU!41,&!*0,'2!1,!*221+'&!*,!,)'!&'2+'2!:*79!,)'7!&$.1,,178!

#$!,)%&'!41,&!17,%!,)'!C!17916'&!%0!&13'!.7m!,)*,!('!7''9<5!

,)#&!/*C178!,)'!,2*7&/1&&1%7!6%&,!7%!/%2'!'G$'7&1+'!,)*7!

0%2! $.*17!)*&),*4.'&;! ! "176'! ,)'! %21817*.! *.'2,&! (1..!

,>$16*..>! 6%7,*17! .'&&! ,)*7! PL! 41,&! %0! '7,2%$>5! 7%!

170%2/*,1%7! &)%#.9! 4'! .%&,! (1,)! ,)1&! ,(%V&,*8'!)*&)178!

$2%6'&&;!

!

Optimization with Two-Stage Compare

X7! ,)'!)>4219! 6*&'! 9'&6214'9! *4%+'5!('! *&&#/'9! ,)*,!

,)'! 2%#,'2!/*17,*17&! *! &'$*2*,'! -.%%/! 01.,'2! 0%2! '*6)! %0!

,)'!C!6%..*4%2*,178!$*2,1'&5!2'$2'&'7,178!,)'!&$'61016!&',!%0!

.'2,&! &''7! 4>! ,),! $*2,>;! !R)'7! *! 7'(! &',! %0! +*.#'&! 1&!

$#4.1&)'95! 1,!/#&,! 4'! 6%/$*2'9! *8*17&,! '*6)! %0! ,)'!C-1!

%,)'2!&',&;!!R'!6*7!&$''9!$2%6'&&178!4>!'7,'2178!*..!%0!,)'!

/1,,'9! +*.#'! &',&! 17,%! *! &178.'! .*28'! D/*&,'2E!-.%%/!

01.,'2!17!,)'!^%#,'2!*79!6)'6C178!,)1&!012&,;!!!

X0!('!0179!*!/*,6)!17!,)'!/*&,'2!-.%%/!01.,'25!('!/#&,!

,)'7! 6)'6C! '*6)! 1791+19#*.! 01.,'2! ,%!91&6%+'2! ,)'! &$'61016!

$*2,161$*7,&! ()%! /*,6)'9;! ! S'&$1,'! ,)1&5! ('! (1..! &)%(!

,)*,!,)1&!*$$2%*6)!6*7!%00'2!&,*7,1*.!&$*6'!'00161'761'&!

%+'2!,)'!)*&)!,*4.'!*$$2%*6)5!*79!,)'!&$''9!91&*9+*7,*8'!

6*7!4'!2'9#6'9;!

R'! 6*7! &$''9! %#2! -.%%/! 01.,'2! .%%C#$&! 4>! ,*C178!

*9+*7,*8'! %0! *21,)/',16! /%9#.%! Lm! %7! 417*2>! 7#/4'2&;!!

_#&,! *&! *! 4*&'! ?A! 7#/4'2! /%9#.%! ?Am! 1&! ,)'! .'*&,!

&1871016*7,! m! 9181,&! %0! ,)'! 7#/4'25! *! 417*2>! 7#/4'2!

/%9#.%!Lm!1&!`#&,!,)'!4%,,%/!m!41,&!%0!,)'!7#/4'25!()16)!

6*7! 4'! 'G,2*6,'9! 4>! =QS178! ,)'! 7#/4'2! (1,)! *7!

$$2%$21,'! 41,! /*&C! :(1<<m)–1! #&178! ,)'! IV.*78#*8'!

41,!%$'2*,%2&<;!

a',!n’!4'!,)'!$%('2!%0!L!6.%&'&,!,%!n;! !R'!62'*,'!%7'!

/*&,'2!-.%%/!01.,'2!%0!&13'!Cn’!*79!*!01.,'2!%0!&13'!n’!0%2!

'*6)!%0!,)'!C!$*2,161$*7,&;!!"13178!,)'&'!*,!M!41,&!$'2!1,'/5!

!

"#$$%&'!('!)*+'! ,(%!-.%%/! 01.,'2&!%0! &13'!m! 41,&5! '*6)!

&,%2178!n!91&,176,!+*.#'&!:1;';5!7%!+*.#'&!17!6%//%7<!#&178!

k! 41,&! $'2! 1,'/;! ! =! 41,! 17! ,)'! 01.,'2! (1..! 4'! &',! (1,)!

$2%4*41.1,>!p5!2%#8).>! ! "kn
m??? ## ;!!@%2!%$,1/*.!-.%%/!

01.,'2&5! p! &)%#.9! 4'! 7'*2! A;B5! *.,)%#8)! ('! 6*7! /*C'! 1,!

/#6)!&$*2&'2!*,!,)'!6%&,!%0!1762'*&'9!/'/%2>!#&*8';!!!

@%2!%#2!6*7919*,'!-.%%/!01.,'25!('!6*7!+1'(!,)'!6*&'!

,)*,!%7'!%0!%#2!41,&!6%17619'7,.>!/*,6)'&!*!41,!17!,)'!%,)'2!

01.,'2!*&!*!-'27%#..1!,21*.!(1,)!6)*76'!%0!DB'&&E!p;!!F)'!

7#/4'2! %0! /*,6)178! 41,&! (1..! ,)'7! 0%..%(! *! 417%/1*.!

91&,214#,1%75!(1,)!,)'!'G$'6,'9!7#/4'2!%0!B'&&'&!17!kn!

,21*.&! 'H#*.! ,%! knp;! ! I%/$#,'2! &1/#.*,1%7! 6%7012/&! ,)'!

*66#2*6>!%0!,)1&!*7*.>&1&;!!knp!(1..!4'!+*&,.>!82'*,'2!,)*7!

k5! *79! ,)#&! ,)'! 7#/4'2! %0! 0*.&'! $%&1,1+'&! (1..! 4'!

'7%2/%#&;! ! J+'7! 10! ('! ,2>! ,%! .%('2! knp! 4>! /*C178! p!

'G,2'/'.>!&/*..!:*79!/*C178!,)'!01.,'2!'G,2'/'.>!&$*2&'<5!

.*28'! +*.#'&! %0! n! (1..! 2*$19.>! /*C'! ,)'! &1,#*,1%7!

#7(%2C*4.';!!!

@%2!17&,*76'5!10!k!1&!K5!*79!,)#&!('!(*7,!%#2!'G$'6,'9!

7#/4'2!%0!6%..1&1%7&!,%!4'!.'&&!,)*7!K5!('!/#&,!$#,!0'('2!

,)*7!?LAA!1,'/&!17,%!*7!M!/1..1%7!41,!:?N-<!-.%%/!01.,'2!

:kOK5!nO??MP5!mOLLP5!p!A;AAAM5!knp!K;A<;!!Q%,'!,)*,!,)1&!

6%&,! 1&! %7.>! 176#22'9! 17!/'/%2>;! !R'! 6*7! 6%/$2'&&! ,)'!

01.,'2!9#2178!7',(%2C!,2*7&/1&&1%7!4>!*!.*28'!0*6,%2!#&178!

&,*79*29!6%/$2'&&1%7!,%%.&;!!Q%7',)'.'&&5!*79!'+'7!81+'7!

,)'!&$''9!%0!&1/$.>!=QS178!,)'!,(%!.*28'!-.%%/!01.,'2&!

,%8',)'25! TAAAU! 41,&! $'2! 1,'/! &,%2'9! 1&! *!)18).>!

#7*,,2*6,1+'!2*,1%;!

!

Hybrid Bloom Filter

R'! 6*7! B'&&0#..>! .'+'2*8'! ,)'! &13'! *9+*7,*8'! %0!

-.%%/! 01.,'2&! 4>! 6%/417178! ,)'/! (1,)! ,)'! &',V%0V)*&)V

+*.#'&! *$$2%*6);! ! W*2,161$*7,&! /1,! ,)'! .1&,! %0!)*&)!

+*.#'&! %0! 17,'2'&,5! 2'$2'&'7,178! 7%,'9! 17&,*76'&! %0!

&#&$161%#&! 7',(%2C! *6,1+1,>;! ! F)'! 2%#,'2! #&'&! ,)'! *6,#*.!

)*&)!+*.#'&!,%!6)'6C!*8*17&,!,)'!-.%%/!01.,'2&!%0!,)'!%,)'2!

$*2,161$*7,&!,%!0179!/*,6)'&!(1,)!2'*&%7*4.'!*66#2*6>;!!X0!

/*,6)'&! *2'! 0%#795! ,)'! 2%#,'2! &'79&! ,)'!/*,6)178!+*.#'&!

*&! *! 7%,1016*,1%7! ,%! *..! /*,6)178! $*2,161$*7,&;!!

=991,1%7*..>5!,)'!2%#,'2!6%7+'2,&!,)'!/1,,'9!&',!%0!)*&)!

+*.#'&!17,%!*!-.%%/!01.,'2!%0!&13'! nYM !41,&5!()'2'! nY !1&!,)'!

'&,1/*,'9! ,%,*.!7#/4'2!%0!+*.#'&!$'2!$*2,161$*7,!:/*C178!

..! 01.,'2&! ,)'! &/'! &13'5! *79! 81+178! *! 6)*76'! %0! 0*.&'!

$%&1,1+'! *2%#79! LZ<;! ! F)1&! 01.,'2! 1&! ,)'7! &,%2'9! *79!

&&%61,'9!(1,)! ,)'!/1,,'2;! !=0,'2!*..!%0! ,)'!/1,,'9!

)*&)! +*.#'&!)*+'! 4''7! 6)'6C'9! *8*17&,! '+'2>%7'! '.&'[&!

-.%%/! 01.,'2&5! ,)'! 2%#,'2! 6*7! ,)'7! 91&6*29! ,)'! /1,,'9!

)*&)! +*.#'! .1&,5! .'*+178! %7.>! ,)'! &6214'2[&! :/#6)!

&/*..'2<!-.%%/!01.,'2;!!!

F)#&! $#4.1&)'2&! /1,! .*28'! &',&! %0!)*&)! +*.#'&5!

()16)! *2'! #&'9! ,%! 0179! /*,6)'&5! *79! ,)'7! .'*+'! 4')179!

/#6)! &/*..'2! -.%%/! 01.,'2! D2'&19#'&E! ,)*,! *6,! *&!

&621$,1%7&;! ! N*,6)178!)*&)! +*.#'! &',&! :%$,1%7*..>!

,*88'9!(1,)!,)'!19'7,1,>!%0!,)'12!/1,,'2<!*2'!&'7,!%#,!*&!

,)'!*6,#*.!7%,1016*,1%7&;!!@%2!,)1&!9%/*175!('!*&&#/'!,)*,!

,)'!7#/4'2!%0!7%,1016*,1%7&!1&!+'2>!&/*..!17!2'.*,1%7!,%!,)'!

7#/4'2! %0! +*.#'&! /1,,'9! :'G$'21/'7,&! &)%(!

6%22'.*,1%7! 2*,'&! %0! A;A?Z! %2! .%('2<;! ! X0! ,)'! 7#/4'2! %0!

/*,6)'&! 1&!'G$'6,'9! ,%!4'! .*28'5! ,)'!/*,6)178!&',&!6%#.9!

,)'/&'.+'&! 4'! 6%7+'2,'9! ,%! -.%%/! 01.,'2&! 4'0%2'! 4'178!

&'7,!*&!7%,1016*,1%7&5!(1,)!,)'!*,,'79*7,!&$*6'!&*+178&;!!!

Q%,'! ,)*,! ,)'!)*&)! +*.#'&! #&'9! 0%2! -.%%/! 01.,'2!

8'7'2*,1%7!*2'!/#6)!.*28'2!,)*7!,)'!)*&)!+*.#'&!#&'9!4>!*!

$.*17!)*&),*4.'5!'+'7! ,)%#8)! ,)'! 2'&#.,178! 01.,'2!&,2#6,#2'!

1&! &/*..'2! ,)*7! ,)'! 6%22'&$%79178!)*&),*4.';! ! @%2! '*6)!

1,'/! '7,'2'95! -.%%/! 01.,'2&! 7''9! k! 17916'&! 17,%! *7!mV41,!

,*4.'5! *79! ,)#&! *! ,%,*.! %0!k.7m! 41,&! %0!)*&)!$'2! 1,'/;! ! X0!

mOMn5! ,)'7! k:PU.7n<! 41,&;! ! @%2! &',&! %0! L5AAA! ,%! ?LM5AAA!

1,'/&!*79!COK5!,)1&!(%2C&!%#,!,%!M\V?LA!41,&!$'2!1,'/5!%2!*!

0*6,%2! %0! PV\! 1762'*&'! %+'2! ,)'! &13'! %0! ,)'!)*&)! +*.#'&!

7''9'9!0%2!$.*17!)*&),*4.'&;!!F)1&!(%#.9!$%,'7,1*..>!4'!*!

$2%4.'/!0%2!,)'!/1&&1%7!%0!.*28'!&',&!%0!)*&)'9!+*.#'&!

17!,)'!)>4219!6*&';!

]%('+'25!('! 6*7! *+%19! ,)1&! $2%4.'/!4>!)*&)178!%#2!

*.'2,&!,%!PL!41,&!0%2!,2*7&/1&&1%75!*79!,)'7!2')*&)178!'*6)!

,%!?LAU!41,&!*0,'2!1,!*221+'&!*,!,)'!&'2+'2!:*79!,)'7!&$.1,,178!

#$!,)%&'!41,&!17,%!,)'!C!17916'&!%0!&13'!.7m!,)*,!('!7''9<5!

,)#&!/*C178!,)'!,2*7&/1&&1%7!6%&,!7%!/%2'!'G$'7&1+'!,)*7!

0%2! $.*17!)*&),*4.'&;! ! "176'! ,)'! %21817*.! *.'2,&! (1..!

,>$16*..>! 6%7,*17! .'&&! ,)*7! PL! 41,&! %0! '7,2%$>5! 7%!

170%2/*,1%7! &)%#.9! 4'! .%&,! (1,)! ,)1&! ,(%V&,*8'!)*&)178!

$2%6'&&;!

!

Optimization with Two-Stage Compare

X7! ,)'!)>4219! 6*&'! 9'&6214'9! *4%+'5!('! *&&#/'9! ,)*,!

,)'! 2%#,'2!/*17,*17&! *! &'$*2*,'! -.%%/! 01.,'2! 0%2! '*6)! %0!

,)'!C!6%..*4%2*,178!$*2,1'&5!2'$2'&'7,178!,)'!&$'61016!&',!%0!

.'2,&! &''7! 4>! ,),! $*2,>;! !R)'7! *! 7'(! &',! %0! +*.#'&! 1&!

$#4.1&)'95! 1,!/#&,! 4'! 6%/$*2'9! *8*17&,! '*6)! %0! ,)'!C-1!

%,)'2!&',&;!!R'!6*7!&$''9!$2%6'&&178!4>!'7,'2178!*..!%0!,)'!

/1,,'9! +*.#'! &',&! 17,%! *! &178.'! .*28'! D/*&,'2E!-.%%/!

01.,'2!17!,)'!^%#,'2!*79!6)'6C178!,)1&!012&,;!!!

X0!('!0179!*!/*,6)!17!,)'!/*&,'2!-.%%/!01.,'25!('!/#&,!

,)'7! 6)'6C! '*6)! 1791+19#*.! 01.,'2! ,%!91&6%+'2! ,)'! &$'61016!

$*2,161$*7,&! ()%! /*,6)'9;! ! S'&$1,'! ,)1&5! ('! (1..! &)%(!

,)*,!,)1&!*$$2%*6)!6*7!%00'2!&,*7,1*.!&$*6'!'00161'761'&!

%+'2!,)'!)*&)!,*4.'!*$$2%*6)5!*79!,)'!&$''9!91&*9+*7,*8'!

6*7!4'!2'9#6'9;!

R'! 6*7! &$''9! %#2! -.%%/! 01.,'2! .%%C#$&! 4>! ,*C178!

*9+*7,*8'! %0! *21,)/',16! /%9#.%! Lm! %7! 417*2>! 7#/4'2&;!!

_#&,! *&! *! 4*&'! ?A! 7#/4'2! /%9#.%! ?Am! 1&! ,)'! .'*&,!

&1871016*7,! m! 9181,&! %0! ,)'! 7#/4'25! *! 417*2>! 7#/4'2!

/%9#.%!Lm!1&!`#&,!,)'!4%,,%/!m!41,&!%0!,)'!7#/4'25!()16)!

6*7! 4'! 'G,2*6,'9! 4>! =QS178! ,)'! 7#/4'2! (1,)! *7!

$$2%$21,'! 41,! /*&C! :(1<<m)–1! #&178! ,)'! IV.*78#*8'!

41,!%$'2*,%2&<;!

a',!n’!4'!,)'!$%('2!%0!L!6.%&'&,!,%!n;! !R'!62'*,'!%7'!

/*&,'2!-.%%/!01.,'2!%0!&13'!Cn’!*79!*!01.,'2!%0!&13'!n’!0%2!

'*6)!%0!,)'!C!$*2,161$*7,&;!!"13178!,)'&'!*,!M!41,&!$'2!1,'/5!

36

Attempt #2: Pure Bloom Filters

1. size of submissions and notifications in transit

need to transmit an entire Bloom filter

2. size of the subscription representations in router memory

a Bloom filter for each client, but it must be big to lower the
false positive rate

3. speed to compute intersections

easy, need to intersect a filter with everybody else’s filter

4. service

notifies which participants submitted the same alert

37

Attempt #3: Hybrid Bloom Filters

• A client hashes an alert k times and submit the list
of hashes to the router

• The router maintains one Bloom filter of size 8
per client (we need an explicit bound of n since we
cannot resize the filter)

• The router uses the hash values to check them
against the others Bloom filters, updates the Bloom
filter and discard the values

!

"#$$%&'!('!)*+'! ,(%!-.%%/! 01.,'2&!%0! &13'!m! 41,&5! '*6)!

&,%2178!n!91&,176,!+*.#'&!:1;';5!7%!+*.#'&!17!6%//%7<!#&178!

k! 41,&! $'2! 1,'/;! ! =! 41,! 17! ,)'! 01.,'2! (1..! 4'! &',! (1,)!

$2%4*41.1,>!p5!2%#8).>! ! "kn
m??? ## ;!!@%2!%$,1/*.!-.%%/!

01.,'2&5! p! &)%#.9! 4'! 7'*2! A;B5! *.,)%#8)! ('! 6*7! /*C'! 1,!

/#6)!&$*2&'2!*,!,)'!6%&,!%0!1762'*&'9!/'/%2>!#&*8';!!!

@%2!%#2!6*7919*,'!-.%%/!01.,'25!('!6*7!+1'(!,)'!6*&'!

,)*,!%7'!%0!%#2!41,&!6%17619'7,.>!/*,6)'&!*!41,!17!,)'!%,)'2!

01.,'2!*&!*!-'27%#..1!,21*.!(1,)!6)*76'!%0!DB'&&E!p;!!F)'!

7#/4'2! %0! /*,6)178! 41,&! (1..! ,)'7! 0%..%(! *! 417%/1*.!

91&,214#,1%75!(1,)!,)'!'G$'6,'9!7#/4'2!%0!B'&&'&!17!kn!

,21*.&! 'H#*.! ,%! knp;! ! I%/$#,'2! &1/#.*,1%7! 6%7012/&! ,)'!

*66#2*6>!%0!,)1&!*7*.>&1&;!!knp!(1..!4'!+*&,.>!82'*,'2!,)*7!

k5! *79! ,)#&! ,)'! 7#/4'2! %0! 0*.&'! $%&1,1+'&! (1..! 4'!

'7%2/%#&;! ! J+'7! 10! ('! ,2>! ,%! .%('2! knp! 4>! /*C178! p!

'G,2'/'.>!&/*..!:*79!/*C178!,)'!01.,'2!'G,2'/'.>!&$*2&'<5!

.*28'! +*.#'&! %0! n! (1..! 2*$19.>! /*C'! ,)'! &1,#*,1%7!

#7(%2C*4.';!!!

@%2!17&,*76'5!10!k!1&!K5!*79!,)#&!('!(*7,!%#2!'G$'6,'9!

7#/4'2!%0!6%..1&1%7&!,%!4'!.'&&!,)*7!K5!('!/#&,!$#,!0'('2!

,)*7!?LAA!1,'/&!17,%!*7!M!/1..1%7!41,!:?N-<!-.%%/!01.,'2!

:kOK5!nO??MP5!mOLLP5!p!A;AAAM5!knp!K;A<;!!Q%,'!,)*,!,)1&!

6%&,! 1&! %7.>! 176#22'9! 17!/'/%2>;! !R'! 6*7! 6%/$2'&&! ,)'!

01.,'2!9#2178!7',(%2C!,2*7&/1&&1%7!4>!*!.*28'!0*6,%2!#&178!

&,*79*29!6%/$2'&&1%7!,%%.&;!!Q%7',)'.'&&5!*79!'+'7!81+'7!

,)'!&$''9!%0!&1/$.>!=QS178!,)'!,(%!.*28'!-.%%/!01.,'2&!

,%8',)'25! TAAAU! 41,&! $'2! 1,'/! &,%2'9! 1&! *!)18).>!

#7*,,2*6,1+'!2*,1%;!

!

Hybrid Bloom Filter

R'! 6*7! B'&&0#..>! .'+'2*8'! ,)'! &13'! *9+*7,*8'! %0!

-.%%/! 01.,'2&! 4>! 6%/417178! ,)'/! (1,)! ,)'! &',V%0V)*&)V

+*.#'&! *$$2%*6);! ! W*2,161$*7,&! /1,! ,)'! .1&,! %0!)*&)!

+*.#'&! %0! 17,'2'&,5! 2'$2'&'7,178! 7%,'9! 17&,*76'&! %0!

&#&$161%#&! 7',(%2C! *6,1+1,>;! ! F)'! 2%#,'2! #&'&! ,)'! *6,#*.!

)*&)!+*.#'&!,%!6)'6C!*8*17&,!,)'!-.%%/!01.,'2&!%0!,)'!%,)'2!

$*2,161$*7,&!,%!0179!/*,6)'&!(1,)!2'*&%7*4.'!*66#2*6>;!!X0!

/*,6)'&! *2'! 0%#795! ,)'! 2%#,'2! &'79&! ,)'!/*,6)178!+*.#'&!

*&! *! 7%,1016*,1%7! ,%! *..! /*,6)178! $*2,161$*7,&;!!

=991,1%7*..>5!,)'!2%#,'2!6%7+'2,&!,)'!/1,,'9!&',!%0!)*&)!

+*.#'&!17,%!*!-.%%/!01.,'2!%0!&13'! nYM !41,&5!()'2'! nY !1&!,)'!

'&,1/*,'9! ,%,*.!7#/4'2!%0!+*.#'&!$'2!$*2,161$*7,!:/*C178!

..! 01.,'2&! ,)'! &/'! &13'5! *79! 81+178! *! 6)*76'! %0! 0*.&'!

$%&1,1+'! *2%#79! LZ<;! ! F)1&! 01.,'2! 1&! ,)'7! &,%2'9! *79!

&&%61,'9!(1,)! ,)'!/1,,'2;! !=0,'2!*..!%0! ,)'!/1,,'9!

)*&)! +*.#'&!)*+'! 4''7! 6)'6C'9! *8*17&,! '+'2>%7'! '.&'[&!

-.%%/! 01.,'2&5! ,)'! 2%#,'2! 6*7! ,)'7! 91&6*29! ,)'! /1,,'9!

)*&)! +*.#'! .1&,5! .'*+178! %7.>! ,)'! &6214'2[&! :/#6)!

&/*..'2<!-.%%/!01.,'2;!!!

F)#&! $#4.1&)'2&! /1,! .*28'! &',&! %0!)*&)! +*.#'&5!

()16)! *2'! #&'9! ,%! 0179! /*,6)'&5! *79! ,)'7! .'*+'! 4')179!

/#6)! &/*..'2! -.%%/! 01.,'2! D2'&19#'&E! ,)*,! *6,! *&!

&621$,1%7&;! ! N*,6)178!)*&)! +*.#'! &',&! :%$,1%7*..>!

,*88'9!(1,)!,)'!19'7,1,>!%0!,)'12!/1,,'2<!*2'!&'7,!%#,!*&!

,)'!*6,#*.!7%,1016*,1%7&;!!@%2!,)1&!9%/*175!('!*&&#/'!,)*,!

,)'!7#/4'2!%0!7%,1016*,1%7&!1&!+'2>!&/*..!17!2'.*,1%7!,%!,)'!

7#/4'2! %0! +*.#'&! /1,,'9! :'G$'21/'7,&! &)%(!

6%22'.*,1%7! 2*,'&! %0! A;A?Z! %2! .%('2<;! ! X0! ,)'! 7#/4'2! %0!

/*,6)'&! 1&!'G$'6,'9! ,%!4'! .*28'5! ,)'!/*,6)178!&',&!6%#.9!

,)'/&'.+'&! 4'! 6%7+'2,'9! ,%! -.%%/! 01.,'2&! 4'0%2'! 4'178!

&'7,!*&!7%,1016*,1%7&5!(1,)!,)'!*,,'79*7,!&$*6'!&*+178&;!!!

Q%,'! ,)*,! ,)'!)*&)! +*.#'&! #&'9! 0%2! -.%%/! 01.,'2!

8'7'2*,1%7!*2'!/#6)!.*28'2!,)*7!,)'!)*&)!+*.#'&!#&'9!4>!*!

$.*17!)*&),*4.'5!'+'7! ,)%#8)! ,)'! 2'&#.,178! 01.,'2!&,2#6,#2'!

1&! &/*..'2! ,)*7! ,)'! 6%22'&$%79178!)*&),*4.';! ! @%2! '*6)!

1,'/! '7,'2'95! -.%%/! 01.,'2&! 7''9! k! 17916'&! 17,%! *7!mV41,!

,*4.'5! *79! ,)#&! *! ,%,*.! %0!k.7m! 41,&! %0!)*&)!$'2! 1,'/;! ! X0!

mOMn5! ,)'7! k:PU.7n<! 41,&;! ! @%2! &',&! %0! L5AAA! ,%! ?LM5AAA!

1,'/&!*79!COK5!,)1&!(%2C&!%#,!,%!M\V?LA!41,&!$'2!1,'/5!%2!*!

0*6,%2! %0! PV\! 1762'*&'! %+'2! ,)'! &13'! %0! ,)'!)*&)! +*.#'&!

7''9'9!0%2!$.*17!)*&),*4.'&;!!F)1&!(%#.9!$%,'7,1*..>!4'!*!

$2%4.'/!0%2!,)'!/1&&1%7!%0!.*28'!&',&!%0!)*&)'9!+*.#'&!

17!,)'!)>4219!6*&';!

]%('+'25!('! 6*7! *+%19! ,)1&! $2%4.'/!4>!)*&)178!%#2!

*.'2,&!,%!PL!41,&!0%2!,2*7&/1&&1%75!*79!,)'7!2')*&)178!'*6)!

,%!?LAU!41,&!*0,'2!1,!*221+'&!*,!,)'!&'2+'2!:*79!,)'7!&$.1,,178!

#$!,)%&'!41,&!17,%!,)'!C!17916'&!%0!&13'!.7m!,)*,!('!7''9<5!

,)#&!/*C178!,)'!,2*7&/1&&1%7!6%&,!7%!/%2'!'G$'7&1+'!,)*7!

0%2! $.*17!)*&),*4.'&;! ! "176'! ,)'! %21817*.! *.'2,&! (1..!

,>$16*..>! 6%7,*17! .'&&! ,)*7! PL! 41,&! %0! '7,2%$>5! 7%!

170%2/*,1%7! &)%#.9! 4'! .%&,! (1,)! ,)1&! ,(%V&,*8'!)*&)178!

$2%6'&&;!

!

Optimization with Two-Stage Compare

X7! ,)'!)>4219! 6*&'! 9'&6214'9! *4%+'5!('! *&&#/'9! ,)*,!

,)'! 2%#,'2!/*17,*17&! *! &'$*2*,'! -.%%/! 01.,'2! 0%2! '*6)! %0!

,)'!C!6%..*4%2*,178!$*2,1'&5!2'$2'&'7,178!,)'!&$'61016!&',!%0!

.'2,&! &''7! 4>! ,),! $*2,>;! !R)'7! *! 7'(! &',! %0! +*.#'&! 1&!

$#4.1&)'95! 1,!/#&,! 4'! 6%/$*2'9! *8*17&,! '*6)! %0! ,)'!C-1!

%,)'2!&',&;!!R'!6*7!&$''9!$2%6'&&178!4>!'7,'2178!*..!%0!,)'!

/1,,'9! +*.#'! &',&! 17,%! *! &178.'! .*28'! D/*&,'2E!-.%%/!

01.,'2!17!,)'!^%#,'2!*79!6)'6C178!,)1&!012&,;!!!

X0!('!0179!*!/*,6)!17!,)'!/*&,'2!-.%%/!01.,'25!('!/#&,!

,)'7! 6)'6C! '*6)! 1791+19#*.! 01.,'2! ,%!91&6%+'2! ,)'! &$'61016!

$*2,161$*7,&! ()%! /*,6)'9;! ! S'&$1,'! ,)1&5! ('! (1..! &)%(!

,)*,!,)1&!*$$2%*6)!6*7!%00'2!&,*7,1*.!&$*6'!'00161'761'&!

%+'2!,)'!)*&)!,*4.'!*$$2%*6)5!*79!,)'!&$''9!91&*9+*7,*8'!

6*7!4'!2'9#6'9;!

R'! 6*7! &$''9! %#2! -.%%/! 01.,'2! .%%C#$&! 4>! ,*C178!

*9+*7,*8'! %0! *21,)/',16! /%9#.%! Lm! %7! 417*2>! 7#/4'2&;!!

_#&,! *&! *! 4*&'! ?A! 7#/4'2! /%9#.%! ?Am! 1&! ,)'! .'*&,!

&1871016*7,! m! 9181,&! %0! ,)'! 7#/4'25! *! 417*2>! 7#/4'2!

/%9#.%!Lm!1&!`#&,!,)'!4%,,%/!m!41,&!%0!,)'!7#/4'25!()16)!

6*7! 4'! 'G,2*6,'9! 4>! =QS178! ,)'! 7#/4'2! (1,)! *7!

$$2%$21,'! 41,! /*&C! :(1<<m)–1! #&178! ,)'! IV.*78#*8'!

41,!%$'2*,%2&<;!

a',!n’!4'!,)'!$%('2!%0!L!6.%&'&,!,%!n;! !R'!62'*,'!%7'!

/*&,'2!-.%%/!01.,'2!%0!&13'!Cn’!*79!*!01.,'2!%0!&13'!n’!0%2!

'*6)!%0!,)'!C!$*2,161$*7,&;!!"13178!,)'&'!*,!M!41,&!$'2!1,'/5!

38

Attempt #3: Hybrid Bloom Filters

Small issue with transferred size:

k hashes (0..m-1)⇒ klnm hash bits per item

m = 8n ⇒ klnm = k(3+lnn)

Implication:

Alternative:

39

k = 6 and sets of 2,000 to 128,000 items ⇒ 84-120 hash bits per item

double hashing (32 bit for transmission then rehash to 120 bits for
inserting into the filter)

Attempt #3: Hybrid Bloom Filters

1. size of submissions and notifications in transit

small (need to sent one hash)

2. size of the subscription representations in router memory

small (a Bloom filter for each client)

3. speed to compute intersections

easy, need to check k hashes in everybody else’s filter

4. service

notifies which participants submitted the same alert

40

Mapping Internet Passive Monitors

Mapping Internet Sensors With Probe Response Attacks
John Bethencourt, Jason Franklin, Mary Vernon

Vulnerabilities of Passive Internet Threat Monitors
Yoichi Shinoda (JAIST),
Ko Ikay (National Police Agency, Japan),
Motomu Itoh (JPCERTC/CC)

USENIX Security 2005

41

Mapping Internet Passive Monitors
Monitors that periodically publish their results on the Internet are
vulnerable to attacks that can reveal their locations.

The idea is to use the feedback mechanism:

• Probe an IP address with activity that will be reported if the address
is monitored

• Check if the activity (TCP connection to a blocked port) is reported

Report types: Port Table, Time-Series Graph

Sensor Mobility Sensors may be listening to fixed ad-
dresses or dynamically assigned addresses, de-
pending on how they are deployed. Large, tele-
scope type sensors with extremely large aperture
such as /8 are likely to be listening on fixed ad-
dresses, while small aperture sensors, especially
those hooked up to DSL providers are very likely
to be listening to dynamically changing addresses.

Sensor Intelligence Some systems deploy firewall type
sensors that capture questionable packets without
deep inspection, while others deploy intrusion de-
tection systems that are capable of classifying what
kind of attacks are being made based on deep in-
spection of captured packets.

There are some sensors that respond to certain
network packets making them not quite “passive”
to capture payloads that all-drop firewall type sen-
sors cannot. [7, 8].

Sensor Data Authenticity Some systems use sensors
prepared, deployed and operated by institutions,
while others rely on volunteer reports from the gen-
eral public.

We see no fundamental difference between tradi-
tional, so called “telescope” threat monitors and “dis-
tributed sensor” threat monitors as they all listen to back-
ground traffic. In this paper, we focus on detecting sen-
sors of distributed threat monitors, but it is straightfor-
ward to extend our discussion to large telescope moni-
tors.

2.2.2 Report Types
All reports are generated from a complete database of
captured events, but exhibit different properties based
on their presentation. There are essentially two types of
presentation styles: the data can be displayed as “graph”
or in “table” format.

Port Table Table type reports tend to provide accurate
information about events captured over a range of
ports. Figure 2 shows the first few lines from a hy-
pothetical report table that gives packet counts for
observed port/protocol pairs.

Time-Series Graph The graph type reports result
from visualizing an internal database, and tend to
provide less information because they summarize!

"

#

$

% cat port-report-table-sample
port proto count
8 ICMP 394
135 TCP 11837
445 TCP 11172
137 UDP 582
139 TCP 576

.

..

Figure 2: An Example of Table Type Report

events. The graphs we will be focusing on are the
ones that have depict explicit time-series, that is,
the graph represents changes in numbers of events
captured over time. Table type reports also have
time-series property if they are provided periodi-
cally, but graphs tend to be updated more frequently
than tables.

Figure 3 shows an hypothetical time-series graph
report. It contains a time-series of the packets re-
ceived per hour for three ports, during a week long
period starting January 12th.

We examine other report properties in detail in
Section 4.2.

 0

 50

 100

 150

 200

 250

 300

 350

01/12 01/13 01/14 01/15 01/16 01/17 01/18 01/19

Pa
ck

et
 C

ou
nt

Date

135/tcp
445/tcp

137/udp

Figure 3: An Example of Time Series Graph Feedback,
showing only three most captured events.

2.3 Existing Threat Monitors
In addition to threat monitors already mentioned, there
are many similar monitors deployed around the World.
For example, SWITCH [9] operate telescope type mon-
itors.

Examples of distributed sensor monitors are the mon-
itor run by the National Police Agency of Japan [10],
ISDAS (Internet Scan Data Acquisition System) run by
JPCERT/CC [11] and WCLSCAN [12] which is unique
in that it uses sophisticated statistical algorithms to esti-
mate background activity trends. The IPA (Information-
Technology Promotion Agency, Japan) is also known to
operate two versions of undocumented threat monitor
called TALOT (Trends, Access, Logging, Observation,
Tool) and TALOT2.

University of Michigan is operating the Internet Mo-
tion Sensor, with multiple differently sized wide aper-
ture sensors [13, 14]. Telecom-ISAC Japan is also
known to operate an undocumented and unnamed threat
monitor that also combines several different sensor
placement strategies. PlanetLab[15] has also announced

Sensor Mobility Sensors may be listening to fixed ad-
dresses or dynamically assigned addresses, de-
pending on how they are deployed. Large, tele-
scope type sensors with extremely large aperture
such as /8 are likely to be listening on fixed ad-
dresses, while small aperture sensors, especially
those hooked up to DSL providers are very likely
to be listening to dynamically changing addresses.

Sensor Intelligence Some systems deploy firewall type
sensors that capture questionable packets without
deep inspection, while others deploy intrusion de-
tection systems that are capable of classifying what
kind of attacks are being made based on deep in-
spection of captured packets.

There are some sensors that respond to certain
network packets making them not quite “passive”
to capture payloads that all-drop firewall type sen-
sors cannot. [7, 8].

Sensor Data Authenticity Some systems use sensors
prepared, deployed and operated by institutions,
while others rely on volunteer reports from the gen-
eral public.

We see no fundamental difference between tradi-
tional, so called “telescope” threat monitors and “dis-
tributed sensor” threat monitors as they all listen to back-
ground traffic. In this paper, we focus on detecting sen-
sors of distributed threat monitors, but it is straightfor-
ward to extend our discussion to large telescope moni-
tors.

2.2.2 Report Types
All reports are generated from a complete database of
captured events, but exhibit different properties based
on their presentation. There are essentially two types of
presentation styles: the data can be displayed as “graph”
or in “table” format.

Port Table Table type reports tend to provide accurate
information about events captured over a range of
ports. Figure 2 shows the first few lines from a hy-
pothetical report table that gives packet counts for
observed port/protocol pairs.

Time-Series Graph The graph type reports result
from visualizing an internal database, and tend to
provide less information because they summarize!

"

#

$

% cat port-report-table-sample
port proto count
8 ICMP 394
135 TCP 11837
445 TCP 11172
137 UDP 582
139 TCP 576

.

..

Figure 2: An Example of Table Type Report

events. The graphs we will be focusing on are the
ones that have depict explicit time-series, that is,
the graph represents changes in numbers of events
captured over time. Table type reports also have
time-series property if they are provided periodi-
cally, but graphs tend to be updated more frequently
than tables.

Figure 3 shows an hypothetical time-series graph
report. It contains a time-series of the packets re-
ceived per hour for three ports, during a week long
period starting January 12th.

We examine other report properties in detail in
Section 4.2.

 0

 50

 100

 150

 200

 250

 300

 350

01/12 01/13 01/14 01/15 01/16 01/17 01/18 01/19

Pa
ck

et
 C

ou
nt

Date

135/tcp
445/tcp

137/udp

Figure 3: An Example of Time Series Graph Feedback,
showing only three most captured events.

2.3 Existing Threat Monitors
In addition to threat monitors already mentioned, there
are many similar monitors deployed around the World.
For example, SWITCH [9] operate telescope type mon-
itors.

Examples of distributed sensor monitors are the mon-
itor run by the National Police Agency of Japan [10],
ISDAS (Internet Scan Data Acquisition System) run by
JPCERT/CC [11] and WCLSCAN [12] which is unique
in that it uses sophisticated statistical algorithms to esti-
mate background activity trends. The IPA (Information-
Technology Promotion Agency, Japan) is also known to
operate two versions of undocumented threat monitor
called TALOT (Trends, Access, Logging, Observation,
Tool) and TALOT2.

University of Michigan is operating the Internet Mo-
tion Sensor, with multiple differently sized wide aper-
ture sensors [13, 14]. Telecom-ISAC Japan is also
known to operate an undocumented and unnamed threat
monitor that also combines several different sensor
placement strategies. PlanetLab[15] has also announced

42

Port table attack

Requirements: Send enough packets on a port to be able to
distinguish the probe from other activities

Port Reports Sources Targets
325 99321 65722 39

1025 269526 51710 47358
139 875993 42595 180544

3026 395320 35683 40808
135 3530330 155705 270303
225 8657692 366825 268953

5000 202542 36207 37689
6346 2523129 271789 2558

Table 2: Example excerpt from an ISC port report.

is not possible to carry out such attacks. Little to no at-
tention has been given to the problem of discovering the
location of the sensors. We provide techniques that ac-
complish this. In addition, little attention has been given
to the fact that the identity of the organizations and the
specific addresses they monitor must remain secret to en-
sure the integrity of the statistics produced by the anal-
ysis center, particularly if the statistics are meant to be
employed in stemming malicious behavior. By demon-
strating that it is possible to foil the current methods for
maintaining the secrecy of the sensor locations, we show
the importance of this issue.

For example, Pang and Paxson [32] consider the pos-
sibility of “indirect exposure” allowing attackers to dis-
cover the values of anonymized data fields by consid-
ering other parts of the available information. They do
not, however, consider how or whether one might be
able to map the locations of Internet sensors, a prereq-
uisite to interacting with them. Similarly, Xu et al. [28]
describe a prefix-preserving permutation based method
for anonymizing IP addresses that is provably as secure
as the TCPdpriv scheme [27] and consider the extent to
which additional address mappings may be discovered if
some are already known. They also mention active at-
tacks in passing and point out that defense against these
attacks is tricky. We develop in depth an active map-
ping attack that is effective even on reports that subject
IP addresses to prefix-preserving permutations and fur-
ther discuss countermeasures.

3 Background: the Internet Storm Center
3.1 Overview
The Internet Storm Center of the SANS Institute is one of
the most important existing examples of systems which
collect data from Internet sensors and publish public re-
ports. Furthermore, it is a challenging network to map,
as will be shown in Section 5.5, due to its large number
of sensors with non-contiguous IP addresses. Thus, in
order to demonstrate the possibility of mapping sensors
with probe response attacks in general, we describe and
evaluate the algorithm initially using the ISC and then
generalize the algorithm and simulation results to other
sensor networks. In this way, the ISC serves as a case
study in the feasibility of mapping sensor locations.

The ISC collects firewall and IDS logs from approxi-

mately 2,000 organizations, ranging from individuals to
universities and corporations [33]. This collection takes
place through the ISC’s DShield project [34]. The ISC
analyzes and aggregates this information and automati-
cally publishes several types of reports which can be re-
trieved from the ISC website. These reports are useful for
detecting new worms and blacklisting hosts controlled by
malicious users, among other things. Currently, the logs
submitted through the DShield project are almost en-
tirely packet filter logs listing failed connection attempts.
They are normally submitted to the ISC database auto-
matically by client programs running on the participating
hosts, typically once per hour. The logs submitted are of
the form depicted in Table 1. These logs are used to pro-
duce the reports published by the ISC, including the top
ten destination ports and source IP addresses in the past
day, a “port report” for each destination port, a “subnet
report,” autonomous system reports, and country reports.

3.2 Port Reports
In general, many types of information collected by In-
ternet sensors and published in reports may be used to
conduct probe response attacks, as will be discussed in
Section 6. For our case study using the ISC, we will pri-
marily concern ourselves with the ISC’s port reports, as
these are representative of the type of statistics that other
Internet sensor networks may provide and are general in
nature. A fictional excerpt of a port report is given in
Table 2. A full listing all of the 216 possible destina-
tion ports that had any activity in a particular day may
be obtained from the ISC website. For each port, the
report gives three statistics, the number of (unfortunately
named) “reports,” the number of sources, and the number
of targets. The number of sources is the number of dis-
tinct source IP addresses appearing among the log entries
with the given destination port; similarly, the number of
targets is the number of distinct destination IP addresses.
The number of “reports” is the total number of log en-
tries with that destination port (generally, one for each
packet). Although the port reports are presented by day
and numbers in the port report reflect the totals for that
day, the port reports are updated more frequently than
daily. One may gain the effect of receiving a port re-
port for a more fine-grained time interval by periodically
requesting the port report for the current day and sub-
tracting off the values last seen in its fields.

4 Example Attack
We now present a detailed algorithm which uses a
straightforward divide and conquer strategy along with
some less obvious practical improvements to map the
sensor locations using information found in the ISC port
reports. In Section 6 we outline how the algorithm could
be applied to map the sensors in other networks (includ-
ing Symantec DeepSight and myNetWatchman) using
information in those sensor network reports.

14th USENIX Security SymposiumUSENIX Association 195

43

“Smart” system

Port table attack

• Problem: There are too many addresses to check one after
another
- most participants only submit logs to the ISC every hour
- there are about 2.1 billion valid, routable IP addresses

• Alternative: test many addresses in the same time
- vast majority of IP addresses are not monitored

- send probes to each address, in parallel
- rule out if no activity is reported

- since malicious activity is reported by port, use different ports for
simultaneous tests

44

Basic Probe Response Attack

14th USENIX Security Symposium

... ...

...
...

S3

...

SnS2

...

S1

1

packets
on port p 2

packets
on port p 3

packets
on port p n

packets
on port p

IP address space

Figure 1: The first stage of the attack.

4.1 Introduction to the Attack
The core idea of the attack is to probe an IP address with
activity that will be reported to the ISC if the addresses
are among those monitored, then check the reports pub-
lished by the network to see if the activity is reported.
If the activity is reported, the host probed is submitting
logs to the ISC. Since the majority of the reports indi-
cate an attempt to make a TCP connection to a blocked
port (which is assumed to be part of a search for a vul-
nerable service), a single TCP packet will be detected
as malicious activity by the sensor.1 To distinguish our
probe from other activity on that port, we need to send
enough packets to significantly increase the activity re-
ported. As it turns out, a number of ports normally have
little activity, so this is not burdensome. This issue will
be further discussed in Section 4.3. This probing proce-
dure is then used for every possible IP address. It is quite
possible to send several TCP/IP packets to every address;
the practical issues relating to such a task are considered
in Section 5.

The simplest way to find all hosts submitting logs to
the ISC is then to send packets to the first IP address,
check the reports to determine if that address is moni-
tored, send packets to the second IP address, check the
reports again, and so on. However, some time must be
allowed between sending the packets and checking the
reports. Participants in the ISC network typically submit
logs every hour, and additional time should be allowed
in case some participants take a little longer, perhaps for
a total wait of two hours. Obviously, at this rate it will
take far too long to check every IP address one by one.

In order for a sensor probing attack to be feasible,
we need to test many addresses at the same time. Two
observations will help us accomplish this. First, the
vast majority of IP addresses either do not correspond
to any host, or correspond to one that is not submitting
logs. With relatively few monitored addresses, there will
necessarily be large gaps of unmonitored address space.
Hence, we may be able to rule out large numbers of ad-
dresses at a time by sending packets to each, then check-
ing if any activity is reported at all. If no activity is
reported, none of the addresses are monitored. Send-
ing packets to blocks of addresses numerically adjacent

is likely to be especially effective, since monitored ad-
dresses are likely to be clustered to some extent, leav-
ing gaps of addresses that may be ruled out. Second,
since malicious activity is reported by port, we can use
different ports to conduct a number of tests simultane-
ously. These considerations led the authors to the method
described in the following section. It is worth noting
that the problem solved by this algorithm is very similar
to the problems of group blood testing [35]. However,
much of theoretical results from this area focus on op-
timizing the solutions in a different way than we would
like to and thus are not directly applicable to this prob-
lem.

4.2 Basic Probe Response Algorithm
First Stage

We begin with 0, 1, 2, . . .232 − 1 as our (ordered) list of
IP addresses to check. As a preprocessing step, we fil-
ter out all invalid, unroutable, or “bogon” addresses [36].
Approximately 2.1 billion addresses remain in the list.
Suppose n ports p1, p2, . . . pn can be used in conducting
probes. To simplify the description of the basic algo-
rithm, we assume in this section that these ports do not
have any other attack activity; we relax this restriction
in Section 4.3. In the first stage of the attack, we di-
vide the list of addresses into n intervals, S1, S2, . . . Sn.
For i ∈ {1, . . . n}, we send a SYN packet2 on port pi to
each address in Si, as depicted in Figure 1. We then wait
two hours and retrieve a port report for each of the ports.
Note that we now know the number of monitored ad-
dresses in each of the intervals, since the reports tell not
only whether activity occurred, but also give the number
of targets. All intervals lacking any activity may be dis-
carded; the remaining intervals are passed to the second
stage of the attack along with the number of monitored
addresses in each.

Second Stage
The second stage of the attack repeats until the attack is
complete. In each iteration, we take the k intervals that
currently remain, call them R1, . . . Rk, and distribute our
n ports among them, assigning n

k to each.3 Then for each
i ∈ {1, . . . k}, we do the following. Divide Ri into n

k +1
subintervals, as shown in Figure 2. We send a packet
on the first port assigned to this interval to each address
in the first subinterval, a packet on the second port to
each address in the second subinterval, and so on, finally
sending a packet on the last port to each address in the
n
k th subinterval, which is the next to last. We do not send
anything to the addresses in the last subinterval. We will
instead deduce the number of monitored addresses in that
subinterval from the number of monitored addresses in
the other subintervals. After this process is completed
for each of the subintervals of each of the remaining in-
tervals, we wait two hours and retrieve a report. Now we
are given the number of monitored addresses in each of

USENIX Association196

packets are
sent here

nothing is
sent here

......

+1n
k1 2

R i

k
n...

Figure 2: Subdividing an interval Ri within the
second stage of the attack.

the subintervals except the last in each interval. We then
determine the number in the last subinterval of each in-
terval by subtracting the number found in the other subin-
tervals from the total known to be in that interval. At this
point, empty subintervals may again be discarded. Ad-
ditionally, subintervals with a number of monitored ad-
dresses equal to the number of address in the subinterval
may be discarded after adding their addresses to a list of
monitored addresses found so far. The remaining subin-
tervals, which contain both monitored addresses and un-
monitored addresses, may now be considered our new
set of remaining intervals R′

1, . . .R
′
k′ , and we repeat the

procedure.
By continuing to subdivide intervals until each is bro-

ken into pieces full of monitored addresses or without
any monitored addresses, we eventually check every IP
address and produce a list of all that are monitored. This
process may be visualized as in Figure 3, which gives an
example of the algorithm being applied to a small num-
ber of addresses. The first row of boxes in the figure
represent the initial list of IP addresses to be checked,
with monitored addresses shaded. Six ports are used to
probe these addresses, giving the numbers of monitored
addresses above the row. Three intervals are ruled out as
being empty, and the other three are passed to the second
stage of the algorithm. The six ports are used in the first
iteration of the second stage to eliminate three subregions
(of two addresses each), and mark one subregion as filled
with monitored addresses. The second iteration of the
second stage of the algorithm terminates, having marked
all addresses as either monitored or unmonitored. One
caveat of the algorithm that did not arise in this example
is that the number of remaining intervals at some stage
may exceed n, the number of available ports. In this case
it is not possible to divide all those intervals into subinter-
vals in one time period, since at least one port is needed
to probe each interval. When this cases arises, we simply
select n of the subintervals to probe, and save the other
subintervals for the next iteration.

4.3 Dealing With Noise
We now turn to a practical problem that must be ad-
dressed if the attack is to function correctly. The problem
is that sources other than the attacker may also be send-
ing packets to monitored addresses with the same desti-

nation ports that the algorithm is using, inflating the num-
ber of targets reported. This can cause the algorithm
to produce both false positives and ports reports

561 ≤ 5
19, 364 ≤ 10
41, 357 ≤ 15
51, 959 ≤ 20
56, 305 ≤ 25

Table 3: Ports with
little activity.

false negatives. This background
activity may be considered noise
that obscures the signal the attacker
needs to read from the port reports.
For a large number of ports, how-
ever, this noise is typically quite
low, as shown by Table 3. Each
row in the table gives the approx-
imate number of ports that typically have less than the
given number of reports. The numbers were produced
by recording which ports had less than the given num-
ber of reports every day over a period of ten consecutive
days.

A simple technique allows the algorithm to tolerate a
certain amount of noise at the expense of sending more
packets. If there are normally, say, less than five reports
for a given port p, we may use port p to perform probes
in our algorithm by sending five packets whenever we
would have otherwise sent one. Then when reviewing
the published port report, we simply divide the number
of reports by five and round down to the nearest integer
to obtain the actual number of submitting hosts we hit.
We subsequently refer to this practice as using a “report
noise cancellation factor” of five. Thus by sending five
times as many packets, we may ensure that the algorithm
will function correctly if the noise on that port is less than
five reports. Similarly, by using a report noise cancella-
tion factor of ten, we may ensure the algorithm operates
correctly when the noise is less than ten reports. By ex-
amining past port reports, we may determine the least ac-
tive ports and the number of packets necessary to obtain
accurate results when using them to perform probes.

4.4 Improvements
False Positives and Negatives
The attack may potentially be sped up by allowing some
errors to occur. If it is acceptable to the attacker to merely
find some superset of (i.e., a set containing) the set of
hosts submitting their logs to the ISC, they may simply
alter the termination conditions in the algorithm. Rather
than continuing to subdivide intervals until they are de-
termined to consist entirely of either monitored or un-
monitored addresses, the attacker may mark all addresses
in an interval as monitored and discontinue work on the
interval when it is determined to consist of at least, say,
10 percent monitored addresses. In this way, when the
algorithm completes, at most 90 percent of addresses
determined to be monitored are false positives. Even
though that is a large amount of error, the vast majority of
the addresses on the Internet would remain available for
the attacker to attempt to compromise, free from the fear
of being detected by the ISC. Alternatively, if the attacker
is willing to accept some false negatives (i.e., find a sub-

14th USENIX Security SymposiumUSENIX Association 197

First stage Second stage

45

Example

14th USENIX Security Symposium

1 1 1 1 0000 01

0 0 011 1 12 1

2 0 3 2 0 0

Stage 1

Stage 2

Figure 3: Illustration of the sensor probing algorithm.

set of the hosts participating in the network), they may
discard an interval if the fraction of the addresses that are
monitored within it is less than a certain threshold, again
speeding up the attack. In Section 5 we provide quantita-
tive results on the speedup provided by these techniques
in the case of mapping the ISC.

Using Multiple Source Addresses
Speed improvements may also be obtained by taking ad-
vantage of the sources field of the port reports. By spoof-
ing source IP addresses while sending out probes, an at-
tacker may encode additional information discernible in
this field. If in the course of probing an interval of ad-
dresses with a single port, the attacker sends multiple
packets to each address from various numbers of source
IP addresses and takes note of the number of sources re-
ported, they may learn something about the distribution
of monitored addresses within the interval in addition to
the number of monitored addresses. The following is a
method for accomplishing this.
Multiple Source Technique Before probing an interval
of addresses on some port, we further divide the interval
into some number of pieces k, hereafter referred to as
the “multiple source factor.” To the addresses in the first
piece, we send packets from a single source. To each of
the addresses in the second piece, we send packets from
two sources. For the third piece, we send packets from
four source addresses to each address. In general, we
send packets from 2i−1 source addresses to each address
in the ith piece. Note that we already are sending multi-
ple packets to each address in order to deal with the noise
described in Section 4.3. If 2k−1 is less than or equal
to the report noise cancellation factor, then we can em-
ploy this technique without sending any more packets;
otherwise, more bandwidth is required to send all 2k−1

packets to each address.
When the port report is received, we may determine

whether any of the pieces lacked monitored addresses by
considering the number of sources reported. For exam-
ple, suppose k = 3 (i.e., we divide our interval into three
pieces) and five sources are reported. Then we know that
there are monitored addresses in the first and third in-

tervals, and that there are no monitored addresses in the
second interval. This additional information increases
the efficiency of the probing algorithm by often reducing
the size of the intervals that need to be considered in the
next iteration, at the expense of potentially increasing the
bandwidth usage. Of course, this technique is only use-
ful to a limited degree, due to the exponential increase
in the number of packets necessary to use it more exten-
sively. Depending on the level of noise on the port, using
a multiple source factor of two or three achieves an im-
provement in probing efficiency with little to no increase
in the bandwidth requirements.

Noise In order for this technique to perform accurately,
we must deal with noise appearing in the sources field of
the port reports in addition to the reports field. If even
a single source address other than those spoofed by the
attacker is counted in the reported number of sources,
the attacker will have a completely inaccurate picture of
which pieces are empty. This problem may be solved
in a manner similar to the method for tolerating noise in
the number of reports. Rather than sending sets of pack-
ets with 1, 2, 4, . . . and 2k−1 different source addresses
to the k pieces, we may use 1m, 2m, 4m, . . . and 2k−1m
sources, where m is a positive integer hereafter referred
to as the “source noise cancellation factor.” Then the
reported number of sources may be divided by m and
rounded down, ensuring accurate results if the noise in
the number of sources was less than m. For example,
if a particular port normally has less than three sources
reported (when the attacker is not carrying out their at-
tack) and the attacker is dividing each interval into four
pieces, they may send sets of packets with 3, 6, 12, and
24 sources. If seventeen sources are then reported, they
divide by three and round down to obtain five, the sum
of one and four. The attacker may then conclude that the
second and fourth intervals have no monitored addresses,
and that the first and third intervals do have monitored
addresses.

Egress Filtering There is another practical concern re-
lating to this technique, and that is egress filtering of
IP packets with spoofed sources. The careful attacker

USENIX Association198

External activity?

 - noise cancellation technique

46

Simulation
• T1 attacker 1.544 Mbps of upload bandwidth

• Fractional T3 attacker 38.4 Mbps of upload bandwidth
 250 cable modems botnet

• OC6 attacker 384 Mbps of upload bandwidth
 2,500 cable modems botnet

type of bandwidth data false false correctly mapped
mapping available sent positives negatives addresses time to map

exact OC6 1,300GB 0 0 687,340 2 days, 22 hours
exact T3 687GB 0 0 687,340 4 days, 16 hours
exact T1 440GB 0 0 687,340 33 days, 17 hours

superset T3 683GB 3,461,718 0 687,340 3 days, 6 hours
subset T1 206GB 0 182,705 504,635 15 days, 18 hours

Table 4: Time to map sensor locations. (ISC sensor distribution)

5.4 Finding a Subset
Having examined the cases of finding an exact set and
finding a superset, we now examine a situation where an
attacker may be interested in finding a subset of the mon-
itored addresses. While an attacker with a T3 or OC6
may attempt to find the exact set of monitored addresses,
an impatient attacker or an attacker with less resources,
such as the T1 attacker, may be content with finding a
subset of the monitored addresses in a reduced amount
of time. By allowing false negatives, an attacker may re-
duce the time and bandwidth necessary to undertake the
attack, but still discover a large number of monitored IP
addresses. An attacker who is interested in flooding the
monitored addresses with spurious activity rather than
avoiding them may be especially interested in allowing
false negatives. In addition to saving time, an attacker
finding a subset may potentially avoid detection of their
attack by sending significantly fewer probes overall.

Since the difference between the time required to find
the exact set of monitored addresses and the time re-
quired to find a subset of monitored addresses is less pro-
nounced at high bandwidths, we only detail the results of
finding a subset with the T1 adversary. Once again we
use the same parameters that were used when the T1 ad-
versary found the exact set of monitored addresses, ex-
cept this time we set the maximum false negative rate
(i.e., the number of possible false negatives over the total
number of IP addresses). With a report noise cancella-
tion factor of two, a single source address, and a max-
imum false negative rate of .001, we are able to reduce
the runtime of our attack from 33 days and 17 hours to
15 days and 18 hours. In addition, we reduce the number
of probes sent from around 9.5 billion to 4.4 billion, a
reduction of over 50 percent. However, these reductions
come at the cost of missing 26 percent of the sensors.
The progress of this scenario is depicted in Figure 6.

5.5 General Sets of Monitored Addresses
The preceding scenarios (summarized in Table 4)
demonstrate that a probe response attack is practical for
mapping the IP addresses monitored by the ISC. They
do not, however, reveal how dependent the running time
of the attack is on this particular set of addresses. A
key factor that determines the difficulty of mapping the
addresses of a sensor network is the extent to which
the sensors are clustered together in the space of IP ad-

dresses. As mentioned in Section 4.1, the more the ad-
dresses are clustered together, the more quickly they may
be mapped. This fact is easily seen in Figure 3.

To determine how well the algorithm works more
generally against various possible sets of sensor IP ad-
dresses, we generated random sets of IP addresses based
on a model of the clustering. More specifically, the sizes
of “clusters,” or sets of sequential sensor addresses, were
drawn from a Pareto distribution,5 and the sizes of the
gaps in address space between them were drawn from an
exponential distribution. With the parameters of the two
distributions set to fit the actual addresses of the ISC,
the times to map various random sets of IP addresses
are similar to the times reported in Table 4. By vary-
ing the parameters of the distributions, sets of IP ad-
dresses with various average cluster sizes were produced
while holding the total number of sensors roughly con-
stant at 680,000, the approximate number in the ISC
set. For average cluster sizes of 10 or more, the at-
tack typically takes just over two days to complete under
the T3 attacker model previously described (compared
to the 4 days, 16 hours to complete the attack for the
actual ISC). For smaller average cluster sizes, the run-
ning time increases. Below the average cluster size of
the ISC (∼ 1.9), typical running times increase rapidly,
with about eight days (about twice the time to map the
ISC sensors) at average clusters size of about 1.6. Note
that smaller sensor networks are faster to map; the ISC
network is among the most challenging networks to map
due to its large number of sensors with widely scattered
IP addresses.

As an extreme case, a number of simulations were also
run on sets of IP addresses that possessed no special clus-
tering, again using the T3 attacker model. Specifically,
the sets were produced by picking one IP address after
another, always picking each of the remaining ones with
equal probability. This can be considered a worst case
scenario, since any real life sensor network is likely to
display some degree of clustering in its set of addresses.
The attack remained quite feasible in this case, taking
between two to three times as long as in the ISC case
when working on a set of addresses of the same size.
This scenario was tested for sets of IP addresses of vari-
ous sizes. The running time ranged linearly from about 3
days to map 100,000 addresses to about 21 days to map
2,000,000.

14th USENIX Security SymposiumUSENIX Association 203

47

Feedback mechanism is changed
Feedback properties:

Accumulation window
Time Resolution
Feedback Delay
Retention Time

Type Sensitivity
Dynamic Range
Counter Resolution / Level Sensitivity
Cut-off and Capping

The accumulation window property affects the
marking process in several different ways;

1. An attempt to introduce changes must happen
within the accumulation window period. In
other words, the accumulation window deter-
mines the maximum duration of a unit mark-
ing activity.

2. The smaller the accumulation window the
more address blocks can be marked in a given
time frame.

3. A smaller accumulation window requires less
markers to introduce changes.

Time Resolution Time resolution is the minimum unit
of time that can be observed in a feedback. The
time resolution provides a guide line for determin-
ing the duration of a single marking activity. That
is, a single marking activity should be designed to
fit loosely into multiples of the time resolution for
the target system. We can not be completely ac-
curate as we need to be able to absorb clock skew
between target and marking systems.

Feedback Delay Delay is the time between a capture
event and next feedback update. For example, a
feedback that is updated hourly has a maximum de-
lay of one hour, while another feedback that is up-
dated daily has a maximum delay of one day. The
delay determines the minimum duration between
different marking phases that is necessary to avoid
dependency between them.

Most feedbacks have identical time resolution,
accumulation window and delay property, but not
always. For example, there is a system which pro-
vides a weekly batch of 7 daily reports, in which
case the accumulation window is one day while the
maximum delay is 7 days.

Retention Time The retention time of a feedback is the
maximum duration that a event is held in the feed-
back. For a graph, the width of the graph is the re-
tention time for the feedback. All events older than
the graph’s retention time are pushed out to the left.

Figure 6 illustrates the relationship between dif-
ferent timing properties using a hypothetical feed-
back that updates every 2 days, and provides accu-
mulated packet counts for a particular day every 6
hours. As shown in this figure, this feedback has a
time resolution of 6 hours, a accumulation window
of 1 day, a maximum feedback delay of 2 days. In
addition, the retention time for this graph is 3 days.
The duration of some possible marking activities
are also shown in this figure. Note that a marking
activity can span multiple resolution units, but can-
not span two accumulation windows.

 2

 4

 6

 8

 10

 12

 14

 16

 18

126241812624181262418

Pa
ck

et
 C

ou
nt

Time

time resolution

accumulation window

maximum delay

duration of possible unit activities

Figure 6: Timing Properties of A Hypothetical Feedback

4.2.2 Other Feedback Properties
In addition to the timing related properties, there is a
group of properties that mainly rule how capture events
are presented in feedbacks. These properties also play
an important role when designing marking activity.

Type Sensitivity Type sensitivity refers to the sensitiv-
ity of a feedback to certain types of packets. If a
feedback shows significant changes in its response
to an appropriate amount of packets of the same
type, then the feedback is sensitive to that type.

Dynamic Range The dynamic range of a feedback,
which is the difference between smallest and largest
numbers in the feedback, presents another impor-
tant factor in a marking design, in conjunction with
the level sensitivity property described next.

Counter Resolution / Level Sensitivity The counter
resolution of a feedback is the minimal number of
packets required to make an identifiable change in
the feedback. For example, a feedback table that
includes information for a single event has a reso-
lution of 1 packet, while the feedback in a graph
that is 100 dots high with a maximum scale (dy-
namic range) of 1,000 packets has a resolution of
10 packets.

We use the term “sensitivity” also to describe the
“level of sensitivity”. In the above example, the
former feedback is more sensitive than the latter
feedback. Some systems use logarithmic scale for
their feedbacks, and as a result, they are sensitive to
small spikes even if the dynamic range of the feed-
back is very large.

The unit of measurement also vary from system
to system, and affects the level sensitivity of the
feedback. Some use accumulated packet counts
directly, in which case the sensitivity can be cal-
culated easily. Others use mathematically derived
values such as average packet counts per sensor
and packet counts per 100 sensors. In the latter

48

Possible Marking Strategies

• Advanced-Encoded-Port Marking

• Time Series Marking

• Uniform Intensity Marking

• Radix-Intensity Marking

• Radix-Port Marking

• Delayed Development Marking

49

Address-Encoded-Port Marking
Destination port is derived from address bits.
Limitation: not all 16-bit port space is useable. We can use
redundant marking to increase accuracy.

case, number of sensors in the monitor must be
known to calculate the sensitivity. This figure may
be obtained from the background information for
the monitor, or may be estimated by comparing the
feedback with feedbacks from other monitors that
use plain packet counts.

Cut-off and Capping Some systems drop events that
are considered non-significant. Some systems drop
events that are too significant, so events with less
significance are more visible. A common case of
cut-off is a feedback in the form of “Top-N” events.
In this type of feedback, the top N event groups are
selected, usually based on their accumulated event
count over a predetermined period of time such as
an hour, a day or a week. A feedback with the top-
N property is usually very hard to exploit, because
it often requires a large number of events to make
significant changes such as visible spikes or an in-
troduction of a new event group. However, there
is a chance of exploiting such feedback, when the
feedback exhibits certain properties, such as fre-
quently changing members with low event counts,
or if there is a event group with a period of inac-
tivity. An introduction of a new event group is also
possible, by “pre-charge” activity that is intended
to accumulate event counts.

4.3 Marking Algorithms
An algorithm used for a particular marking is often de-
pends on the feedback properties. It is sometimes neces-
sary to modify or combine basic marking algorithms to
exploit a particular feedback, or to derive more efficient
marking algorithm. In the following, we present some
examples of possible marking algorithms.

4.3.1 Address-Encoded-Port Marking
A system providing a table of port activities may be-
come a target of an address-encoded-port marking. In
this method, an address is marked with a marker that
has its destination port number derived from encoding
part of the address bits. After the marking, port numbers
which were successfully marked are recovered from the
feedback, which are in turn combined with other address
bits to derive refined addresses.

Consider the case in Figure 7. In this example, we
mark a /16 address block with base address b that is host-
ing a sensor at b + A. The destination port of the marker
for address b + n is set to the 16 lower bits of the ad-
dress b + n (which is equivalent to n). For the sensor
address b + A, a marker with destination port set to A is
sent, which in turn appear as captured event on port A in
the port activity report. This feedback is combined with
the base address b to form the complete address of the
sensor, which is b + A.

/16 Target
address space

Base address = b

b+0 b+65535b + A

Marker for
addres

b + n
(b + n) & 0xf f f f (=n)
Destination port

Marking

Feedback

 por t count

 . . .
 A 1
 . . .

Port report

Sensor Address:
b + A

Figure 7: An Address-Encoded-Port Marking Example

Although the address-encoded-port marking can only
be deployed against table type feedbacks, it is consid-
ered extremely efficent, because it can deliver multiple
complete or partial addresses from a single marking ac-
tivity.

However, not all of the 16-bit port space is available
in practice; there are ports which are frequently found
in real background activity. Some of these ports, espe-
cially those that are used by vulnerable, usually receive
a large number of events. Other ports may also receive
some background traffic due to back scatter and stray or
wandering packets.

To increase the accuracy of our method even in the
presence of background traffic for some ports, it is pos-
sible to determine the usable port space in advance. This
can be achieved by looking at previous port-reports from
the target system. The accuracy of this method can
also be improved by incorporating redundant marking
in which multiple makers of the same type are sent to
the same address to mask the existence of busy ports.

Redundant marking also helps in dealing with packet
losses. For example, we can mark a particular address
with four different markers, each using a destination port
number that is encoded with 2-bits of redundancy iden-
tifier and 14-bits of address information. In this case, we
examine the feedback for occurrences of these encoded
ports.

4.3.2 Time Series Marking

Time series marking can be used when the feedback is in
the form of a time series property. It is used in conjunc-
tion with other marking algorithms such as the uniform
intensity marking described next. In time series mark-
ing, each sub-block is marked within the time resolution
window of the feedback so that results from marking can
be reverse back to the corresponding sub-block.

50

Time Series Marking

• Used in conjunction with other marking
mechanisms.

• Each sub-block are marked within time
resolution window to allow recovering the sub-
block from the feedback.

51

Uniform Intensity Marking

Addresses are marked with the same intensity.

Mark one sub-block per time unit, marking all
addresses from it with a single marker.

4.3.3 Uniform Intensity Marking
In uniform-intensity marking, all addresses are marked
with the same intensity. For example, let’s assume that
we are marking a /16 address block that is known to con-
tain several sensors. We divide the original block into
16 smaller /20 sub-blocks. Then we mark each of these
sub-blocks using time-series marking, one sub-block per
time unit, marking each address with a single marker.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Figure 8: An Example of Uniform-Intensity Marking
Feedback

Figure 8 shows an ideal (no packet loss, and all other
conditions being good) feedback graph from the mark-
ing described above. In this figure, the vertical axis rep-
resents the packet count and the horizontal axis repre-
sents time. We see that there is a spike of height one at
time 4, which means that there is one sensor in sub-block
#3, since the packet count at time 4 is accumulated be-
tween time 3 and time 4, when sub-block #3 was being
marked. Similarly, there is a spike of height one at time
8 and height two at time 11, meaning there is one sensor
in sub-block #7 and two sensors in sub-block #10.

4.3.4 Radix-Intensity Marking
In radix-intensity marking, selected address bits are
translated into marking intensity, i.e., the number of
packets for each address. Let us consider the example
used in the uniform-intensity section above. We exe-
cute the same marking procedure, but mark the first /21
block within a sub-block with 2 markers, and the second
/21 block with 3 markers (Figure 9). Table 1 shows the
possible location of sensors within a sub-block, and how
they are reflected in the feedback intensity.

/16 Target
address

block
#0 #1 #2

. . .
#15

/20 Sub-blocks

Markers

/21 /21

Figure 9: An Example of Radix-Intensity Marking

Sensor Location (Block #)
Sensor first second third Feedback
Count sensor sensor sensor Intensity

0 — — — 0
1 0 — — 2

1 — — 3
2 0 0 — 4

0 1 — 5
1 1 — 6

3 0 0 0 6
0 0 1 7
0 1 1 8
1 1 1 9

Table 1: Single Bit (2 for 0 and 3 for 1) Radix-Intensity
Feedback for up to 3 sensors in a sub-block.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16
Pa

ck
et

 C
ou

nt
Time (Sub-block # + 1)

Radix Intensity
Single Intensity

Figure 10: An Example of Radix-Intensity Marking
Feedback

For this example, we further assume that there are no
more than two sensors in each sub-block. Figure 10
shows the ideal feedback from this marking with solid
lines. The feedback from the uniform-intensity marking
is also drawn for comparison in dotted lines. Looking at
the solid line, we notice a spike with height 2 at time 4
meaning that there is one sensor in the first half of sub-
block #4. There is also a spike with height 3 at time 8
meaning that there is one sensor in the second half of
sub-block #7. Another spike spike with height 5 can be
seen at time 11 meaning that there are two sensors, one
in the first and another in the second half of sub-block
#10.

Notice that with uniform-intensity marking, the feed-
back would have derived only the numbers of sensors in
each sub-block, while radix-intensity marking was able
to also derive information about the positions of these
sensors within each sub-block. For this example, the
radix-intensity marking derived an extra bit of address
information.

In radix-intensity marking, the assignment of inten-
sity to address bit patterns has to be designed carefully
to minimize the ambiguity during feedback translation.
The above example used intensities 2 and 3 for a single
bit. As shown in Table 1, this assignment allows unique

52

Radix-Intensity Marking

4.3.3 Uniform Intensity Marking
In uniform-intensity marking, all addresses are marked
with the same intensity. For example, let’s assume that
we are marking a /16 address block that is known to con-
tain several sensors. We divide the original block into
16 smaller /20 sub-blocks. Then we mark each of these
sub-blocks using time-series marking, one sub-block per
time unit, marking each address with a single marker.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Figure 8: An Example of Uniform-Intensity Marking
Feedback

Figure 8 shows an ideal (no packet loss, and all other
conditions being good) feedback graph from the mark-
ing described above. In this figure, the vertical axis rep-
resents the packet count and the horizontal axis repre-
sents time. We see that there is a spike of height one at
time 4, which means that there is one sensor in sub-block
#3, since the packet count at time 4 is accumulated be-
tween time 3 and time 4, when sub-block #3 was being
marked. Similarly, there is a spike of height one at time
8 and height two at time 11, meaning there is one sensor
in sub-block #7 and two sensors in sub-block #10.

4.3.4 Radix-Intensity Marking
In radix-intensity marking, selected address bits are
translated into marking intensity, i.e., the number of
packets for each address. Let us consider the example
used in the uniform-intensity section above. We exe-
cute the same marking procedure, but mark the first /21
block within a sub-block with 2 markers, and the second
/21 block with 3 markers (Figure 9). Table 1 shows the
possible location of sensors within a sub-block, and how
they are reflected in the feedback intensity.

/16 Target
address

block
#0 #1 #2

. . .
#15

/20 Sub-blocks

Markers

/21 /21

Figure 9: An Example of Radix-Intensity Marking

Sensor Location (Block #)
Sensor first second third Feedback
Count sensor sensor sensor Intensity

0 — — — 0
1 0 — — 2

1 — — 3
2 0 0 — 4

0 1 — 5
1 1 — 6

3 0 0 0 6
0 0 1 7
0 1 1 8
1 1 1 9

Table 1: Single Bit (2 for 0 and 3 for 1) Radix-Intensity
Feedback for up to 3 sensors in a sub-block.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Radix Intensity
Single Intensity

Figure 10: An Example of Radix-Intensity Marking
Feedback

For this example, we further assume that there are no
more than two sensors in each sub-block. Figure 10
shows the ideal feedback from this marking with solid
lines. The feedback from the uniform-intensity marking
is also drawn for comparison in dotted lines. Looking at
the solid line, we notice a spike with height 2 at time 4
meaning that there is one sensor in the first half of sub-
block #4. There is also a spike with height 3 at time 8
meaning that there is one sensor in the second half of
sub-block #7. Another spike spike with height 5 can be
seen at time 11 meaning that there are two sensors, one
in the first and another in the second half of sub-block
#10.

Notice that with uniform-intensity marking, the feed-
back would have derived only the numbers of sensors in
each sub-block, while radix-intensity marking was able
to also derive information about the positions of these
sensors within each sub-block. For this example, the
radix-intensity marking derived an extra bit of address
information.

In radix-intensity marking, the assignment of inten-
sity to address bit patterns has to be designed carefully
to minimize the ambiguity during feedback translation.
The above example used intensities 2 and 3 for a single
bit. As shown in Table 1, this assignment allows unique

4.3.3 Uniform Intensity Marking
In uniform-intensity marking, all addresses are marked
with the same intensity. For example, let’s assume that
we are marking a /16 address block that is known to con-
tain several sensors. We divide the original block into
16 smaller /20 sub-blocks. Then we mark each of these
sub-blocks using time-series marking, one sub-block per
time unit, marking each address with a single marker.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Figure 8: An Example of Uniform-Intensity Marking
Feedback

Figure 8 shows an ideal (no packet loss, and all other
conditions being good) feedback graph from the mark-
ing described above. In this figure, the vertical axis rep-
resents the packet count and the horizontal axis repre-
sents time. We see that there is a spike of height one at
time 4, which means that there is one sensor in sub-block
#3, since the packet count at time 4 is accumulated be-
tween time 3 and time 4, when sub-block #3 was being
marked. Similarly, there is a spike of height one at time
8 and height two at time 11, meaning there is one sensor
in sub-block #7 and two sensors in sub-block #10.

4.3.4 Radix-Intensity Marking
In radix-intensity marking, selected address bits are
translated into marking intensity, i.e., the number of
packets for each address. Let us consider the example
used in the uniform-intensity section above. We exe-
cute the same marking procedure, but mark the first /21
block within a sub-block with 2 markers, and the second
/21 block with 3 markers (Figure 9). Table 1 shows the
possible location of sensors within a sub-block, and how
they are reflected in the feedback intensity.

/16 Target
address

block
#0 #1 #2

. . .
#15

/20 Sub-blocks

Markers

/21 /21

Figure 9: An Example of Radix-Intensity Marking

Sensor Location (Block #)
Sensor first second third Feedback
Count sensor sensor sensor Intensity

0 — — — 0
1 0 — — 2

1 — — 3
2 0 0 — 4

0 1 — 5
1 1 — 6

3 0 0 0 6
0 0 1 7
0 1 1 8
1 1 1 9

Table 1: Single Bit (2 for 0 and 3 for 1) Radix-Intensity
Feedback for up to 3 sensors in a sub-block.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Radix Intensity
Single Intensity

Figure 10: An Example of Radix-Intensity Marking
Feedback

For this example, we further assume that there are no
more than two sensors in each sub-block. Figure 10
shows the ideal feedback from this marking with solid
lines. The feedback from the uniform-intensity marking
is also drawn for comparison in dotted lines. Looking at
the solid line, we notice a spike with height 2 at time 4
meaning that there is one sensor in the first half of sub-
block #4. There is also a spike with height 3 at time 8
meaning that there is one sensor in the second half of
sub-block #7. Another spike spike with height 5 can be
seen at time 11 meaning that there are two sensors, one
in the first and another in the second half of sub-block
#10.

Notice that with uniform-intensity marking, the feed-
back would have derived only the numbers of sensors in
each sub-block, while radix-intensity marking was able
to also derive information about the positions of these
sensors within each sub-block. For this example, the
radix-intensity marking derived an extra bit of address
information.

In radix-intensity marking, the assignment of inten-
sity to address bit patterns has to be designed carefully
to minimize the ambiguity during feedback translation.
The above example used intensities 2 and 3 for a single
bit. As shown in Table 1, this assignment allows unique

4.3.3 Uniform Intensity Marking
In uniform-intensity marking, all addresses are marked
with the same intensity. For example, let’s assume that
we are marking a /16 address block that is known to con-
tain several sensors. We divide the original block into
16 smaller /20 sub-blocks. Then we mark each of these
sub-blocks using time-series marking, one sub-block per
time unit, marking each address with a single marker.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Figure 8: An Example of Uniform-Intensity Marking
Feedback

Figure 8 shows an ideal (no packet loss, and all other
conditions being good) feedback graph from the mark-
ing described above. In this figure, the vertical axis rep-
resents the packet count and the horizontal axis repre-
sents time. We see that there is a spike of height one at
time 4, which means that there is one sensor in sub-block
#3, since the packet count at time 4 is accumulated be-
tween time 3 and time 4, when sub-block #3 was being
marked. Similarly, there is a spike of height one at time
8 and height two at time 11, meaning there is one sensor
in sub-block #7 and two sensors in sub-block #10.

4.3.4 Radix-Intensity Marking
In radix-intensity marking, selected address bits are
translated into marking intensity, i.e., the number of
packets for each address. Let us consider the example
used in the uniform-intensity section above. We exe-
cute the same marking procedure, but mark the first /21
block within a sub-block with 2 markers, and the second
/21 block with 3 markers (Figure 9). Table 1 shows the
possible location of sensors within a sub-block, and how
they are reflected in the feedback intensity.

/16 Target
address

block
#0 #1 #2

. . .
#15

/20 Sub-blocks

Markers

/21 /21

Figure 9: An Example of Radix-Intensity Marking

Sensor Location (Block #)
Sensor first second third Feedback
Count sensor sensor sensor Intensity

0 — — — 0
1 0 — — 2

1 — — 3
2 0 0 — 4

0 1 — 5
1 1 — 6

3 0 0 0 6
0 0 1 7
0 1 1 8
1 1 1 9

Table 1: Single Bit (2 for 0 and 3 for 1) Radix-Intensity
Feedback for up to 3 sensors in a sub-block.

 0
 1
 2
 3
 4
 5
 6

 0 2 4 6 8 10 12 14 16

Pa
ck

et
 C

ou
nt

Time (Sub-block # + 1)

Radix Intensity
Single Intensity

Figure 10: An Example of Radix-Intensity Marking
Feedback

For this example, we further assume that there are no
more than two sensors in each sub-block. Figure 10
shows the ideal feedback from this marking with solid
lines. The feedback from the uniform-intensity marking
is also drawn for comparison in dotted lines. Looking at
the solid line, we notice a spike with height 2 at time 4
meaning that there is one sensor in the first half of sub-
block #4. There is also a spike with height 3 at time 8
meaning that there is one sensor in the second half of
sub-block #7. Another spike spike with height 5 can be
seen at time 11 meaning that there are two sensors, one
in the first and another in the second half of sub-block
#10.

Notice that with uniform-intensity marking, the feed-
back would have derived only the numbers of sensors in
each sub-block, while radix-intensity marking was able
to also derive information about the positions of these
sensors within each sub-block. For this example, the
radix-intensity marking derived an extra bit of address
information.

In radix-intensity marking, the assignment of inten-
sity to address bit patterns has to be designed carefully
to minimize the ambiguity during feedback translation.
The above example used intensities 2 and 3 for a single
bit. As shown in Table 1, this assignment allows unique

53

Radix Port Marking

If multiple ports are available for marking, a port
pair can be assigned to toggle an address bit on
or off.

54

Delayed Development Marking

Used for “Top-N” reports.

2 phases:

• exposure

- leave hidden traces in feedback using minimal intensity
marking

• development

- high intensity marking (within the retention time)

55

Obvious Countermeasures

• Provide less information

• Throttle the information

• Introducing explicit noise

• Disturbing Mark-Examine-Update Cycle

• Marking detection

• Sensor scale and placement

56

Conclusions

• Secrecy of the monitored addresses is essential
to the effectiveness of the sensor network.

• Passive Internet threat monitors are subject of
detection attacks that can uncover their
locations.

• “Continuing efforts to better understand and
protect passive threat monitors are essential for the
safety of the Internet”.

57

Can we do this without
“summaries”?

