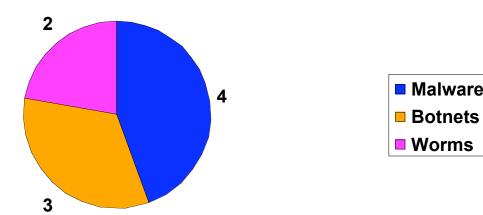
Network Forensics and Next Generation Internet Attacks

Moderated by: Moheeb Rajab

Background singers: Jay and Fabian

Agenda


- Questions and Critique of Timezones paper
 - Extensions
- Network Monitoring (recap)
- Post-Mortem Analysis
 - □ Background and Realms
 - □ Problem of Identifying Patient zero
 - □ Detecting Initial hit-list
- Next Generation attacks (Omitted from slides)
 - □ Implications and Challenges?

Botnets or Worms?!

"The authors don't provide evidence that botnets propagate in the same way like regular worms"

Opening Sentence:

Student questions

Data Collection

- "The original data collection method itself is worth mentioning as a strength of this paper"
- "Can't someone who sees all the traffic intended for a C&C server do more than simply gather SYN statistics"
- "It is not clear to me how do they know that they captured the propagation phase in their tests"

Measuring Botnet Size

SYN Counting

- Only looking at the Transport Layer
 - □ Do we even know what this traffic is?
- DHCP'd hosts
 - DHCP will cause SYNs coming from different addresses.
- How does the Tarpit help?
- Totally unrelated traffic
 - □ Scans, exploit attempts, etc.

Estimating botnet size

- How do we quantify these effects and relate them back to the claimed 350 K size?
 - □ Are we counting wrong? If we assume DHCP lease of ∆ hours, how do these projections change?
- Studied 50 botnets but we have 3 data points.
- Fitting the model to the collected data
 - What parameters did they use?

Evidence from "Da-list"

Date and Time	DNS	Non-DNS
Feb,1st	49	4
4:00 AM EST		
Feb 1st	23 (> 4 public IRCds)	4
11:00 AM EST		

General consensus

- Contrary to authors the attackers could use the timezones effect to their benefit
 - ☐ How?
- This is old-school, right?:
 - □ Zhou et al. A first look at P2P worms: Threats and Defenses. IPTPS, 2005.
 - □ Botnet Herders can hide behind VoIP. InfoWeek, 2/27/06
 - Okay, this is getting ridiculous
- Cherry-picking: some weird indications ...

Extensions

- Can we use this idea for containment?
 - Query to know if someone is infected
 - How to preserve privacy and anonymity?
 - See Privacy-Preserving Data Mining. R. Agrawal and R. Srikant. Proceedings of SIGMOD, 2000
- Patching rates?
 - More grounded parameters might really affect model
 - □ How might we get this?
- Lifetime?

Student Extensions

- Is there better ways to track botnets other than poisoning DNS?
 - □ Crazy idea #1: Anti-worm
- Crazy idea #2: Statistical responders
 - Better way: Weidong Cui et al. Protocol-Independent Adaptive Relay of Application Dialog. In NDSS 2006
- What would you have liked to see with this data?

Using telescopes for network forensics

Forensic (Post-mortem) analysis

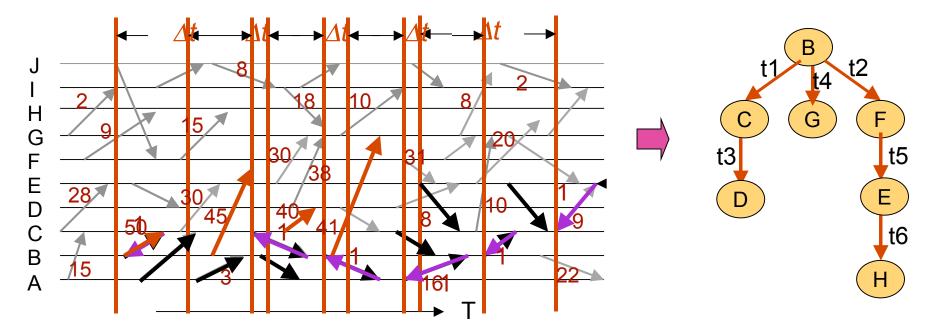
- Infer characteristics of the attack
 - □ Population size, demographics, distribution
 - □ Infection rate, scanning behavior .. etc
- Trace the attack back to its origin(s)
 - Identifying patient zero
 - Identifying the hit-list (if any)
 - □ Reconstructing the infection tree

Worm Evolution Tracking Realms

Graph Reconstruction

- Reverse Engineering
- Timing Analysis

Infection Graph Reconstruction


Xie et al, "Worm Origin Identification Using Random Moonwalks" IEEE Symposium on Security and Privacy, 2005

- Proposed a random walk algorithm on the hosts contact graph
 - □ Provides who infected whom tree
 - Identifies the worm entry point(s) to a local network or administrative domain.

Random Moonwalks

- A random moonwalk on the host contact graph:
 - ☐ Start with an arbitrarily chosen flow
 - ☐ Pick a next step flow randomly to walk **backward in time**
- Observation: epidemic attacks have a tree structure
- Initial causal flows emerge as high frequency flows

Random Moonwalk (Limitations)

- Host Contact graph is known.
 - requires extensive logging of host contacts throughout the network
- Only able to reconstruct infection history on a local scale
- Careful selection of parameters to guarantee the convergence of the algorithms
 - □ How to address this is left as open problem

Outwitting the Witty

Kumar et al, "Exploiting Underlying Structure for Detailed Reconstruction of an Internet-scale Event", IMC 2005

- Exploits the structure of the random number generator used by the worm
 - Careful analysis of the worm payload allows us to reconstruct the infection series

Ŋ.

Witty Code!

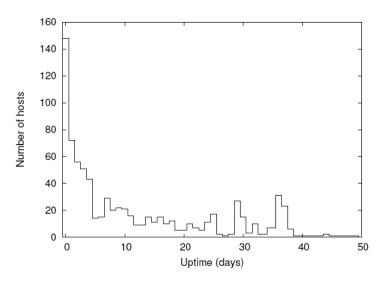
```
srand(seed) \{ X \leftarrow seed \}
rand() { X ← X*214013 + 2531011; return X }
main()
1. srand(get tick count());
2. for (i=0; i<20,000; i++)
3. dest_{ip} \leftarrow rand()_{[0..15]} | | rand()_{[0..15]}
4. dest_port \leftarrow rand()_{[0..15]}
5. packetsize \leftarrow 768 + rand()_{[0..8]}
6. packetcontents \leftarrow top-of-stack
7. sendto()
8. if(open_physical_disk(rand()<sub>[13..15]</sub> ))
        write (rand()_{[0..14]} | | 0x4e20)
9.
    goto 1
10.
11. else goto 2
```


Witty Code!

- Each Witty packet makes 4 calls to rand()
- If first call to rand() returns X_i:

3.
$$dest_ip \leftarrow (X_i)_{[0..15]} || (X_{i+1})_{[0..15]}$$

4. $dest_port \leftarrow (X_{i+2})_{[0..15]}$


Given top 16 bits of X_i , now brute force all possible lower 16 bits to find which yield consistent top 16 bits for X_{i+1} & X_{i+2}

⇒ Single Witty packet suffices to extract infectee's complete PRNG state!

Interesting Observations

- Reveals interesting facts about 700 infected hosts:
 - Uptime of infected machines
 - Number of available disks
 - Bandwidth Connectivity
 - Who-infected whom
 - Existence of hit-list
 - □ Patient zero (?)

Reverse Engineering (Limitations)

- Not easily generalizable
 - □ Needs to be done on a case by case basis
- Can be tedious (go back to the paper to see).
- There must be an easier way, right?

Timing Analysis

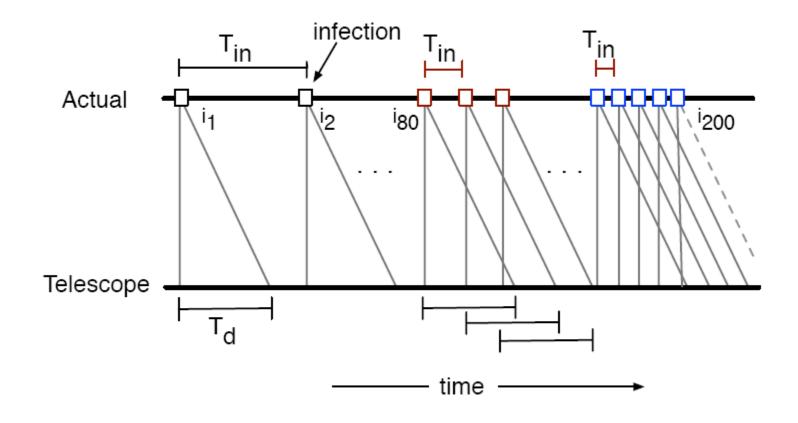
Moheeb Rajab et al. "Worm Evolution Tracking via Timing Analysis", ACM WORM 2005

Uses blind analysis of inter-arrival times at a network telescope to infer the worm evolution.

Problem Statement and Goals

Consider a uniform scanning worm with scanning rate *s* and vulnerable population size *V* and a monitor with effective size *M*.

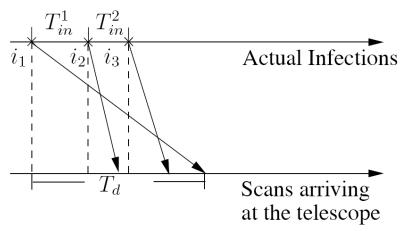
- □ To what extent can a network monitor trace the infection sequence back to patient zero by observing the order of unique source contacts?
- □ For worms that start with a hitlist, can we use network monitors to detect the existence of the hitlist and determine its size?



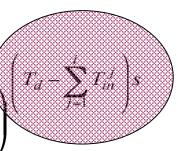
Evolution Sequence and "Patient Zero"

- We distinguish between two processes:
 - \Box Time to Infect T_{in}
 - Time elapsed before the worm infects an additional host
 - \Box Time to Detect T_d
 - The time interval within which a monitor can reliably detect at least one scan from a single newly infected host

Time to Infect and Time to Detect


Time to Infect and Time to Detect

■ Time to infect a new host T_{in}


$$T_{in} = \frac{\log\left(1 - \frac{1}{V - n_i}\right)}{\left(1 - \frac{1}{2^{32}}\right)}$$

Monitor Accuracy

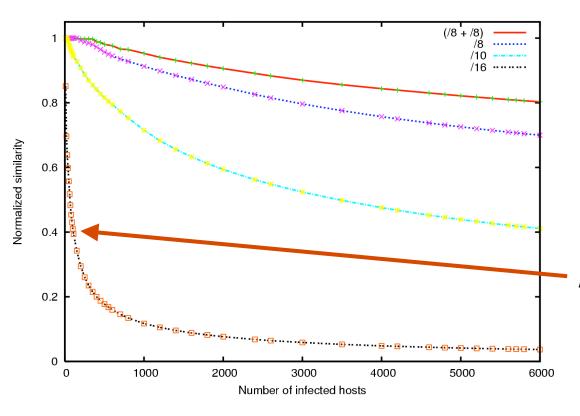
 \blacksquare Monitor Detection time, T_d

Probability of error
$$P_e = 1 - \prod_{i=1}^{n} \left(1 - \frac{M}{2^{32}}\right)^{\frac{T_d - \sum_{i=1}^{n} T_{in}}{2}}$$

Uniform scanning worm: s = 350 scans/sec, V = 12,000 Monitor size = /8

Infection Sequence Similarity

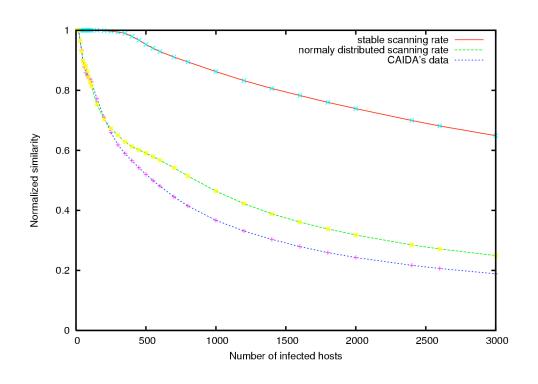
Sequence Similarity


$$Y_{B\to A} = \sum_{i=0}^{m} \frac{(m - r_{(e_i,A)})}{1 + |r_{(e_i,B)} - r_{(e_i,A)}|}$$

Is this any good?

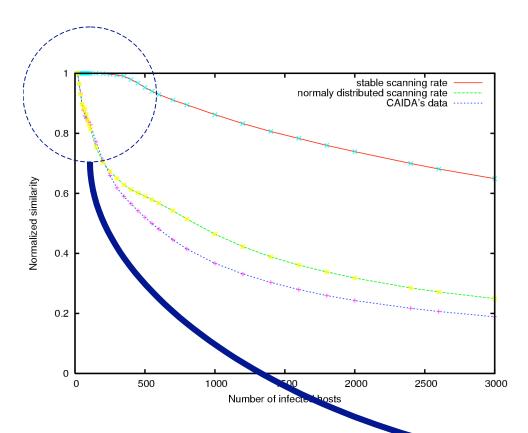
- Two (interesting) cases:
 - Varying monitor sizes
 - Non-homogeneous scanning rates

Bigger is Better

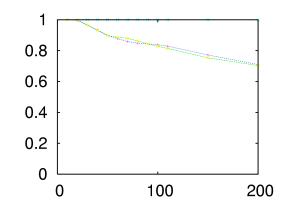


Larger telescopes provide a highly similar view to the actual worm evolution

/16 view is completely useless!



Effect of non-homogeneous scanning



Scanning rate distribution derived from CAIDA's dataset

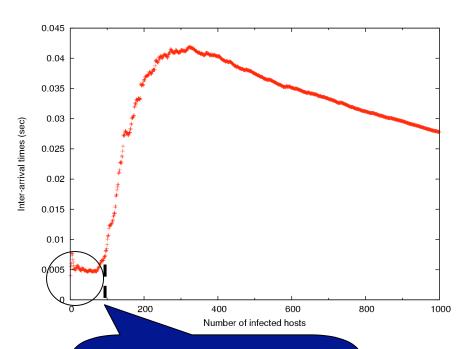
Who cares what happens after the first 200 infections :-)

Problem Statement and Goals

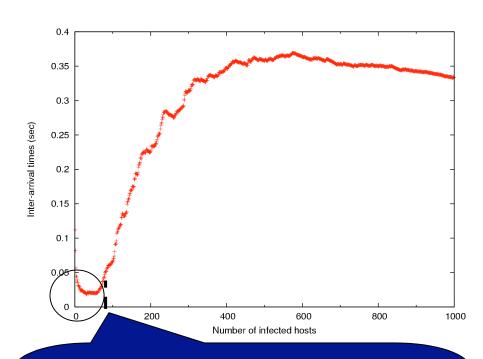
Consider a uniform scanning worm with scanning rate s and vulnerable population size V and a monitor with effective size M.

- □ To what extent can a network monitor trace the infection sequence back to patient zero by observing the order of unique source contacts?
- □ For worms that start with a hitlist, can we use network monitors to detect the existence of the hitlist and determine its size?

What if the worm starts with a hit-list?

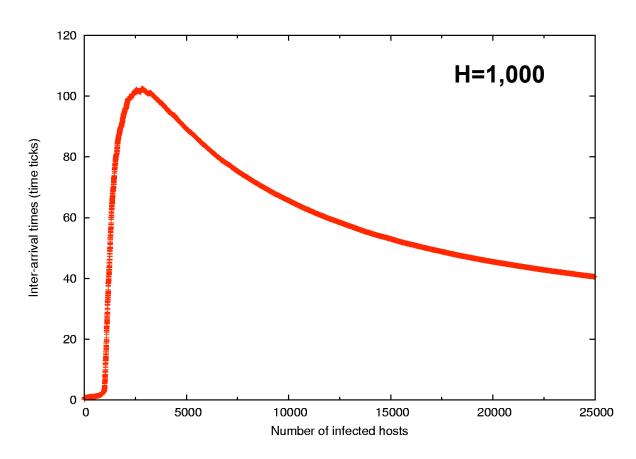

- Hit-lists are used to
 - Boost initial momentum of the worm
 - □ (Possibly) hide the identity of patient zero

Trick: Exploit the pattern of inter-arrival times of unique sources contacts at the monitor to infer the existence and the size of the hitlist


Hit-list detection and size estimation

Simulation (H = 100)

Pattern Change around the hit-list boundaries
H = 100


Witty Worm (CAIDA)

Estimated hit-list
H aprox. 80
80% in the same /16
88% belong to the same institution

Will we always see this pattern?

 Same pattern was noticed also when varying population size and with non-homogeneous scanning rates.

Why is that?

■ With a hit-list of size h_0 the average worm infection time T_{in} should be less than T_d / h_0

$$\log\left(1 - \frac{1}{(V - h_0)}\right) \le \frac{\log(1 - \alpha)\log\left(1 - \frac{1}{2^{32}}\right)}{\log\left(1 - \frac{M}{2^{32}}\right)}$$

- With a /8 monitor there is no h₀ that can satisfy this inequality
 - □ Of course, for uniform scanning worms