
Memory Exploits & Defenses

Presenter: Kevin Snow

What is the threat?

How do we defend ourselves?

What is the threat?

 Stack Smashing

 Return-to-libc

 Format String Error

 Heap Overflow

Generic Stack Frame

Caller

Callee

Stack Smashing

Goal:
Point return address to our buffer,
which contains executable code

Stack Smashing

void f(char *p){
 char x[128];
 strcpy(x, p);
}

Our Stack Generic Stack

return-to-libc

Goal:
Point return address to an existing

library function

return-to-libc

f(){
g(&foo);

}

g(char *x){
char y [SZ];
scanf(y);

}

Linked libraries often have useful strings lying around

Format String Errors

 Goal: Take advantage of printf() family of
functions

Good:
printf(“%d”, num);
Bad:
printf(“%d”);

Good:
printf(“%s”, myString);
Bad:
printf(myString);

Format String Errors

Goal:
Craft a special string that can write

arbitrary values to arbitrary
addresses

Format String Errors

f(){

 int x; int y;

 char s[128];

 scanf(s);

 printf(s);

}

Heap Overflow

Goal:
Overwrite function pointers on heap

to point to injected code

Heap Overflow

 C++ objects are allocated on the heap
 Addresses of these object’s functions

stored on the heap (vfptr’s)
 Overflow heap variable and overwrite

these vfptr’s
 When function is invoked, our code is

executed instead

How do we defend ourselves?

 Canary

 Library Wrapper

 Shadow Stack

 W⊕X Pages

Canary

•Place “Canary” before return address

• terminator (0x00, 0x0a, 0x0d)

• random

•Check validity of Canary before
returning

Canary (2)

 This is a great solution, right?
 Wrong! What about format string attacks?

Library Wrappers (libsafe)

 Replace know vulnerable function calls
with ‘safe’ versions

 ‘Safe’ versions ensure nothing is written
past the current stack frame

Library Wrappers (libsafe)

 If we can not get past the stack frame,
we can’t exploit anything?

 Many problems:
• User written input loops not protected
• We can still corrupt local variables
• We can still do a heap overflow

Shadow Stacks

•Keeps extra copy of return address in
separate memory space

•Only allows a return if address
matches up

Shadow Stacks (2)

 So, this is the foolproof solution?

• Limitations: Does not protect other data

• Local variables

• Heap overflow overwrites function pointers

W⊕X Pages

•Idea: if memory is writable, it should
not be executable

•Does not allow stack to be executed

• Try to thwart Stack-smashing

W⊕X Pages

 Game over, we can not execute injected
code

 Wait! We can return-to-libc instead

Defense Conclusions

 No defense protects against all memory
exploits

 We need a defense-in-breadth approach

Two Countermeasures

 Instruction Set Randomization

 Address Space Randomization

Countering Code-Injection Attacks With
Instruction-Set Randomization

Gaurav S. Kc et. Al.
10th ACM International Conference on Computer

and Communications Security (CCS)

Intrusion detection: Randomized instruction set
emulation to disrupt binary code injection attacks

Elena Gabriela Barrantes et. Al.
10th ACM International Conference on Computer

and Communications Security (CCS)

Instruction Set Randomization

 Observation: attackers need to know the
instruction set

 Idea: Obfuscate the instruction set

How do we obfuscate?

 Encode the machine code of an
executable

 Decode instructions before sending to
processor

Encoding Process

• XOR a key with
instructions

• Worst case for attacker:
2^32 guesses

32-bit Key 32-bit Key 32-bit Key

Code
⊕ ⊕ ⊕

Barrantes et. al. Proposed a one time pad to the code

Decoding Process

 Decoding is performed when instructions are fetched
from memory

Encoding Key

Encoded Instruction Stream
Processor⊕

XOR

Practical Considerations

 Shared libraries
 Kc et al. implemented in hardware

(ideally)
 Barrantes et al. implemented in emulator
 Performance may suffer

ISR Thwarts an Attack

X86 Apache Web Server
ISR Protected

0-day exploit
shellcode[] =
"\x31\xdb" // xorl
"\x8d\x43\x17"// leal
"\xcd\x80" // int
... //...

Encoded:
"\x31\xdb" // xorl
"\x8d\x43\x17"// leal
"\xcd\x80" // int
... //...
Decoded:
“\x23\x54” //invalid
“\xa3\x2f\x9e” //invalid
“\x65\xc1 //invalid

Attacker

Crash!

ISR Conclusions

 The good: completely eliminates executing
injected code, seemingly

 The bad: do not always have to inject code

Wheres the FEEB?
On the Effectiveness of

Instruction Set Randomization
N. Sovarel, D. Evans, and N. Paul

USENIX Security, 2005

On the Effectiveness of ISR

 ISR designed to prevent successful code
injection

 But, Sovarel et al. demonstrate attacks
that CAN inject code successfully

Assumptions

 Address of vulnerable buffer is known
 Same randomization key used for each

forked process
 Encoding vulnerable to known ciphertext-

plaintext attack
• XOR encoding satisfies this assumption

 X86 instruction set is used

Attack Methodology

Goal:
Distinguish between correct and

incorrect guesses

Attack Methodology

X86 Apache Web Server
ISR Protected

Encoded
Guess:
 \x01 //ret?

Decoded:
“\x23\x54” //invalid

Attacker

\x02 //ret?
\x03 //ret?
\x04 //ret?
\x05 //ret?

\xc5 //invalid (crash)
\xef //invalid (crash)
\x7a //invalid (crash)
\xc3 //valid
(observable behavior)

ISR Attacks

 Return attack

 Jump attack

 Extended attack

Return Attack

 Inject a 1-byte near return instruction

 Incorrect guess causes a crash
 Correct guess causes observable behaviour

• For example, some output will be returned

Return Attack (2)

Top of stack
…

…
Return address

…
Bottom of stack

Local Buffer

Top of stack
…

…
Address of buffer

Original return address
Bottom of stack

Local Buffer
Near return (0xc3)

Normal Stack Layout Stack Layout After Attack

Several Hurdles to Jump

 The stack has been corrupted

 What about false positives?

False Positives

 Apparent correct behavior in several
circumstances:

• It was actually correct (1/256)
• Another opcode produced the same behavior;

'near return and pop' instruction (1/256)
• It decoded to a harmless opcode (NOP, etc),

and some other instruction produced the same
behavior

Reducing False Positives (2)

…

…
Address of buffer

…

Near return (0xc3)

(1) Apparently correct

Use a harmless instruction to eliminate false positives

(Previously guessed)

…

…
Address of buffer

…

Harmless instr. (0x90)

(2) Double check

Near return (0xc3)

Reducing False Positives (3)

 Near return / near return and pop very similar

…

0x00
Address of buffer

…

Guessed ret instr.

(1) Apparently Correct

0x00

…

0xFF
Address of buffer

…

Guessed ret instr.

(2) Double Check

0xFF

Return Attack Conclusions

 Strength: only need to guess a 1-byte
instruction at a time

 Weakness: stack corruption makes it
difficult to use reliably

Jump Attack

Jump Attack

 Inject a 2-byte short jump instruction

 Correct guess causes an infinite loop

 Incorrect guess causes crash

Jump Attack (2)

Top of stack
…

…
Return address

…
Bottom of stack

Local Buffer

Top of stack
…

…
Address of buffer

…
Bottom of stack

Local Buffer

Offset (0xfe)
Short jump (0xeb)

Normal Stack Layout Stack Layout After Attack

False Positives

 Again, apparent correct behavior will be exhibited in
several circumstances:

• It was actually correct
• An incorrectly decoded instruction produced an

infinite loop; there are 16 near conditional jumps
• It decoded to a harmless instruction (NOP, etc), and

some other instruction produced an infinite loop

False Positives (2)

(1) Apparently Correct

Change high bit in the 3rd byte to
eliminate false positives

…

0x00
Address of buffer

…

Short jump
Offset (0xfe)

…

0xFF
Address of buffer

…

Short jump
Offset (0xfe)

(2) Double Check

Jump Attack Conclusions

 Strength:
• Use not restricted to special circumstances

 Weaknesses:
• 2-byte instruction must be guessed
• Infinite loops created

Extended Attack

Extended Attack

 Near jmp jumps to original return address

0xcd
…

offset
offset
offset

Address of buffer

0xcd

offset
Near jump (0xe9)

Stack Layout After Attack

…
Short jump (0xeb)

offset

{Jump Attack

Extended Attack Conclusions

 Strengths:
• Not restricted to special circumstances
• Only creates a few infinite loops

 Weaknesses:
• Initially 2-byte instructions must be guessed

MicroVM

 Consider an ISR aware worm
 Proposed ‘MicroVM’ is only 100 bytes

long
• Use to execute small chunks of the worm at

a time

Results

• Is 6 minutes and 8,636 attempts reasonable?

2919.4958.3625.01023894096
947.31007.9029.3300351024
627.4958.3136.918904512
365.61009.1586.48636100
283.6988.28226.3724032
207.9998.111052.142084
138.3983.861991.639832

Time (s)Success
Rate (%)

Infinite
Loops

Attempts
per byte

AttemptsKey
Bytes

Practical Considerations

 The attacks make many assumptions
• Address of buffer is known
• Key is not re-randomized
• Encoding vulnerable to known plaintext-

ciphertext attack
 Attacks are x86 instruction set dependent

Wheres the FEEB? Conclusions

 ISR can easily fix the assumptions
• In fact, Sovarel et. al. had to change the RISE

implementation to conform
 Take this paper as a lesson in safe

implementation

”if you’re going to implement ISR, make sure every
 process gets a fresh key!”
“When I have tried to exploit buffer overflows, a
noop sled has always been needed”

ISR Conclusions

 The good – Effectively eliminates code
injection, if implemented correctly

 The bad – Implemented in hardware or
an emulator

 The ugly – Still, does nothing to protect
against return-to-libc

We still need a more general approach!

Address Space Randomization

Address Space Randomization

Observation: Attacker needs to know
certain addresses in memory

Idea: Obfuscate memory addresses

PaX ASLR

 PageEXec Address Space Layout
Randomization brought to us by the PaX
Team

 Popular open-source ASR implementation
• Hardened Debian
• Hardened Gentoo
• Grsecurity kernel enhancements

 Randomizes: stack, heap, libraries

PaX - Randomization

delta_mmap

2^16 2^16 2^24

32-bit architecture process address space

Image Source: http://www.csc.ncsu.edu/faculty/junxu/software/aslp/

On the Effectiveness of
Address-Space Randomization

Means: return-to-libc, lack of entropy in
PaX ASLR randomization

Goal: Guess library offset and compute
location of system()

The Exploit

Note:

•Library offset is limited to 216 possibilities

• PaX ASLR does not rerandomize on fork()

• Relative addresses inside libraries are not
randomized

The Exploit - Setup

Apache web server on a 32-bit
architecture

PaX ASLR for randomization

Separated attack machine from victim
with a 100 Mbps network

The Exploit - Guessing Addresses

Send probes using return-to-libc attack

Unsuccessful guess crashes

Successful guess produces observable
behavior

TIME: usleep()

Attack Methodology

X86 Apache Web Server
ASR Protected

Offset?
0x00000001

Result:
Crash!

Attacker

0x00000002
0x00000003
0x00000004

Crash!
Crash!
Sleep 16 seconds

Probing for the offset

Top of stack
…

…
64 byte buffer

…
Bottom of stack

…

Top of stack
…

AAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA

…
Bottom of stack

Arg (0x01010101)

Usleep() addr.
Ret (0xDEADBEEF)

Normal Stack Layout Stack Layout After Attack

Arguments
Return address

Return-to-libc Attack

…
…

…
64 byte buffer

…
Bottom of stack

…

Ret (0xDEADBEEF)
System() addr.

AAAAAAAAAAAAAAAAA
‘/bin/sh’

…
Bottom of stack

Ret() addr.

Ret() addr.
Ret() addr.

Normal Stack Layout Stack Layout After Attack

Arguments
Return address

Buffer addr. Buffer addr.
Top of stack Top of stack

ASR Conclusions

 The good: attempts to hinder all types of
memory exploits (defense-in-breadth)

 The bad: low entropy leaves it vulnerable

We can still do better!

A better approach to ASR?

 64-bit architecture
• Can increase randomness from 2^16 to 2^40

 Randomization Frequency
 Granularity

• Permute stack variables
• Permute code & library functions
• Permute static data

 Combine with other approaches

Questions?

Wheres the FEEB?
On the Effectiveness of

Instruction Set Randomization
N. Sovarel, D. Evans, and N. Paul

USENIX Security, 2005

References

On the Effectiveness of Address
Space Randomization

H. Schacham, M. Page, B. Pfaff, E.
Goh, N. Modadugu, D. Boneh

ACM CCS 04

References

Countering Code-Injection Attacks With
Instruction-Set Randomization

Gaurav S. Kc et. Al.
10th ACM International Conference on Computer

and Communications Security (CCS)

Intrusion detection: Randomized instruction set
emulation to disrupt binary code injection attacks

Elena Gabriela Barrantes et. Al.
10th ACM International Conference on Computer

and Communications Security (CCS)

References

References

 Thanks to Lucas Ballard for lending some of his
slides for this presentation.

 Images on slide 64 are from the Address Space

Layout Permutation project by Jun Xu at North

Carolina State Univ.

