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Outline

• Traditional threat model in cryptography

• Side-channel attacks

• Kocher’s timing attack

• Boneh & Brumley timing attack

• Experiments

• Countermeasures
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Traditional Crypto

• Brute force attacks

• large key

• Mathematical attacks

• reduction to hard problem

• RSAP:

• DHP:

(me mod n) → m
(gx, gy) → gxy
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• Attacker has access to:

• Ciphertext

• Algorithm

Traditional Crypto
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• Attacker has access to:

• Ciphertext

• Algorithm

• Physical observables from the device

Real-Life Crypto
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Side Channel Attacks

• Paul Kocher in 1996

• Recovers RSA and DSS signing key

• Not taken seriously by cryptographers

• Lot of attention from the press
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• Timing  analysis 

• Fault analysis

• Differential fault analysis

• Simple power analysis

• Differential power analysis

• EM analysis

Side Channel Attacks
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Side Channel Attacks
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Side Channel Attacks
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Side Channel Attacks
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• RSA signatures:

• Modular exponentiation is computed using 
square and multiply algorithm

• Time of modular exponentiation is a 
function of the bits of the exponent

• Use time to recover exponent (signing key)

Kocher Timing Attack

sig(m) = md mod n



02/10/05S. Kamara (600/650.624)

Kocher Timing Attack

• Recovers key bit by bit

• Guesses key bit then verifies

• Uses statistical analysis

• Needs many samples of signing time
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Kocher Attack Target

sig(m) = md mod n
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Square and Multiply

1: INPUT: m, n, d

2: OUTPUT: x = md mod n

3: x := m

4: for i = n − 1 downto 0 do

5: x := x2

6: if di = 1 then

7: x := x · m mod n

8: end if

9: end for

10: return x
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Kocher Timing Attack
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Kocher Timing Attack
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Kocher Timing Attack
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Kocher Timing Attack

• Compare 

•            vs

•            vs

•           will be correlated with correct guess

T
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T
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Kocher Timing Attack

• 1998 UCL experimental results:

Key size sample size

64 1 500-6 500

128 12 000-20 000

256 70 000-80 000

512 350 000
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Limit of Kocher Attack

• Does not work when mod exp is optimized
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RSA with Sun Ze Th.

•  

• Sun Ze Th. aka CRT 

• m, d and n are order of 1024 bits

• exponentiation of 1024 bit number by 
another 1024 bit number taken modulo a 
third 1024 bit number 

sig(m) = md mod n
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RSA with Sun Ze Th.

• exponentiate mod q (512 bits)

• exponentiate mod p (512 bits)

• combine using SZT to get mod n (= pq)
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RSA with Sun Ze Th.

•                                    where 

•  

•  

•  

sig(m) = md mod n n = pq

m1 = m mod p

m2 = m mod q

d1 = d mod (p − 1)

d2 = d mod (q − 1)
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RSA with Sun Ze Th.

•  

•  

•  

s1 = md1

1
mod p

s2 = md2

2
mod q

CRT(s1, s2) = m
d

mod n
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RSA with Sun Ze Th.

•  Modular exponentiation:

• pre-processing

• exponentiation mod p

• exponentiation mod q

• CRT
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RSA with Sun Ze Th.

• Kocher’s attack does not work

• Cannot get precise timings

• Cannot repeat pre-processing without 
factors

• Most implementations use CRT

• OpenSSL
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OpenSSL

• SSL establishes encrypted and authenticated 
channel between client and server

• 1994

• SSL v1 completed but never released

• SSL v2 released with Navigator 1.1

• SSL v2 PRNG broken 
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OpenSSL

• 1995

• SSL v3 released (designed by Kocher)

• SSL is ubiquitous

• 1996

• IETF standardizes SSL
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OpenSSL

• 1998

• OpenSSL 0.9.1c is released (based on 
SSLeay)

• mod_ssl for Apache is released
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OpenSSL

• Most popular open source SSL 
implementation

• Most popular crypto library

• 18% of all Apache servers use mod_ssl

• stunnel

• sNFS
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RSA in OpenSSL

•  

• Sun Ze Theorem

• Modular exponentiation: sliding window

• Modular reduction: Montgomery

• Multi-precision multiplication: Karatsuba

sig(m) = md mod n
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Sliding Window

• Extension of square and multiply

• uses multiple bits of the exponent at once

• makes attack more difficult
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Montgomery 
Reduction

• Introduced in 1985 by Peter Montgomery

• Performs modular multiplication efficiently

• Transforms multiplication mod n to 
multiplication mod R
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Montgomery 
Reduction

extra reduction

Algorithm 1 Montgomery Reduction

1: INPUT: x, y and q
2: OUTPUT: x · y mod q
3: RR−1

− qq∗ = 1
4: Ψ(x) := xR mod q
5: Ψ(y) := yR mod q
6: z := Ψ(x) × Ψ(y) = abR2 mod q
7: r := z × q∗ mod R
8: s := z+rq

R

9: if s > q then
10: s := s − q
11: end if
12: return s
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Montgomery 
Reduction

•  

•  

•  

Pr[extra reduction] =
m mod q

2R

m → q ⇒ Pr[reduction] ↗

m → q+ ⇒ Pr[reduction] ↘

m = q ⇒ Pr[reduction] = 0
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Karatsuba

• Multi-precision multiplication

•         where               and            

• Runs in 

• As opposed to               

• worst case  

O(nlog2 3)

O(n2)

O(n · m)

x · y |x| = n |y| = n



02/10/05S. Kamara (600/650.624)

Karatsuba

• Used only if inputs have same length

• OpenSSL:

• if |x| = |y| then Karatsuba

• if |x| != |y| then normal 

O(nlog2 3)

O(n2)
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Biases

• What is the effect of these optimizations on 
the exponentiation time?
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Montgomery 
Reduction

• if m approaches q from below then slow

• if m approaches q from above then fast
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Montgomery 
Reduction

Decryption 
time

q 2q 3q
g

Figure 1
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Multiplication

• if |x| = |y| then fast

• if |x| != |y| then slow
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Multiplication

g
g < q g > q

Decryption 
time

Karatsuba

Normal
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Boneh-Brumley Attack

hello

e

g or ghi

error

Eve Server
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Boneh-Brumley Attack

• Kocher attack recovers signing key

• Boneh-Brumley attack recovers factor



02/10/05S. Kamara (600/650.624)

Kocher Attack Target

sig(m) = md mod n
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Boneh-Brumley Target

sig(m) = md mod p · q
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Boneh-Brumley Target

• n = pq

• Knowing q we recover p

d = e−1 mod (p − 1)(q − 1)
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Boneh-Brumley Attack

CRT

Square and multiply

Montgomery

Multiplication

m modq

md mod q

m
d

mod R

I · m
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Boneh-Brumley Attack

•  

• Recover      bit of q

• when we already have the top           bits

sig(m) = md mod pq

i
th

i − 1



02/10/05S. Kamara (600/650.624)

Timing Attack

• q: smallest factor

• g: same top          bits as q (rest is all 0)

•      : g with       bit set to 

•     : decryption(g) - decryption(     )

i − 1

ghi i
th

1

ghi
∆
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Timing Attack

• i = 4

• q   = 101 ?

• g   = 101 0...

• g   = 101 10...
hi
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Timing Attack

• i = 4

• q   = 101 1 ?

• g   = 101 0...

• g   = 101 10...
hi

if             then   q4 = 1 g < ghi < q
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Timing Attack

• i = 4

• q   = 101 0 ?

• g   = 101 0...

• g   = 101 10...
hi

if             then   g < q < ghiq4 = 0
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Boneh-Brumley Attack

Montgomery Multiplication

T(g)
slow 

(xtra reds)
fast 

(kara)

ghi        T(    ) fast
slow 

(normal)

|∆| large large

qi = 0 → g < q < ghi
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Boneh-Brumley Attack

Montgomery Multiplication

T(g)
slow 

(xtra reds)
fast 

(kara)

ghi        T(    ) fast
slow 

(normal)

|∆| large large

g < q < ghi
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Boneh-Brumley Attack

Montgomery Multiplication

T(g) slow fast

ghi        T(    ) slow fast

|∆| small small

qi = 1 → g < ghi < q
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Boneh-Brumley Attack

Montgomery Multiplication

T(g) slow fast

ghi        T(    ) slow fast

|∆| small small

g < ghi < q
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Timing Attack

• if                 then                      and 

•       is small  

• if               then                      and

•        is large

q4 = 1

|∆|

g < ghi < q

q4 = 0 g < q < ghi

|∆|
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Experimental Setup

• RedHat Linux 7.3

• 2.4 GHz Pentium 4

• 1 GB of RAM

• gcc 2.96

• OpenSSL 0.9.7
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Number of Queries

• Interprocess using TCP

• Neighborhood size: for each bit measure 
decryption time of many guesses (sliding 
window)

• Sample size: for each guess measure multiple 
times 
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Number of Queries



02/10/05S. Kamara (600/650.624)

Number of Queries

• Delta increases as neighborhood size 
increases

• Variance decreases as sample size increases
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Other Experiments

• Tested using 3 different keys

• Deltas are very sensitive to 

• execution environment (cache misses, 
code offsets etc...)

• compilation flags 
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Network Experiments

• Works against Apache+mod_ssl when 
seperated by:

• 1 switch

• 3 routers and a number of switches
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Network
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Attack Results

• Interprocess attack

• 1024 bit key

• Unoptimized: 350 000 queries

• Optimized: 1.4 million queries

• 2 hours
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More Details

• Lucas will talk more about the experiments
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Countermeasures

• Make running time independent of input

• Montgomery: perform dummy reductions

• Multiplication: always use Karatsuba 
(shifts)

• Make all operations take the same time
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• Blinding

Countermeasures

Eve

(rem)

(rem)d

rmd

r ∈R Zn
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Countermeasures



02/10/05S. Kamara (600/650.624)

Blinding

• How do we know it prevents other attacks?

• Blinding is not provably secure 

• What about template attacks?
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Impact

• CERT advisory

• At least 37 products vulnerable

• 23 not vulnerable

• 56 unknown
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Questions?
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Montgomery 
Reduction

•  

•               and 

• Multiplication and division by powers of 2 is 
efficient

x · y mod q → x′ · y′ mod 2k

2k
> q gcd(2k

, q) = 1
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Karatsuba

•  A × B = AHAL × BHBL

A × B = (2
n

2 AH + AL) × (2
n

2 BH + BL)

A × B = 2
n
AHBH + 2

n

2 (AHBL + ALBH) + ALBL
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Karatsuba

AHBL + ALBH = (AH + AL) × (BH + BL) − AHBH − ALBL

A × B = 2
n
AHBH + 2

n

2 (AHBL + ALBH) + ALBL

A × B = 2
n
AHBH + 2

n

2 [(AH + AL) × (BH + BL) − AHBH − ALBL] + ALBL
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Karatsuba

• 3 multiplications and 2 shift and 7 additions

• multiplications fit in registers (no overflows)


