
Remote Timing Attacks
are Practical

by David Brumley and Dan Boneh

Presented by
Seny Kamara

in
Advanced Topics in Network Security (600/650.624)

02/10/05S. Kamara (600/650.624)

Outline

• Traditional threat model in cryptography

• Side-channel attacks

• Kocher’s timing attack

• Boneh & Brumley timing attack

• Experiments

• Countermeasures

02/10/05S. Kamara (600/650.624)

Traditional Crypto

• Brute force attacks

• large key

• Mathematical attacks

• reduction to hard problem

• RSAP:

• DHP:

(me mod n) → m
(gx, gy) → gxy

02/10/05S. Kamara (600/650.624)

• Attacker has access to:

• Ciphertext

• Algorithm

Traditional Crypto

02/10/05S. Kamara (600/650.624)

• Attacker has access to:

• Ciphertext

• Algorithm

• Physical observables from the device

Real-Life Crypto

02/10/05S. Kamara (600/650.624)

Side Channel Attacks

• Paul Kocher in 1996

• Recovers RSA and DSS signing key

• Not taken seriously by cryptographers

• Lot of attention from the press

02/10/05S. Kamara (600/650.624)

• Timing analysis

• Fault analysis

• Differential fault analysis

• Simple power analysis

• Differential power analysis

• EM analysis

Side Channel Attacks

02/10/05S. Kamara (600/650.624)

Side Channel Attacks

k
m

EM radiation

c
time Power

consumption

02/10/05S. Kamara (600/650.624)

Side Channel Attacks

e
m

Side channel

m
e

mod n

Encryption

02/10/05S. Kamara (600/650.624)

Side Channel Attacks

d
m

Side channel

m
d

mod n

Decryption/
Signing

02/10/05S. Kamara (600/650.624)

• RSA signatures:

• Modular exponentiation is computed using
square and multiply algorithm

• Time of modular exponentiation is a
function of the bits of the exponent

• Use time to recover exponent (signing key)

Kocher Timing Attack

sig(m) = md mod n

02/10/05S. Kamara (600/650.624)

Kocher Timing Attack

• Recovers key bit by bit

• Guesses key bit then verifies

• Uses statistical analysis

• Needs many samples of signing time

02/10/05S. Kamara (600/650.624)

Kocher Attack Target

sig(m) = md mod n

02/10/05S. Kamara (600/650.624)

Square and Multiply

1: INPUT: m, n, d

2: OUTPUT: x = md mod n

3: x := m

4: for i = n − 1 downto 0 do

5: x := x2

6: if di = 1 then

7: x := x · m mod n

8: end if

9: end for

10: return x

02/10/05S. Kamara (600/650.624)

Kocher Timing Attack
Bob

m1

s1

m2

s2

...

...

Eve

...

d

T(m1)

T(m2)

02/10/05S. Kamara (600/650.624)

Kocher Timing Attack
Eve

m1

s1

m2

s2

...

...

Eve

...

0?

T
0(m2)

T
0(m1)

02/10/05S. Kamara (600/650.624)

Kocher Timing Attack
Eve

m1

s1

m2

s2

...

...

Eve

...

1?

T
1(m1)

T
1(m2)

02/10/05S. Kamara (600/650.624)

Kocher Timing Attack

• Compare

• vs

• vs

• will be correlated with correct guess

T
0(mi)T(mi)

T
1(mi)T(mi)

T(mi)

02/10/05S. Kamara (600/650.624)

Kocher Timing Attack

• 1998 UCL experimental results:

Key size sample size

64 1 500-6 500

128 12 000-20 000

256 70 000-80 000

512 350 000

02/10/05S. Kamara (600/650.624)

Limit of Kocher Attack

• Does not work when mod exp is optimized

02/10/05S. Kamara (600/650.624)

RSA with Sun Ze Th.

•

• Sun Ze Th. aka CRT

• m, d and n are order of 1024 bits

• exponentiation of 1024 bit number by
another 1024 bit number taken modulo a
third 1024 bit number

sig(m) = md mod n

02/10/05S. Kamara (600/650.624)

RSA with Sun Ze Th.

• exponentiate mod q (512 bits)

• exponentiate mod p (512 bits)

• combine using SZT to get mod n (= pq)

02/10/05S. Kamara (600/650.624)

RSA with Sun Ze Th.

• where

•

•

•

sig(m) = md mod n n = pq

m1 = m mod p

m2 = m mod q

d1 = d mod (p − 1)

d2 = d mod (q − 1)

02/10/05S. Kamara (600/650.624)

RSA with Sun Ze Th.

•

•

•

s1 = md1

1
mod p

s2 = md2

2
mod q

CRT(s1, s2) = m
d

mod n

02/10/05S. Kamara (600/650.624)

RSA with Sun Ze Th.

• Modular exponentiation:

• pre-processing

• exponentiation mod p

• exponentiation mod q

• CRT

02/10/05S. Kamara (600/650.624)

RSA with Sun Ze Th.

• Kocher’s attack does not work

• Cannot get precise timings

• Cannot repeat pre-processing without
factors

• Most implementations use CRT

• OpenSSL

02/10/05S. Kamara (600/650.624)

OpenSSL

• SSL establishes encrypted and authenticated
channel between client and server

• 1994

• SSL v1 completed but never released

• SSL v2 released with Navigator 1.1

• SSL v2 PRNG broken

02/10/05S. Kamara (600/650.624)

OpenSSL

• 1995

• SSL v3 released (designed by Kocher)

• SSL is ubiquitous

• 1996

• IETF standardizes SSL

02/10/05S. Kamara (600/650.624)

OpenSSL

• 1998

• OpenSSL 0.9.1c is released (based on
SSLeay)

• mod_ssl for Apache is released

02/10/05S. Kamara (600/650.624)

OpenSSL

• Most popular open source SSL
implementation

• Most popular crypto library

• 18% of all Apache servers use mod_ssl

• stunnel

• sNFS

02/10/05S. Kamara (600/650.624)

RSA in OpenSSL

•

• Sun Ze Theorem

• Modular exponentiation: sliding window

• Modular reduction: Montgomery

• Multi-precision multiplication: Karatsuba

sig(m) = md mod n

02/10/05S. Kamara (600/650.624)

Sliding Window

• Extension of square and multiply

• uses multiple bits of the exponent at once

• makes attack more difficult

02/10/05S. Kamara (600/650.624)

Montgomery
Reduction

• Introduced in 1985 by Peter Montgomery

• Performs modular multiplication efficiently

• Transforms multiplication mod n to
multiplication mod R

02/10/05S. Kamara (600/650.624)

Montgomery
Reduction

extra reduction

Algorithm 1 Montgomery Reduction

1: INPUT: x, y and q
2: OUTPUT: x · y mod q
3: RR−1

− qq∗ = 1
4: Ψ(x) := xR mod q
5: Ψ(y) := yR mod q
6: z := Ψ(x) × Ψ(y) = abR2 mod q
7: r := z × q∗ mod R
8: s := z+rq

R

9: if s > q then
10: s := s − q
11: end if
12: return s

02/10/05S. Kamara (600/650.624)

Montgomery
Reduction

•

•

•

Pr[extra reduction] =
m mod q

2R

m → q ⇒ Pr[reduction] ↗

m → q+ ⇒ Pr[reduction] ↘

m = q ⇒ Pr[reduction] = 0

02/10/05S. Kamara (600/650.624)

Karatsuba

• Multi-precision multiplication

• where and

• Runs in

• As opposed to

• worst case

O(nlog2 3)

O(n2)

O(n · m)

x · y |x| = n |y| = n

02/10/05S. Kamara (600/650.624)

Karatsuba

• Used only if inputs have same length

• OpenSSL:

• if |x| = |y| then Karatsuba

• if |x| != |y| then normal

O(nlog2 3)

O(n2)

02/10/05S. Kamara (600/650.624)

Biases

• What is the effect of these optimizations on
the exponentiation time?

02/10/05S. Kamara (600/650.624)

Montgomery
Reduction

• if m approaches q from below then slow

• if m approaches q from above then fast

02/10/05S. Kamara (600/650.624)

Montgomery
Reduction

Decryption
time

q 2q 3q
g

Figure 1

02/10/05S. Kamara (600/650.624)

Multiplication

• if |x| = |y| then fast

• if |x| != |y| then slow

02/10/05S. Kamara (600/650.624)

Multiplication

g
g < q g > q

Decryption
time

Karatsuba

Normal

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

hello

e

g or ghi

error

Eve Server

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

• Kocher attack recovers signing key

• Boneh-Brumley attack recovers factor

02/10/05S. Kamara (600/650.624)

Kocher Attack Target

sig(m) = md mod n

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Target

sig(m) = md mod p · q

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Target

• n = pq

• Knowing q we recover p

d = e−1 mod (p − 1)(q − 1)

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

CRT

Square and multiply

Montgomery

Multiplication

m modq

md mod q

m
d

mod R

I · m

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

•

• Recover bit of q

• when we already have the top bits

sig(m) = md mod pq

i
th

i − 1

02/10/05S. Kamara (600/650.624)

Timing Attack

• q: smallest factor

• g: same top bits as q (rest is all 0)

• : g with bit set to

• : decryption(g) - decryption()

i − 1

ghi i
th

1

ghi
∆

02/10/05S. Kamara (600/650.624)

Timing Attack

• i = 4

• q = 101 ?

• g = 101 0...

• g = 101 10...
hi

02/10/05S. Kamara (600/650.624)

Timing Attack

• i = 4

• q = 101 1 ?

• g = 101 0...

• g = 101 10...
hi

if then q4 = 1 g < ghi < q

02/10/05S. Kamara (600/650.624)

Timing Attack

• i = 4

• q = 101 0 ?

• g = 101 0...

• g = 101 10...
hi

if then g < q < ghiq4 = 0

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

Montgomery Multiplication

T(g)
slow

(xtra reds)
fast

(kara)

ghi T() fast
slow

(normal)

|∆| large large

qi = 0 → g < q < ghi

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

Montgomery Multiplication

T(g)
slow

(xtra reds)
fast

(kara)

ghi T() fast
slow

(normal)

|∆| large large

g < q < ghi

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

Montgomery Multiplication

T(g) slow fast

ghi T() slow fast

|∆| small small

qi = 1 → g < ghi < q

02/10/05S. Kamara (600/650.624)

Boneh-Brumley Attack

Montgomery Multiplication

T(g) slow fast

ghi T() slow fast

|∆| small small

g < ghi < q

02/10/05S. Kamara (600/650.624)

Timing Attack

• if then and

• is small

• if then and

• is large

q4 = 1

|∆|

g < ghi < q

q4 = 0 g < q < ghi

|∆|

02/10/05S. Kamara (600/650.624)

Experimental Setup

• RedHat Linux 7.3

• 2.4 GHz Pentium 4

• 1 GB of RAM

• gcc 2.96

• OpenSSL 0.9.7

02/10/05S. Kamara (600/650.624)

Number of Queries

• Interprocess using TCP

• Neighborhood size: for each bit measure
decryption time of many guesses (sliding
window)

• Sample size: for each guess measure multiple
times

02/10/05S. Kamara (600/650.624)

Number of Queries

02/10/05S. Kamara (600/650.624)

Number of Queries

• Delta increases as neighborhood size
increases

• Variance decreases as sample size increases

02/10/05S. Kamara (600/650.624)

Other Experiments

• Tested using 3 different keys

• Deltas are very sensitive to

• execution environment (cache misses,
code offsets etc...)

• compilation flags

02/10/05S. Kamara (600/650.624)

Network Experiments

• Works against Apache+mod_ssl when
seperated by:

• 1 switch

• 3 routers and a number of switches

02/10/05S. Kamara (600/650.624)

Network

02/10/05S. Kamara (600/650.624)

Attack Results

• Interprocess attack

• 1024 bit key

• Unoptimized: 350 000 queries

• Optimized: 1.4 million queries

• 2 hours

02/10/05S. Kamara (600/650.624)

More Details

• Lucas will talk more about the experiments

02/10/05S. Kamara (600/650.624)

Countermeasures

• Make running time independent of input

• Montgomery: perform dummy reductions

• Multiplication: always use Karatsuba
(shifts)

• Make all operations take the same time

02/10/05S. Kamara (600/650.624)

• Blinding

Countermeasures

Eve

(rem)

(rem)d

rmd

r ∈R Zn

02/10/05S. Kamara (600/650.624)

Countermeasures

02/10/05S. Kamara (600/650.624)

Blinding

• How do we know it prevents other attacks?

• Blinding is not provably secure

• What about template attacks?

02/10/05S. Kamara (600/650.624)

Impact

• CERT advisory

• At least 37 products vulnerable

• 23 not vulnerable

• 56 unknown

02/10/05S. Kamara (600/650.624)

Questions?

02/10/05S. Kamara (600/650.624)

Montgomery
Reduction

•

• and

• Multiplication and division by powers of 2 is
efficient

x · y mod q → x′ · y′ mod 2k

2k
> q gcd(2k

, q) = 1

02/10/05S. Kamara (600/650.624)

Karatsuba

• A × B = AHAL × BHBL

A × B = (2
n

2 AH + AL) × (2
n

2 BH + BL)

A × B = 2
n
AHBH + 2

n

2 (AHBL + ALBH) + ALBL

02/10/05S. Kamara (600/650.624)

Karatsuba

AHBL + ALBH = (AH + AL) × (BH + BL) − AHBH − ALBL

A × B = 2
n
AHBH + 2

n

2 (AHBL + ALBH) + ALBL

A × B = 2
n
AHBH + 2

n

2 [(AH + AL) × (BH + BL) − AHBH − ALBL] + ALBL

02/10/05S. Kamara (600/650.624)

Karatsuba

• 3 multiplications and 2 shift and 7 additions

• multiplications fit in registers (no overflows)

