Remote Timing Attacks are Practical

by David Brumley and Dan Boneh

Presented by Seny Kamara in

Advanced Topics in Network Security (600/650.624)

Outline

- Traditional threat model in cryptography
- Side-channel attacks
- Kocher's timing attack
- Boneh & Brumley timing attack
- Experiments
- Countermeasures

Traditional Crypto

- Brute force attacks
 - large key
- Mathematical attacks
 - reduction to hard problem
 - RSAP: $(m^e \mod n) \rightarrow m$
 - \bullet DHP: $(g^x, g^y) \rightarrow g^{xy}$

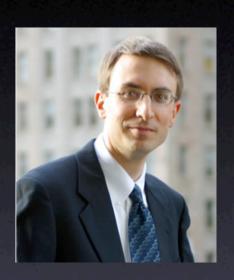
Traditional Crypto

- Attacker has access to:
 - Ciphertext
 - Algorithm

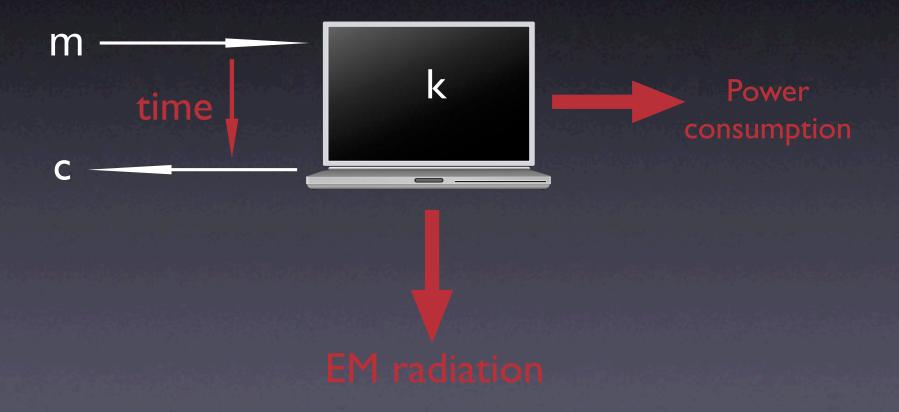
Real-Life Crypto

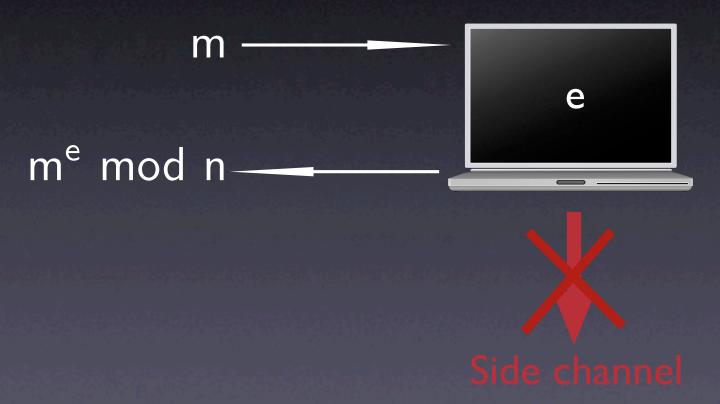
- Attacker has access to:
 - Ciphertext
 - Algorithm
 - Physical observables from the device

- Paul Kocher in 1996
- Recovers RSA and DSS signing key
- Not taken seriously by cryptographers
- Lot of attention from the press

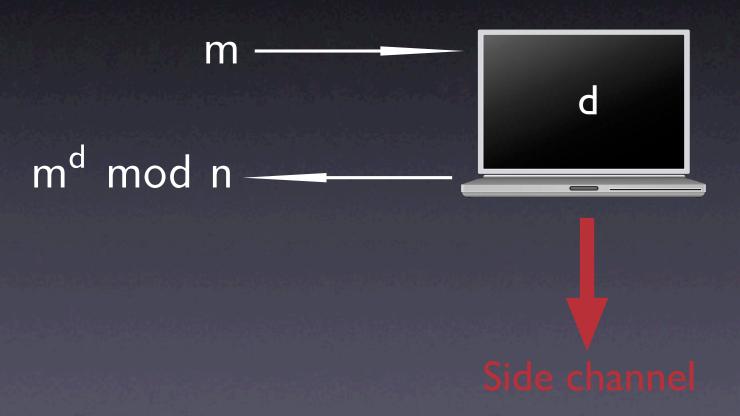


- Timing analysis
- Fault analysis
- Differential fault analysis
- Simple power analysis
- Differential power analysis
- EM analysis





Encryption



Decryption/ Signing

- RSA signatures: $sig(m) = m^d \mod n$
- Modular exponentiation is computed using square and multiply algorithm
- Time of modular exponentiation is a function of the bits of the exponent
- Use time to recover exponent (signing key)

- Recovers key bit by bit
- Guesses key bit then verifies
- Uses statistical analysis
- Needs many samples of signing time

Kocher Attack Target

$$sig(m) = m^d \mod n$$

Square and Multiply

```
1: INPUT: m, n, d

2: OUTPUT: x = m^d \mod n

3: x := m

4: for i = n - 1 downto 0 do

5: x := x^2

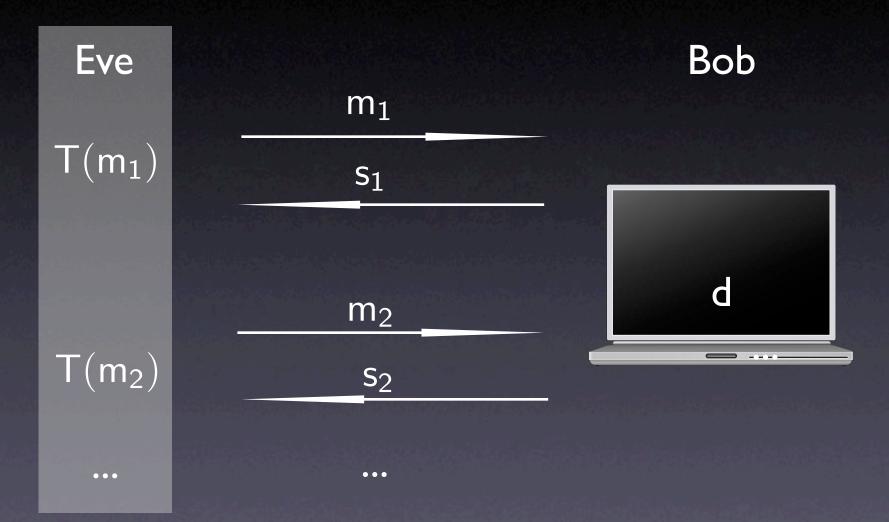
6: if d_i = 1 then

7: x := x \cdot m \mod n

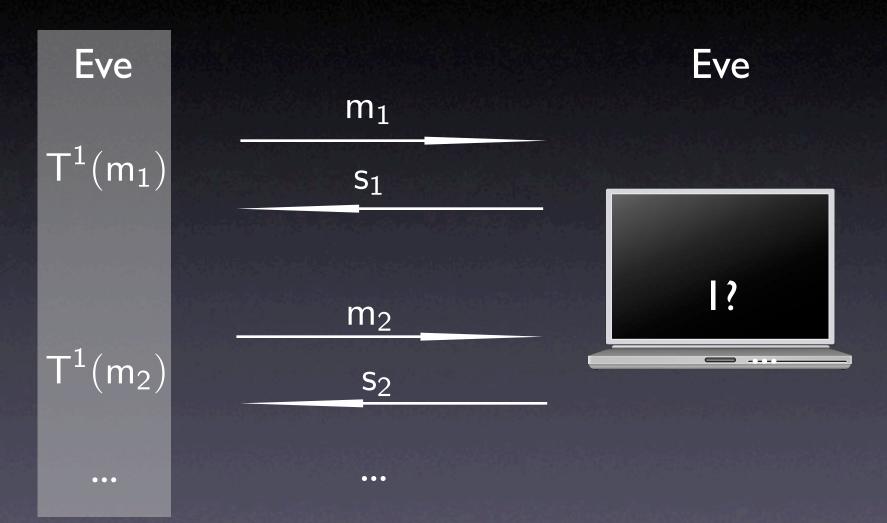
8: end if

9: end for

10: return x
```







- Compare
 - $T(m_i)$ vs $T^0(m_i)$
 - $T(m_i)$ vs $T^1(m_i)$
- \bullet $T(m_i)$ will be correlated with correct guess

• 1998 UCL experimental results:

Key size	sample size
64	I 500-6 500
128	12 000-20 000
256	70 000-80 000
512	350 000

Limit of Kocher Attack

Does not work when mod exp is optimized

- \bullet sig(m) = m^d mod n
- Sun Ze Th. aka CRT
- m, d and n are order of 1024 bits
- exponentiation of 1024 bit number by another 1024 bit number taken modulo a third 1024 bit number

- exponentiate mod q (512 bits)
- exponentiate mod p (512 bits)
- combine using SZT to get mod n (= pq)

- $sig(m) = m^d \mod n$ where n = pq
- \bullet m₁ = m mod p
- $m_2 = m \mod q$
- $\bullet \ \mathsf{d}_1 = \mathsf{d} \ \mathsf{mod} \ (\mathsf{p}-1)$
 - $d_2 = d \mod (q-1)$

- ullet s₁ = m^{d₁} mod p
- $\bullet \ s_2 = m_2^{d_2} \ mod \ q$
- $CRT(s_1, s_2) = m^d \mod n$

- Modular exponentiation:
 - pre-processing
 - exponentiation mod p
 - exponentiation mod q
 - CRT

- Kocher's attack does not work
- Cannot get precise timings
- Cannot repeat pre-processing without factors
- Most implementations use CRT
- OpenSSL

- SSL establishes encrypted and authenticated channel between client and server
- 1994
 - SSL v1 completed but never released
 - SSL v2 released with Navigator 1.1
 - SSL v2 PRNG broken

- 1995
 - SSL v3 released (designed by Kocher)
 - SSL is ubiquitous
- 1996
 - IETF standardizes SSL

- 1998
 - OpenSSL 0.9.1c is released (based on SSLeay)
 - mod_ssl for Apache is released

- Most popular open source SSL implementation
- Most popular crypto library
- 18% of all Apache servers use mod_ssl
- stunnel
- sNFS

RSA in OpenSSL

- $sig(m) = m^d \mod n$
- Sun Ze Theorem
- Modular exponentiation: sliding window
- Modular reduction: Montgomery
- Multi-precision multiplication: Karatsuba

Sliding Window

- Extension of square and multiply
- uses multiple bits of the exponent at once
- makes attack more difficult

Montgomery Reduction

- Introduced in 1985 by Peter Montgomery
- Performs modular multiplication efficiently
- Transforms multiplication mod n to multiplication mod R

Montgomery Reduction

Algorithm 1 Montgomery Reduction

```
1: INPUT: x, y \text{ and } q

2: OUTPUT: x \cdot y \mod q

3: RR^{-1} - qq^* = 1

4: \Psi(x) := xR \mod q

5: \Psi(y) := yR \mod q

6: z := \Psi(x) \times \Psi(y) = abR^2 \mod q

7: r := z \times q^* \mod R

8: s := \frac{z + rq}{R}
```

extra reduction

11: end if

12: return s

9: if s > q then

10: s := s - q

Montgomery Reduction

•
$$Pr[extra reduction] = \frac{m \mod q}{2R}$$

- \bullet m = q \Rightarrow Pr[reduction] = 0
- $m \rightarrow q \Rightarrow Pr[reduction] \nearrow$

$$m \rightarrow q+ \Rightarrow Pr[reduction] \searrow$$

Karatsuba

- Multi-precision multiplication
- $x \cdot y$ where |x| = n and |y| = n
- Runs in $O(n^{\log_2 3})$
- As opposed to $O(n \cdot m)$
- worst case $O(n^2)$

- Used only if inputs have same length
- OpenSSL:
 - if |x| = |y| then Karatsuba $O(n^{\log_2 3})$
 - if |x| != |y| then normal $O(n^2)$

Biases

 What is the effect of these optimizations on the exponentiation time?

Montgomery Reduction

- if m approaches q from below then slow
- if m approaches q from above then fast

Montgomery Reduction

Decryption time

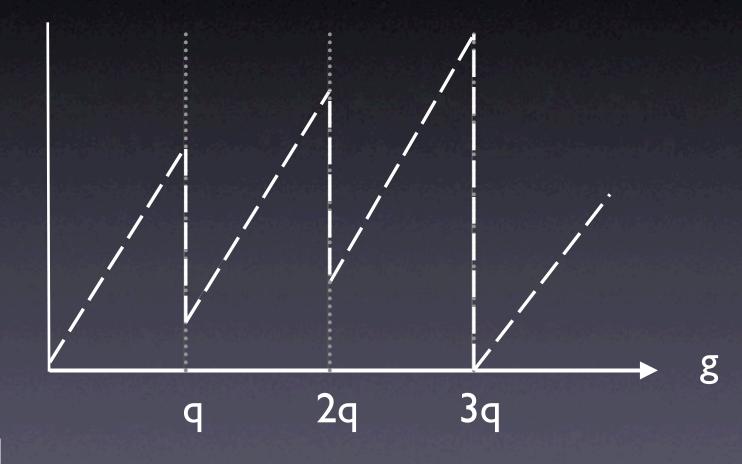
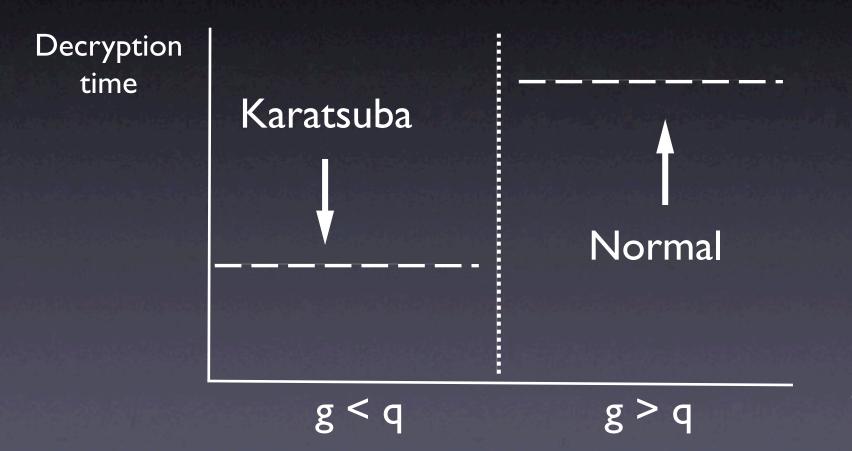


Figure 1

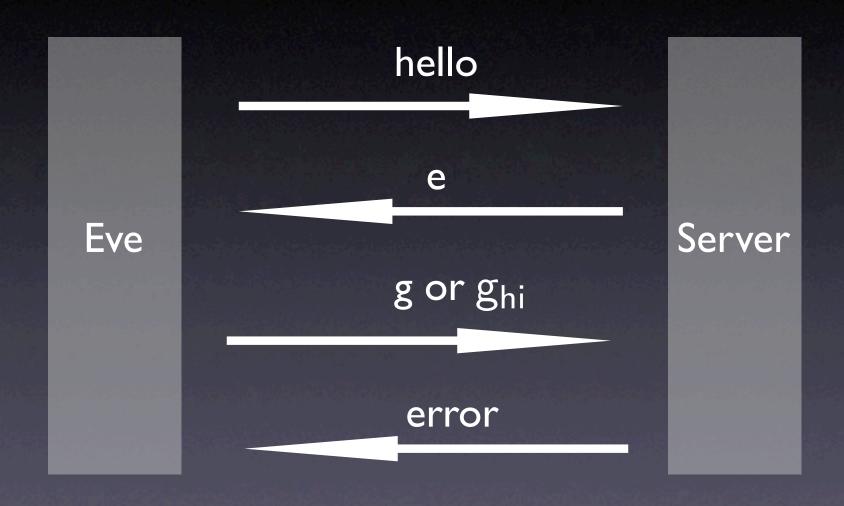
Multiplication

- if |x| = |y| then fast
- if |x| != |y| then slow

Multiplication



g



- Kocher attack recovers signing key
- Boneh-Brumley attack recovers factor

Kocher Attack Target

$$sig(m) = m^d \mod n$$

Boneh-Brumley Target

$$sig(m) = m^d \mod p \cdot q$$

Boneh-Brumley Target

- n = pq
- Knowing q we recover p

$$d = e^{-1} \mod (p-1)(q-1)$$

m modq m^d mod q Square and multiply m^d mod R Montgomery **Multiplication**

- \bullet sig(m) = m^d mod pq
- Recover ith bit of q
- ullet when we already have the top i-1 bits

- q: smallest factor
- g: same top i 1 bits as q (rest is all 0)
- ghi: g with ith bit set to 1
- Δ : decryption(g) decryption(ghi)

```
i = 4
q = |0| ?
g = |0| 0...
g<sub>hi</sub> = |0| |10...
```

if
$$q_4 = 1$$
 then $g < g_{hi} < q$

$$\bullet$$
 $i = 4$

•
$$q = 1010?$$

if
$$q_4 = 0$$
 then $g < q < g_{hi}$

$$q_i = 0 \to g < q < g_{hi}$$

	Montgomery	Multiplication
T(g)	slow (xtra reds)	fast (kara)
T(ghi)	fast	slow (normal)
$ \Delta $	large	large

$$g < q < g_{hi}$$

	Montgomery	Multiplication
T(g)	slow (xtra reds)	fast (kara)
T(ghi)	fast	slow (normal)
$ \Delta $	large	large

$$q_i = 1 \rightarrow g < g_{hi} < q$$

	Montgomery	Multiplication
T(g)	slow	fast
T(ghi)	slow	fast
$ \Delta $	small	small

$$g < g_{hi} < q$$

	Montgomery	Multiplication
T(g)	slow	fast
T(ghi)	slow	fast
$ \Delta $	small	small

- ullet if ${\sf q_4}=1$ then ${\sf g}<{\sf g_{hi}}<{\sf q}$ and
 - $|\Delta|$ is small
- ullet if $q_4=0$ then $g< q< g_{hi}$ and
 - \bullet $|\Delta|$ is large

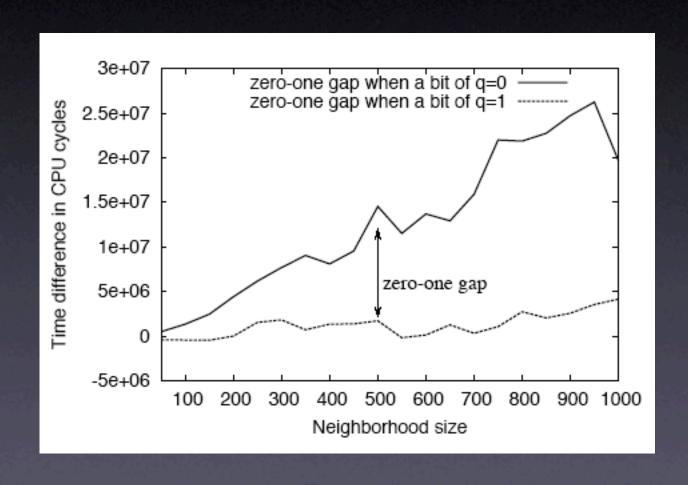
Experimental Setup

- RedHat Linux 7.3
- 2.4 GHz Pentium 4
- I GB of RAM
- gcc 2.96
- OpenSSL 0.9.7

Number of Queries

- Interprocess using TCP
- Neighborhood size: for each bit measure decryption time of many guesses (sliding window)
- Sample size: for each guess measure multiple times

Number of Queries



Number of Queries

- Delta increases as neighborhood size increases
- Variance decreases as sample size increases

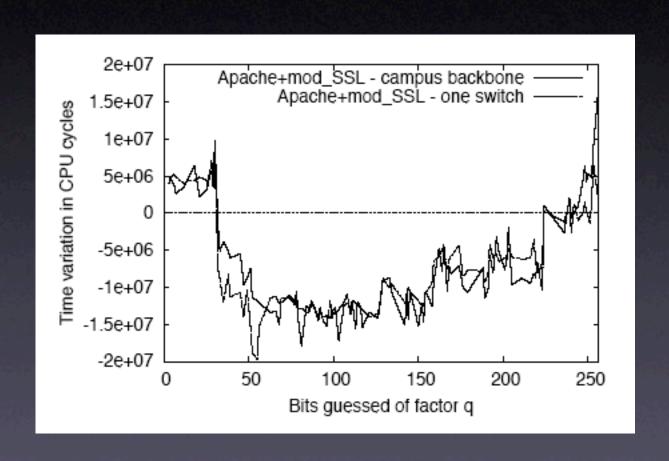
Other Experiments

- Tested using 3 different keys
- Deltas are very sensitive to
 - execution environment (cache misses, code offsets etc...)
 - compilation flags

Network Experiments

- Works against Apache+mod_ssl when seperated by:
 - I switch
 - 3 routers and a number of switches

Network



Attack Results

- Interprocess attack
- 1024 bit key
- Unoptimized: 350 000 queries
- Optimized: I.4 million queries
 - 2 hours

More Details

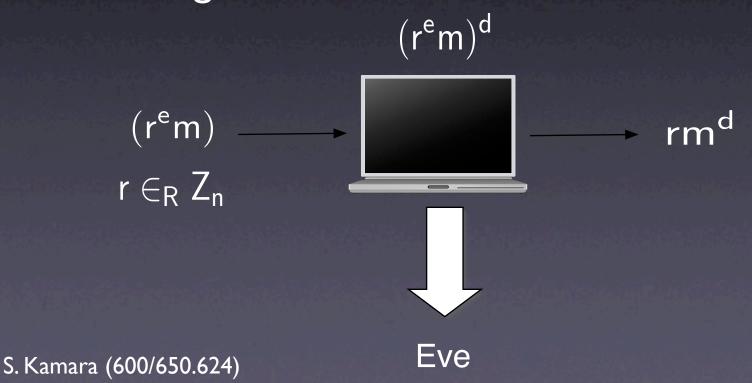
Lucas will talk more about the experiments

Countermeasures

- Make running time independent of input
 - Montgomery: perform dummy reductions
 - Multiplication: always use Karatsuba (shifts)
- Make all operations take the same time

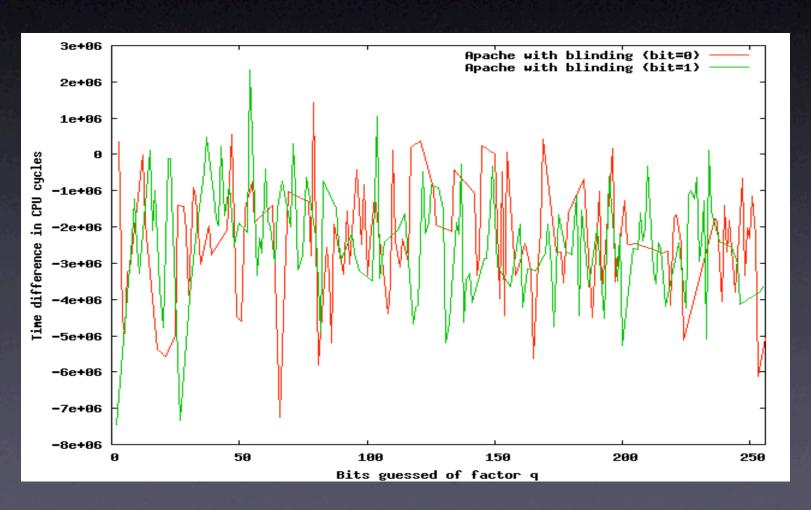
Countermeasures

Blinding



02/10/05

Countermeasures



Blinding

- How do we know it prevents other attacks?
- Blinding is not provably secure
- What about template attacks?

Impact

- CERT advisory
- At least 37 products vulnerable
- 23 not vulnerable
- 56 unknown

Questions?

Montgomery Reduction

- $x \cdot y \mod q \rightarrow x' \cdot y' \mod 2^k$
- ullet 2^k > q and gcd(2^k, q) = 1
- Multiplication and division by powers of 2 is efficient

•
$$A \times B = A_H A_L \times B_H B_L$$

 $A \times B = (2^{\frac{n}{2}} A_H + A_L) \times (2^{\frac{n}{2}} B_H + B_L)$
 $A \times B = 2^n A_H B_H + 2^{\frac{n}{2}} (A_H B_L + A_L B_H) + A_L B_L$

$$A \times B = 2^{n}A_{H}B_{H} + 2^{\frac{n}{2}}(A_{H}B_{L} + A_{L}B_{H}) + A_{L}B_{L}$$

$$A_{H}B_{L} + A_{L}B_{H} = (A_{H} + A_{L}) \times (B_{H} + B_{L}) - A_{H}B_{H} - A_{L}B_{L}$$

$$A \times B = 2^{n}A_{H}B_{H} + 2^{\frac{n}{2}}[(A_{H} + A_{L}) \times (B_{H} + B_{L}) - A_{H}B_{H} - A_{L}B_{L}] + A_{L}B_{L}$$

- 3 multiplications and 2 shift and 7 additions
- multiplications fit in registers (no overflows)