# Privacy Preserving Data Mining

Moheeb Rajab



#### Agenda

- Overview and Terminology
- Motivation
- Active Research Areas
  - Secure Multi-party Computation (SMC)
  - □ Randomization approach
- Limitations
- Summary and Insights



#### Overview

- What is Data Mining?
  - Extracting implicit un-obvious patterns and relationships from a warehoused of data sets.
- This information can be useful to increase the efficiency of the organization and aids future plans.
- Can be done at an organizational level.
  - □ By Establishing a data Warehouse
- Can be done also at a global Scale.



#### Data Mining System Architecture





#### Distributed Data Mining Architecture

Lower scale Mining





#### Challenges

- Privacy Concerns
- Proprietary information disclosure
- Concerns about Association breaches
- Misuse of mining
- These Concerns provide the motivation for privacy preserving data mining solutions



#### Approaches to preserve privacy

- Restrict Access to data (Protect Individual records)
- Protect both the data and its source:
  - □ Secure Multi-party computation (SMC)
  - □ Input Data Randomization
- There is no such one solution that fits all purposes



#### SMC vs Randomization





#### Secure Multi-party Computation

- Multiple parties sharing the burden of creating the data aggregate.
- Final processing if needed can be delegated to any party.
- Computation is considered secure if each party only knows its input and the result of its computation.



#### SMC



Each Party Knows its input and the result of the operation and nothing else



#### **Key Assumptions**

- The ONLY information that can be leaked is the information that we can get as an overall output from the computation (aggregation) process
- Users are not Malicious but can honestly curious
  - □ All users are supposed to abide to the SMC protocol
- Otherwise, for the case of having malicious participants is not easy to model! [Penkas et al, Argawal]



## "Tools for Privacy Preserving Distributed Data Mining" *Clifton et al [SIGKDD]*

#### Secure Sum

■ Given a number of values  $X_1, X_2, \dots, X_n$  belonging to n entities

• We need to compute 
$$\sum_{i=1}^{n} x_i$$

 Such that each entity ONLY knows its input and the result of the computation (The aggregate sum of the data)

#### Examples (Secure Sum)



Sum = R+140 - R

- Problem:
  - □ Colluding members
- Solution
  - Divide values into shares and have each share permute a disjoint path (no site has the same neighbor twice)

#### NA.

#### Split path solution



Sum = R1+ 70 - R1 + R2+ 70 - R2= 140



#### Secure Set Union

■ Consider n sets  $S_1, S_2, \dots, S_n$  Compute,

$$U = S_1 \bigcup S_2 \bigcup S_3, \dots, \bigcup S_n$$

Such that each entity ONLY knows U and nothing else.

#### Ŋ.

#### Secure Union Set

- Using the properties of Commutative Encryption
- For any permutation *i*, *j* the following holds

$$E_{K_{i_1}}(...E_{K_{i_n}}(M)...) = E_{K_{j_1}}(...E_{K_{j_n}}(M)...)$$

$$P(E_{K_{i_1}}(...E_{K_{i_n}}(M_1)...) == E_{K_{j_1}}(...E_{K_{j_n}}(M_2)...)) < \varepsilon$$

#### M

#### Secure Set Union

- Global Union Set U.
- Each site:
  - Encrypts its items
  - $\square$  Creates an array M[n] and adds it to U
- Upon receiving U an entity should encrypt all items in U that it did not encrypt before.
- In the end: all entries are encrypted with all keys  $K_1, K_2, ...., K_n$
- Remove the duplicates:
  - Identical plain text will result the same cipher text regardless of the order of the use of encryption keys.
- Decryption *U*:
  - Done by all entities in any order.



#### Secure Union Set



 $U = \{E3(E2(E1(A))), E3(E2(C)), E3(A)\}$ 



 $U = \{E2(E1(A)), E2(C)\}$ 

 $U = \{E3(E2(E1(A))), E1(E3(E2(C))), E1(E3(A))\}$ 

 $U = \{E3(E2(E1(A))), E1(E3(E2(C))), E2(E1(E3(A)))\}$ 

#### ■ Problem:

□ Computation Overhead, number of exchanged messages O(n\*m)



#### Problems with SMC

- Scalability
- High Overhead
- Details of the trust model assumptions
  - Users are honest and follow the protocol



#### Randomization Approach

- "Privacy Preserving Data Mining", Argawal et. al [SIKDD]
- Applied generally to provide estimates for data distributions rather than single point estimates
- A user is allowed to alter the value provided to the aggregator
- The alteration scheme should known to the aggregator
- The aggregator Estimates the overall global distribution of input by removing the randomization from the aggregate data



#### Randomization Approach (ctnd.)

- Assumptions:
  - Users are willing to divulge some form of their data
  - The aggregator is not malicious but may honestly curious (they follow the protocol)
- Two main data perturbation schemes
  - □ Value- class membership (Discretization)
  - □ Value distortion

### M

#### Randomization Methods

- Value Distortion Method
- Given a value  $x_i$  the client is allowed to report a distorted value  $(x_i + r)$  where r is a random variable drawn from a known distribution
  - □ Uniform Distribution:  $\mu = 0, [-\alpha, +\alpha]$
  - □ Gaussian Distribution:  $\mu = 0, \sigma$



## Quantifying the privacy of different randomization Schemes

| Confidence (α) | 50 %     | 95 %      | 99.9 %     | Distribution        |
|----------------|----------|-----------|------------|---------------------|
| Discretization | 0.5 x W  | 0.95 x W  | 0.999 x W  |                     |
| Uniform        | 0.5 x 2α | 0.95 x 2α | 0.999 x 2α | $-\alpha$ $+\alpha$ |
| Gaussian       | 1.34 x σ | 3.92 x σ  | 6.8 x σ    |                     |

Gaussian Distribution provides the best accuracy at higher confidence levels

#### NA.

#### **Problem Statement**





#### Reconstruction of the Original Distribution

Reconstruction problem can be viewed in in the general framework of the "Inverse Problems"

- Inverse Problems: describing system internal structure from indirect noisy data.
- Bayesian Estimation is an Effective tools for such settings

### M

#### Formal problem statement

Given one dimensional array of randomized data

$$x_1 + y_1, x_2 + y_2, \dots, x_n + y_n$$

- Where  $x_i$  's are iid random variables each with the same distribution as the random variable X
- And  $\mathcal{Y}_i$  's are realizations of a globally known random distribution with CDF  $F_{\scriptscriptstyle Y}$
- lacktriangle Purpose: Estimate  $F_X$



#### Background: Bayesian Inference

- An Estimation method that involves collecting observational data and use it a tool to adjust (either support of refute) a prior belief.
- The previous knowledge (hypothesis) has an established probability called (prior probability)
- The adjusted hypothesis given the new observational data is called (posterior probability)



#### Bayesian Inference

Let  $P(H_0)$  the prior probability, then Bayes' rule states that the posterior probability of  $(H_0)$  given an observation (D) is given by:

$$P(H_0 | D) = \frac{P(D | H_0)P(H_0)}{P(D)}$$

Bayes rule is a cyclic application of the general form of the joint probability theorem:

$$P(D, H_0) = P(H_0 | D)P(D)$$

#### M

#### Bayesian Inference (Classical Example)

- Two Boxes:
  - Box-I: 30 Red balls and 10 White Balls
  - □ Box-II: 20 Red balls and 20 White Balls
- A Person draws a Red Ball, what is the probability that the Ball is from Box-I
- Prior Probability P(Box-I) = 0.5
- From the data we know that:
  - $\square$  P(Red|Box-I) = 30/40 = 0.75
  - $\square$  P(Red|Box-II) = 20/40 = 0.5



#### Example (cntd.)

Now, given the new observation (The Red Ball) we want to know the posterior probability of Box-I (i.e P(Box-I | Red))

$$P(Box - I \mid RED) = \frac{P(RED \mid Box - I)P(Box - I)}{P(RED)}$$

$$P(RED) = P(RED, Box - I) + P(RED, Box - II)$$

$$P(RED) = P(RED \mid Box - I)P(Box - I) + P(RED \mid Box - II)P(Box - II)$$

$$P(RED) = 0.5 \times 0.75 + 0.5 \times 0.5$$

### M

#### Example (cntd)

Computing the joint probability:

$$P(RED) = P(RED \mid Box - I)P(Box - I) + P(RED \mid Box - II)P(Box - II)$$
  
 $P(RED) = 0.5 \times 0.75 + 0.5 \times 0.5$ 

Substituting,

$$P(Box - I \mid RED) = \frac{0.75 \times 0.5}{0.5 \times 0.75 + 0.5 \times 0.5} = 0.6$$

The posterior probability of Box-I is amplifies by the observation of the Red Ball

### M

#### Back: Formal problem statement

Given one dimensional array of randomized data

$$x_1 + y_1, x_2 + y_2, \dots, x_n + y_n$$

- Where  $x_i$ 's are iid random variables each with the same distribution as the random variable X
- And  $\mathcal{Y}_i$  's are realizations of a globally known random distribution with CDF  $F_Y$
- lacktriangle Purpose: Estimate  $F_X$

### Ŋ4

#### Continuous probability distributions



$$P\{r \le z\} = \int_{-\infty}^{z} f_X(k)dk = CDF(z) = F_X(z)$$

$$P\{r = z\} = 0$$

$$\int_{-\infty}^{+\infty} f_X(k)dk = 1$$



#### CDF and PDF







#### Estimation of $F_X$

■ Bayes Rule:

$$P(H_0 | D) = \frac{P(D | H_0)P(H_0)}{P(D)}$$

Posterior Probability

$$F_X(a) = \int_{z=-\infty}^{z=a} f_X(z \mid X_1 + Y_1 = w_1) dz$$

Applying Bayes rule

$$F_X(a) = \int_{-\infty}^a \frac{f_{X_1 + Y_1}(w_1 \mid X_1 = z) f_{X_1}(z) dz}{f_{X_1 + Y_1}(w_1)}$$

### Ŋ.

#### Estimation of $F_X$

■ We want to evaluate  $f_{X_1+Y_1}(w_1)$ 

$$f_{X_1+Y_1}(w_1) = \int_{-\infty}^{\infty} f_{X_1+Y_1}(w_1 \mid X_1 = k) f_{X_1}(k) dk$$

Substituting:

$$F_X(a) = \int_{-\infty}^{a} \frac{f_{X_1 + y_1}(w_1 \mid X_1 = z) f_{X_1}(z) dz}{\int_{-\infty}^{\infty} f_{X_1 + Y_1}(w_1 \mid X_1 = k) f_{X_1}(k) dk}$$



### Estimation of $F_X$

Simplification (independence):

$$F_X(a) = \frac{\int_{-\infty}^{a} f_Y(w_i - z) f_X(z) dz}{\int_{-\infty}^{\infty} f_Y(w_i - z) f_X(k) dk}$$

#### Estimation of $F_X$

■ For all *n* observations:

$$F_X(a) = \frac{1}{n} \sum_{i=1}^n \frac{\int_{-\infty}^a f_Y(w_i - z) f_X(z) dz}{\int_{-\infty}^\infty f_Y(w_i - z) f_X(k) dk}$$

#### Estimation of the PDF $f_X$

•  $f_X$  Is just the derivative of the CDF

$$f_{X}(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{f_{Y}(w_{i} - z) f_{X}(z) dz}{\int_{-\infty}^{\infty} f_{Y}(w_{i} - z) f_{X}(k) dk}$$

#### Algorithm

$$f_X^0 := Uniform\ Distribution$$
 $j := 0$ 

While (not Stopping Condition):

$$f_X^{j+1}(a) := \frac{1}{n} \sum_{i=1}^n \frac{f_Y(w_i - a) f_X^j(a)}{\int_{-\infty}^{+\infty} f_Y(w_i - z) f_X^j(z) dz}$$

$$j := j + 1$$

#### **Stopping Criteria**

The algorithm should terminate if:

$$f_X^{j+1}(a) \cong f_X^j(a)$$

• For each round a  $\chi^2$  goodness of fit test is performed.

 Iteration is stopped when the difference between the two estimates is too small (lower that a certain threshold)



#### **Evaluation**



Gaussian Randomizing Function  $\mu$ =0,  $\sigma$  = 0.25

#### Ŋ.

#### **Evaluation**



**Uniform Randomizing Function [-0.5,0.5]** 



# How is this different from Kalman Estimator?

- Both are estimation techniques
- Kalman is stateless
- In Kalman filter case we knew the distribution and estimation is used to validate whether the trend of the data matches that distribution
- In Bayesian Inference the observation data is used to adjust the prior hypothesis (probability distribution)



#### Is the Problem Solved?

- Suppose a client randomizes Age records using a uniform random variable [-50,50]
- If the aggregator receives value 120, with 100% confidence it knows that actual age is  $\geq 70$
- Simply randomization does not guarantee absolute privacy



## How to achieve better randomization scheme

- "Limiting Privacy Breaches in Privacy Preserving Data Mining" Evfimievski et al
- Define an evaluation metric of how privacy preserving a scheme is.
- Based on the developed metric, develop a randomization scheme that abides to this metric



#### How Privacy preserving is a scheme?

- Information Theoretic Approach:
  - Computes the average information disclose in a randomized attribute by computing the mutual information between the actual and the randomized attribute
- Privacy breach
  - Defines a criteria that should be satisfied for a randomization scheme to be privacy preserving



#### What is a privacy breach?

■ A privacy breach occurs when the disclosure of a randomized value  $y_i$  to the aggregator reveals that a certain property Q(x) of the "individual" input  $x_i$  holds with high probability



#### Privacy Breach

Back to Bayes'

Prior Probability P(Q(x)) where Q(x) is the property

■ Posterior probability:  $P(Q(x)|y_i)$ 



#### **Amplification**

■ Is defined in terms of the transitive probability  $P[x \rightarrow y]$  where y is a fixed randomized output value

- Intuitive definition:
  - $\square$  if there are many  $\mathcal{X}_i$  's that can be mapped to y by the randomizing scheme then disclosing y have gives little information about  $\mathcal{X}_i$
  - $\square$  We say we amplify the probability that  $P[x \rightarrow y]$



#### Amplification factor

Let,

R a randomization operator

 $y \in V_v$  a randomized value of x.

Revealing R will not cause privacy breach if:

$$\frac{p_2}{p_1} \frac{(1 - p_1)}{(1 - p_2)} > \gamma$$



#### Summary

- No one solution can fit all.
- Which area looks more promising?
- Can we create robust randomization schemes to a wide scale of applications and different distributions of data?
- How to deal with the case of Malicious participants?