Privacy Preserving Data Mining

Moheeb Rajab

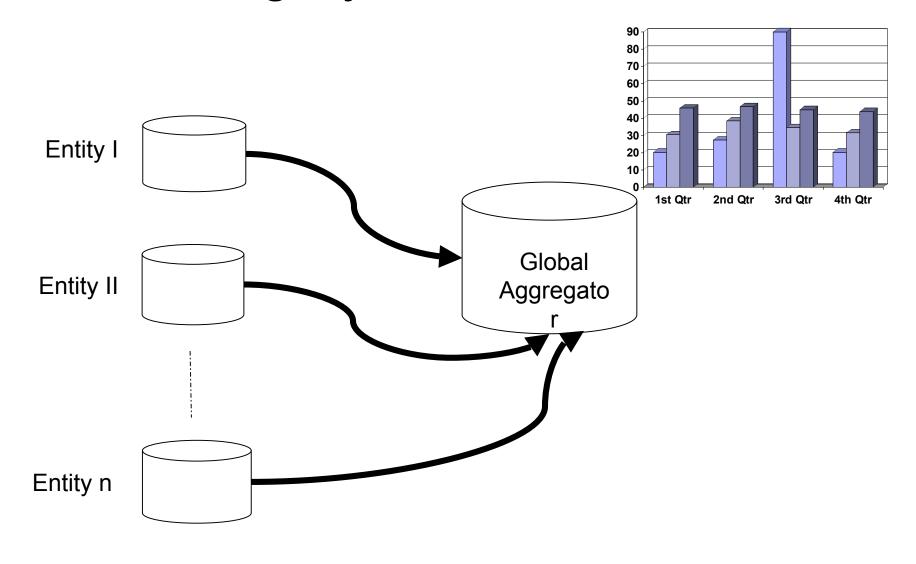
Agenda

- Overview and Terminology
- Motivation
- Active Research Areas
 - Secure Multi-party Computation (SMC)
 - □ Randomization approach
- Limitations
- Summary and Insights

Overview

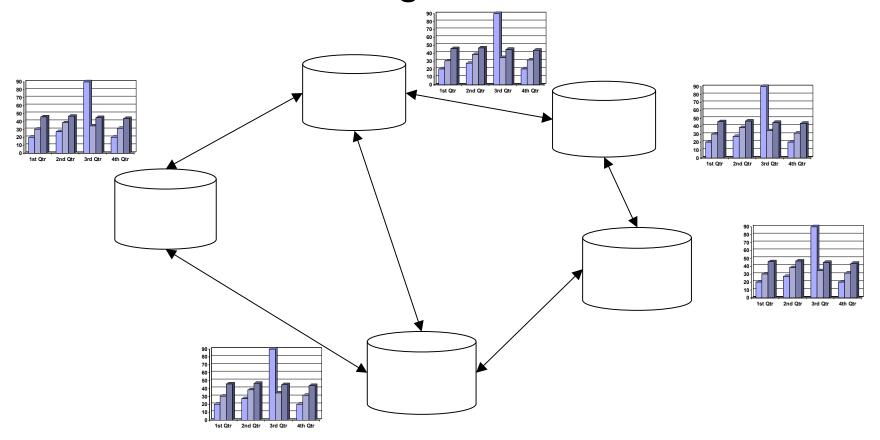
- What is Data Mining?
 - Extracting implicit un-obvious patterns and relationships from a warehoused of data sets.
- This information can be useful to increase the efficiency of the organization and aids future plans.
- Can be done at an organizational level.
 - □ By Establishing a data Warehouse
- Can be done also at a global Scale.

Data Mining System Architecture



Distributed Data Mining Architecture

Lower scale Mining



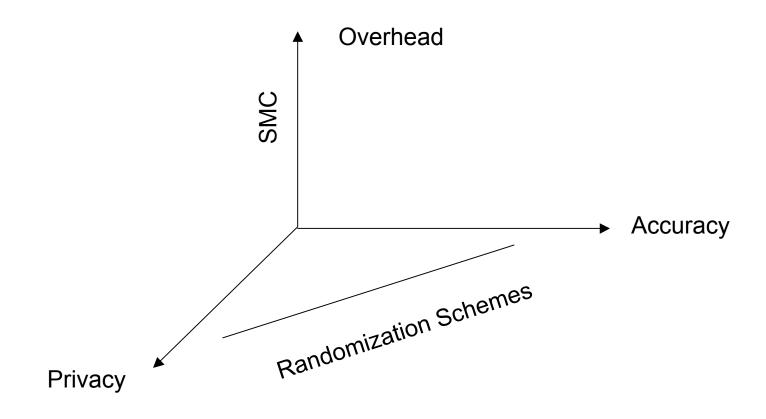
Challenges

- Privacy Concerns
- Proprietary information disclosure
- Concerns about Association breaches
- Misuse of mining
- These Concerns provide the motivation for privacy preserving data mining solutions

Approaches to preserve privacy

- Restrict Access to data (Protect Individual records)
- Protect both the data and its source:
 - □ Secure Multi-party computation (SMC)
 - □ Input Data Randomization
- There is no such one solution that fits all purposes

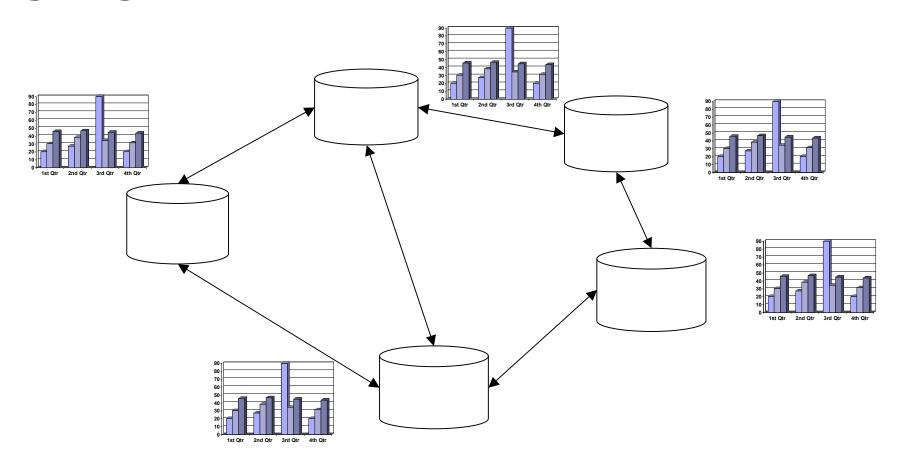
SMC vs Randomization



Secure Multi-party Computation

- Multiple parties sharing the burden of creating the data aggregate.
- Final processing if needed can be delegated to any party.
- Computation is considered secure if each party only knows its input and the result of its computation.

SMC



Each Party Knows its input and the result of the operation and nothing else

Key Assumptions

- The ONLY information that can be leaked is the information that we can get as an overall output from the computation (aggregation) process
- Users are not Malicious but can honestly curious
 - □ All users are supposed to abide to the SMC protocol
- Otherwise, for the case of having malicious participants is not easy to model! [Penkas et al, Argawal]

"Tools for Privacy Preserving Distributed Data Mining" *Clifton et al [SIGKDD]*

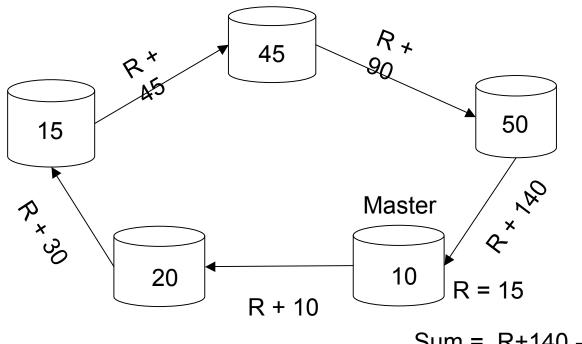
Secure Sum

■ Given a number of values X_1, X_2, \dots, X_n belonging to n entities

• We need to compute
$$\sum_{i=1}^{n} x_i$$

 Such that each entity ONLY knows its input and the result of the computation (The aggregate sum of the data)

Examples (Secure Sum)

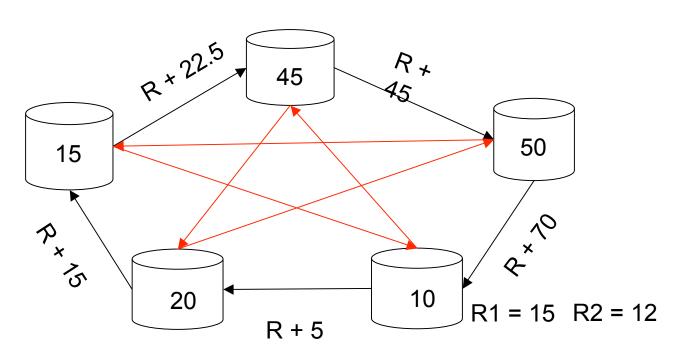


Sum = R+140 - R

- Problem:
 - □ Colluding members
- Solution
 - Divide values into shares and have each share permute a disjoint path (no site has the same neighbor twice)

NA.

Split path solution



Sum = R1+ 70 - R1 + R2+ 70 - R2= 140

Secure Set Union

■ Consider n sets S_1, S_2, \dots, S_n Compute,

$$U = S_1 \bigcup S_2 \bigcup S_3, \dots, \bigcup S_n$$

Such that each entity ONLY knows U and nothing else.

Ŋ.

Secure Union Set

- Using the properties of Commutative Encryption
- For any permutation *i*, *j* the following holds

$$E_{K_{i_1}}(...E_{K_{i_n}}(M)...) = E_{K_{j_1}}(...E_{K_{j_n}}(M)...)$$

$$P(E_{K_{i_1}}(...E_{K_{i_n}}(M_1)...) == E_{K_{j_1}}(...E_{K_{j_n}}(M_2)...)) < \varepsilon$$

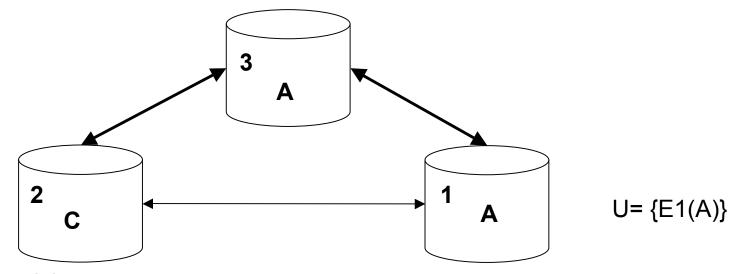
M

Secure Set Union

- Global Union Set U.
- Each site:
 - Encrypts its items
 - \square Creates an array M[n] and adds it to U
- Upon receiving U an entity should encrypt all items in U that it did not encrypt before.
- In the end: all entries are encrypted with all keys $K_1, K_2,, K_n$
- Remove the duplicates:
 - Identical plain text will result the same cipher text regardless of the order of the use of encryption keys.
- Decryption *U*:
 - Done by all entities in any order.

Secure Union Set

 $U = \{E3(E2(E1(A))), E3(E2(C)), E3(A)\}$



 $U = \{E2(E1(A)), E2(C)\}$

 $U = \{E3(E2(E1(A))), E1(E3(E2(C))), E1(E3(A))\}$

 $U = \{E3(E2(E1(A))), E1(E3(E2(C))), E2(E1(E3(A)))\}$

■ Problem:

□ Computation Overhead, number of exchanged messages O(n*m)

Problems with SMC

- Scalability
- High Overhead
- Details of the trust model assumptions
 - Users are honest and follow the protocol

Randomization Approach

- "Privacy Preserving Data Mining", Argawal et. al [SIKDD]
- Applied generally to provide estimates for data distributions rather than single point estimates
- A user is allowed to alter the value provided to the aggregator
- The alteration scheme should known to the aggregator
- The aggregator Estimates the overall global distribution of input by removing the randomization from the aggregate data

Randomization Approach (ctnd.)

- Assumptions:
 - Users are willing to divulge some form of their data
 - The aggregator is not malicious but may honestly curious (they follow the protocol)
- Two main data perturbation schemes
 - □ Value- class membership (Discretization)
 - □ Value distortion

M

Randomization Methods

- Value Distortion Method
- Given a value x_i the client is allowed to report a distorted value $(x_i + r)$ where r is a random variable drawn from a known distribution
 - □ Uniform Distribution: $\mu = 0, [-\alpha, +\alpha]$
 - □ Gaussian Distribution: $\mu = 0, \sigma$

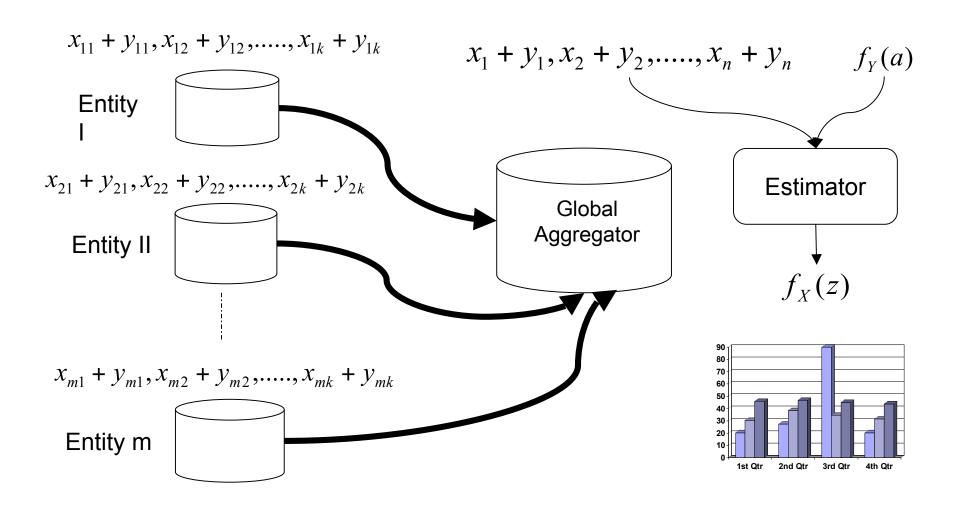
Quantifying the privacy of different randomization Schemes

Confidence (α)	50 %	95 %	99.9 %	Distribution
Discretization	0.5 x W	0.95 x W	0.999 x W	
Uniform	0.5 x 2α	0.95 x 2α	0.999 x 2α	$-\alpha$ $+\alpha$
Gaussian	1.34 x σ	3.92 x σ	6.8 x σ	

Gaussian Distribution provides the best accuracy at higher confidence levels

NA.

Problem Statement



Reconstruction of the Original Distribution

Reconstruction problem can be viewed in in the general framework of the "Inverse Problems"

- Inverse Problems: describing system internal structure from indirect noisy data.
- Bayesian Estimation is an Effective tools for such settings

M

Formal problem statement

Given one dimensional array of randomized data

$$x_1 + y_1, x_2 + y_2, \dots, x_n + y_n$$

- Where x_i 's are iid random variables each with the same distribution as the random variable X
- And \mathcal{Y}_i 's are realizations of a globally known random distribution with CDF $F_{\scriptscriptstyle Y}$
- lacktriangle Purpose: Estimate F_X

Background: Bayesian Inference

- An Estimation method that involves collecting observational data and use it a tool to adjust (either support of refute) a prior belief.
- The previous knowledge (hypothesis) has an established probability called (prior probability)
- The adjusted hypothesis given the new observational data is called (posterior probability)

Bayesian Inference

Let $P(H_0)$ the prior probability, then Bayes' rule states that the posterior probability of (H_0) given an observation (D) is given by:

$$P(H_0 | D) = \frac{P(D | H_0)P(H_0)}{P(D)}$$

Bayes rule is a cyclic application of the general form of the joint probability theorem:

$$P(D, H_0) = P(H_0 | D)P(D)$$

M

Bayesian Inference (Classical Example)

- Two Boxes:
 - Box-I: 30 Red balls and 10 White Balls
 - □ Box-II: 20 Red balls and 20 White Balls
- A Person draws a Red Ball, what is the probability that the Ball is from Box-I
- Prior Probability P(Box-I) = 0.5
- From the data we know that:
 - \square P(Red|Box-I) = 30/40 = 0.75
 - \square P(Red|Box-II) = 20/40 = 0.5

Example (cntd.)

Now, given the new observation (The Red Ball) we want to know the posterior probability of Box-I (i.e P(Box-I | Red))

$$P(Box - I \mid RED) = \frac{P(RED \mid Box - I)P(Box - I)}{P(RED)}$$

$$P(RED) = P(RED, Box - I) + P(RED, Box - II)$$

$$P(RED) = P(RED \mid Box - I)P(Box - I) + P(RED \mid Box - II)P(Box - II)$$

$$P(RED) = 0.5 \times 0.75 + 0.5 \times 0.5$$

M

Example (cntd)

Computing the joint probability:

$$P(RED) = P(RED \mid Box - I)P(Box - I) + P(RED \mid Box - II)P(Box - II)$$

 $P(RED) = 0.5 \times 0.75 + 0.5 \times 0.5$

Substituting,

$$P(Box - I \mid RED) = \frac{0.75 \times 0.5}{0.5 \times 0.75 + 0.5 \times 0.5} = 0.6$$

The posterior probability of Box-I is amplifies by the observation of the Red Ball

M

Back: Formal problem statement

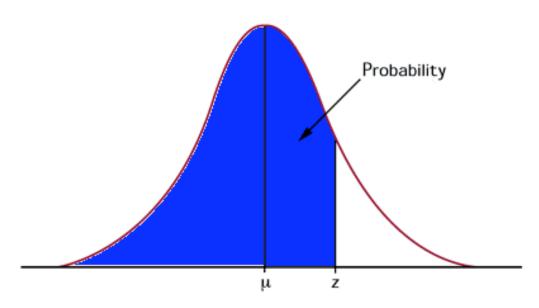
Given one dimensional array of randomized data

$$x_1 + y_1, x_2 + y_2, \dots, x_n + y_n$$

- Where x_i 's are iid random variables each with the same distribution as the random variable X
- And \mathcal{Y}_i 's are realizations of a globally known random distribution with CDF F_Y
- lacktriangle Purpose: Estimate F_X

Ŋ4

Continuous probability distributions

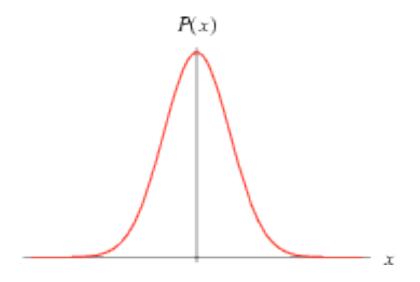


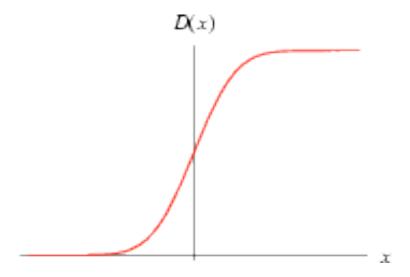
$$P\{r \le z\} = \int_{-\infty}^{z} f_X(k)dk = CDF(z) = F_X(z)$$

$$P\{r = z\} = 0$$

$$\int_{-\infty}^{+\infty} f_X(k)dk = 1$$

CDF and PDF





Estimation of F_X

■ Bayes Rule:

$$P(H_0 | D) = \frac{P(D | H_0)P(H_0)}{P(D)}$$

Posterior Probability

$$F_X(a) = \int_{z=-\infty}^{z=a} f_X(z \mid X_1 + Y_1 = w_1) dz$$

Applying Bayes rule

$$F_X(a) = \int_{-\infty}^a \frac{f_{X_1 + Y_1}(w_1 \mid X_1 = z) f_{X_1}(z) dz}{f_{X_1 + Y_1}(w_1)}$$

Ŋ.

Estimation of F_X

■ We want to evaluate $f_{X_1+Y_1}(w_1)$

$$f_{X_1+Y_1}(w_1) = \int_{-\infty}^{\infty} f_{X_1+Y_1}(w_1 \mid X_1 = k) f_{X_1}(k) dk$$

Substituting:

$$F_X(a) = \int_{-\infty}^{a} \frac{f_{X_1 + y_1}(w_1 \mid X_1 = z) f_{X_1}(z) dz}{\int_{-\infty}^{\infty} f_{X_1 + Y_1}(w_1 \mid X_1 = k) f_{X_1}(k) dk}$$

Estimation of F_X

Simplification (independence):

$$F_X(a) = \frac{\int_{-\infty}^{a} f_Y(w_i - z) f_X(z) dz}{\int_{-\infty}^{\infty} f_Y(w_i - z) f_X(k) dk}$$

Estimation of F_X

■ For all *n* observations:

$$F_X(a) = \frac{1}{n} \sum_{i=1}^n \frac{\int_{-\infty}^a f_Y(w_i - z) f_X(z) dz}{\int_{-\infty}^\infty f_Y(w_i - z) f_X(k) dk}$$

Estimation of the PDF f_X

• f_X Is just the derivative of the CDF

$$f_{X}(a) = \frac{1}{n} \sum_{i=1}^{n} \frac{f_{Y}(w_{i} - z) f_{X}(z) dz}{\int_{-\infty}^{\infty} f_{Y}(w_{i} - z) f_{X}(k) dk}$$

Algorithm

$$f_X^0 := Uniform\ Distribution$$
 $j := 0$

While (not Stopping Condition):

$$f_X^{j+1}(a) := \frac{1}{n} \sum_{i=1}^n \frac{f_Y(w_i - a) f_X^j(a)}{\int_{-\infty}^{+\infty} f_Y(w_i - z) f_X^j(z) dz}$$

$$j := j + 1$$

Stopping Criteria

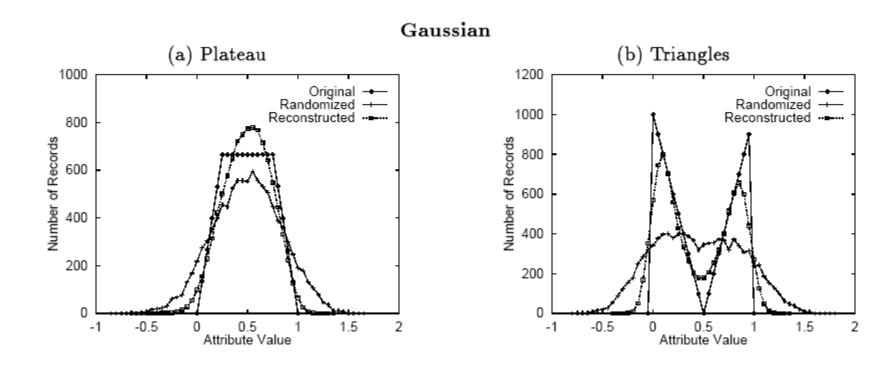
The algorithm should terminate if:

$$f_X^{j+1}(a) \cong f_X^j(a)$$

• For each round a χ^2 goodness of fit test is performed.

 Iteration is stopped when the difference between the two estimates is too small (lower that a certain threshold)

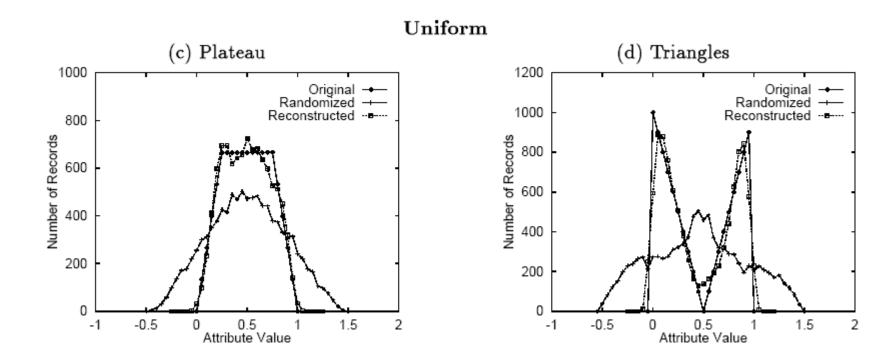
Evaluation



Gaussian Randomizing Function μ =0, σ = 0.25

Ŋ.

Evaluation



Uniform Randomizing Function [-0.5,0.5]

How is this different from Kalman Estimator?

- Both are estimation techniques
- Kalman is stateless
- In Kalman filter case we knew the distribution and estimation is used to validate whether the trend of the data matches that distribution
- In Bayesian Inference the observation data is used to adjust the prior hypothesis (probability distribution)

Is the Problem Solved?

- Suppose a client randomizes Age records using a uniform random variable [-50,50]
- If the aggregator receives value 120, with 100% confidence it knows that actual age is ≥ 70
- Simply randomization does not guarantee absolute privacy

How to achieve better randomization scheme

- "Limiting Privacy Breaches in Privacy Preserving Data Mining" Evfimievski et al
- Define an evaluation metric of how privacy preserving a scheme is.
- Based on the developed metric, develop a randomization scheme that abides to this metric

How Privacy preserving is a scheme?

- Information Theoretic Approach:
 - Computes the average information disclose in a randomized attribute by computing the mutual information between the actual and the randomized attribute
- Privacy breach
 - Defines a criteria that should be satisfied for a randomization scheme to be privacy preserving

What is a privacy breach?

■ A privacy breach occurs when the disclosure of a randomized value y_i to the aggregator reveals that a certain property Q(x) of the "individual" input x_i holds with high probability

Privacy Breach

Back to Bayes'

Prior Probability P(Q(x)) where Q(x) is the property

■ Posterior probability: $P(Q(x)|y_i)$

Amplification

■ Is defined in terms of the transitive probability $P[x \rightarrow y]$ where y is a fixed randomized output value

- Intuitive definition:
 - \square if there are many \mathcal{X}_i 's that can be mapped to y by the randomizing scheme then disclosing y have gives little information about \mathcal{X}_i
 - \square We say we amplify the probability that $P[x \rightarrow y]$

Amplification factor

Let,

R a randomization operator

 $y \in V_v$ a randomized value of x.

Revealing R will not cause privacy breach if:

$$\frac{p_2}{p_1} \frac{(1 - p_1)}{(1 - p_2)} > \gamma$$

Summary

- No one solution can fit all.
- Which area looks more promising?
- Can we create robust randomization schemes to a wide scale of applications and different distributions of data?
- How to deal with the case of Malicious participants?