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Overview

 What is Data Mining?
 Extracting implicit un-obvious patterns  and relationships from a

warehoused of data sets.

 This information can be useful to increase the efficiency of the
organization and aids future plans.

 Can be done at an organizational level.
 By Establishing a data Warehouse

 Can be done also at a global Scale.



Data Mining System Architecture
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Distributed Data Mining Architecture

 Lower scale Mining
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Challenges

 Privacy Concerns
 Proprietary information disclosure
 Concerns about Association breaches
 Misuse of mining
 These Concerns provide the motivation

for privacy preserving data mining
solutions



Approaches to preserve privacy

 Restrict Access to data (Protect Individual
records)

 Protect both the data and its source:
 Secure Multi-party computation (SMC)
 Input Data Randomization

 There is no such one solution that fits all
purposes



SMC vs Randomization
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Secure Multi-party Computation

 Multiple parties sharing the burden of creating the data
aggregate.

 Final processing if needed can be delegated to any
party.

 Computation is considered secure if each party only
knows its input and the result of its computation.



SMC
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Each Party Knows its input and the result of the operation and nothing else



Key Assumptions

 The ONLY information that can be leaked is the
information that we can get as an overall output from the
computation (aggregation) process

 Users are not Malicious but can honestly curious
 All users are supposed to abide to the SMC protocol

 Otherwise, for the case of having malicious participants
is not easy to model! [Penkas et al, Argawal]



“Tools for Privacy Preserving Distributed Data
Mining” Clifton et al [SIGKDD]

 Secure Sum
 Given a number of values                                 belonging

to n entities

 We need to compute

 Such that each entity ONLY knows its input and the
result of the computation (The aggregate sum of the
data)
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Examples (Secure Sum)

 Problem:
 Colluding members

 Solution
 Divide values into shares and have each share permute a

disjoint path (no site has the same neighbor twice)
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Split path solution
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Secure Set Union

 Consider n sets
Compute,

Such that each entity ONLY knows U and
nothing else.
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Secure Union Set

 Using the properties of Commutative
Encryption

 For any permutation i, j the following holds
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Secure Set Union

 Global Union Set U.
 Each site:

  Encrypts its items
 Creates an array M[n] and adds it to U

 Upon receiving U  an entity should encrypt all items in U  that it did not
encrypt before.

 In the end: all entries are encrypted with all keys
 Remove the duplicates:

  Identical plain text will result the same cipher text regardless of the order of the
use of encryption keys.

 Decryption U:
 Done by all entities in any order.
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Secure Union Set
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2 U= {E1(A)}

 Problem:
Computation Overhead, number of

exchanged messages O(n*m)

U= {E2(E1(A)),E2(C)}

U= {E3(E2(E1(A))),E3(E2(C)), E3(A)}

U= {E3(E2(E1(A))),E1(E3(E2(C))), E1(E3(A))}

U= {E3(E2(E1(A))),E1(E3(E2(C))), E2(E1(E3(A)))}



Problems with SMC

 Scalability
 High Overhead
 Details of the trust model assumptions

Users are honest and follow the protocol



Randomization Approach

 “Privacy Preserving Data Mining”, Argawal et. al [SIKDD]

 Applied generally to provide estimates for data distributions rather
than single point estimates

 A user is allowed to alter the value provided to the aggregator

 The alteration scheme should known to the aggregator

 The aggregator Estimates the overall global distribution of input by
removing the randomization from the aggregate data



Randomization Approach (ctnd.)

 Assumptions:
 Users are willing to divulge some form of their data
 The aggregator is not malicious but may honestly

curious (they follow the protocol)

 Two  main data perturbation schemes
 Value- class membership (Discretization)
 Value distortion



Randomization Methods

 Value Distortion Method

 Given a value     the client is allowed to report a distorted value
where     is a random variable drawn from a known

distribution

  Uniform Distribution:

 Gaussian Distribution:
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Quantifying the privacy of different
randomization Schemes

6.8 x σ3.92 x σ1.34 x σGaussian

0.999 x 2α0.95 x 2α0.5 x 2αUniform

0.999 x W0.95 x W0.5 x WDiscretization

Distribution99.9 %95 %50 %Confidence (α)

W

− α + α

Gaussian Distribution provides the best accuracy at higher confidence levels



Problem Statement
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Reconstruction of the Original Distribution

 Reconstruction problem can be viewed in in the general
framework of the “Inverse Problems”

 Inverse Problems: describing system internal structure
from indirect noisy data.

 Bayesian Estimation is an Effective tools for such
settings



Formal problem statement

 Given one dimensional array of randomized data

 Where     ’s are iid random variables each with the same distribution
as the random variable X

 And       ’s are realizations of a globally known random distribution
with CDF

 Purpose: Estimate
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Background: Bayesian Inference

 An Estimation method that involves collecting observational data
and use it a tool to adjust (either support of refute) a prior belief.

 The previous knowledge (hypothesis) has an established probability
called (prior probability)

 The adjusted hypothesis given the new observational data is called
(posterior probability)



Bayesian Inference
 Let           the prior probability, then Bayes’ rule states

that the posterior probability of          given an
observation (D) is given by:

 Bayes rule is a cyclic application of the general form of
the joint probability theorem:
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Bayesian Inference ( Classical Example)

 Two Boxes:
 Box-I : 30 Red balls and 10 White Balls
 Box-II: 20 Red balls and 20 White Balls

 A Person draws a Red Ball, what is the probability that
the Ball is from Box-I

 Prior Probability P(Box-I) = 0.5

 From the data we know that:
 P(Red|Box-I) =  30/40 = 0.75
 P(Red|Box-II) = 20/40 = 0.5



Example (cntd.)

 Now, given the new observation (The Red Ball)
we want to know the posterior probability of Box-I
(i.e P(Box-I | Red) )
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Example (cntd)

 Computing the joint probability:

 Substituting,

 The posterior probability of Box-I is amplifies by the observation of
the Red Ball
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Back: Formal problem statement

 Given one dimensional array of randomized data

 Where    ‘s are iid random variables each with the same distribution
as the random variable X

 And       ’s are realizations of a globally known random distribution
with CDF

 Purpose: Estimate
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Continuous probability distributions

)()()(}{ zFzCDFdkkfzrP X

z

X ===! " #$
0}{ == zrP

1)( =!
+"

"#
dkkfX



CDF and PDF



Estimation of

 Bayes Rule:

 Posterior Probability

 Applying Bayes rule
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Estimation of

 We want to evaluate

 Substituting:
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Estimation of

 Simplification (independence):
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Estimation of

 For all n observations:
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Estimation of the PDF

         Is just the derivative of the CDF
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Algorithm

            Uniform Distribution

While ( not Stopping Condition):
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Stopping Criteria

 The algorithm should terminate if:

 For each round a       goodness of fit test is performed.

 Iteration is stopped when the difference between the
two estimates is too small (lower that a certain
threshold)
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Evaluation

Gaussian Randomizing Function µ=0, σ = 0.25



Evaluation

Uniform Randomizing Function [-0.5,0.5]



How is this different from Kalman
Estimator?

 Both are estimation techniques

 Kalman is stateless

 In Kalman filter case we knew the distribution and
estimation is used to validate whether the trend of the
data matches that distribution

 In Bayesian Inference  the observation data is used to
adjust the prior hypothesis (probability distribution)



Is the Problem Solved?

 Suppose a client randomizes Age records using a
uniform random variable [-50,50]

 If the aggregator receives value 120, with 100%
confidence it knows that actual age is

 Simply randomization does not guarantee absolute
privacy

70!



How to achieve better randomization
scheme

 “Limiting Privacy Breaches in Privacy
Preserving Data Mining” Evfimievski et al

 Define an evaluation metric of how privacy
preserving a scheme is.

 Based on the developed metric, develop a
randomization scheme that abides to this metric



How Privacy preserving is a scheme?

 Information Theoretic Approach:

 Computes the average information disclose in a randomized
attribute by computing the mutual information between the
actual and the randomized attribute

 Privacy breach
 Defines a criteria that should be satisfied for a randomization

scheme to be privacy preserving



What is a privacy breach?

 A privacy breach occurs when the
disclosure of a randomized value     to the
aggregator reveals that a certain property

       of the “individual” input      holds
with high probability
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Privacy Breach

 Back to Bayes’

 Prior Probability   where is
the property

 Posterior probability:
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Amplification
 Is defined in terms of the transitive probability

 where y is a fixed randomized output
value

 Intuitive definition:
 if there are many ’s that can be mapped to y by

the randomizing scheme then disclosing y have gives
little information about

 We say we amplify the probability that
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Amplification factor

Let,
 R a randomization operator

 a randomized value of x.
Revealing R will not cause privacy breach if :
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Summary

 No one solution can fit all.
 Which area looks more promising?
 Can we create robust randomization

schemes to a wide scale of applications
and different distributions of data?

 How to deal with the case of Malicious
participants?


