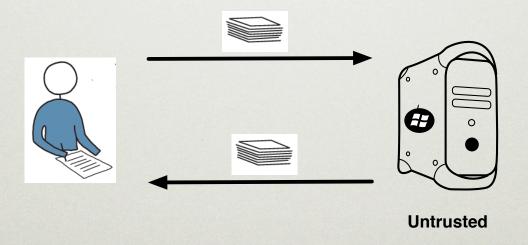
SEARCHABLE ENCRYPTION

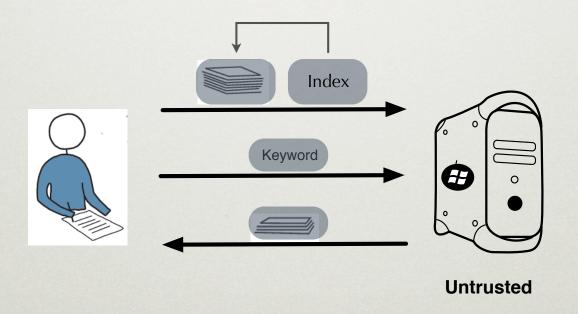
PREPARED FOR 600.624 FEBRUARY 9, 2006

OUTLINE

- Motivation of Searchable Encryption
- Searchable Encryption
- Constructions of Song, Wagner and Perrig
- Discussion
- Related Work
- Conjunctive Keyword Searches


MOTIVATION

- Proliferation of computing from different machines
- Want to store sensitive data remotely
 - e.g., email, audit logs, backups


MOTIVATION (2)

- Data must be encrypted
- Encryption prevents delegated searches
- Naive approach:

SEARCHABLE ENCRYPTION

• Combine an indexing scheme with trapdoors to allow server to search...

SEARCHABLE ENCRYPTION

- Goals:
 - Security
 - Correctness
 - Efficiency

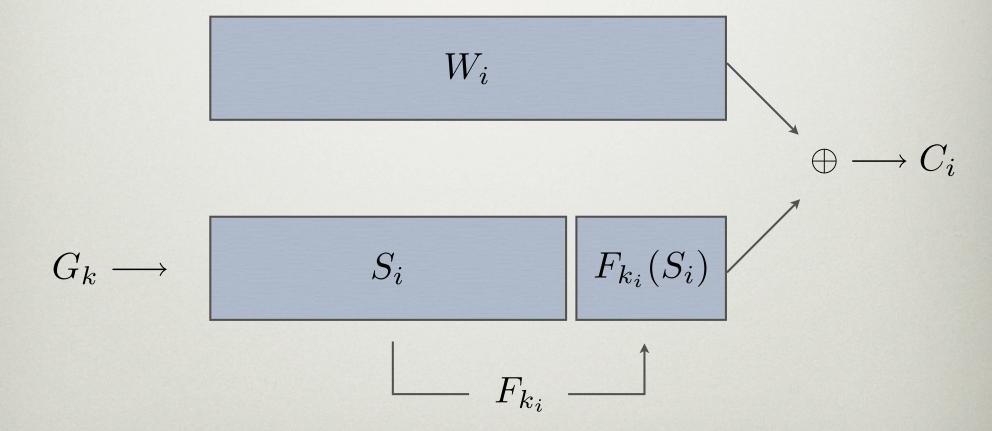
TODAY'S PAPER

- Proposes the idea of Searchable Encryption
- Provides construction
 - basic idea: embed information in the ciphertext

PRELIMINARIES (1)

- \bullet n , m -- block length, system parameter
- $G: \mathcal{K} \to S^l, |S_i| = n m$
 - pseudo-random number generator
- $F: \mathcal{K} \times \{0,1\}^{n-m} \to \{0,1\}^m$
 - pseudo-random function

PRELIMINARIES (2)

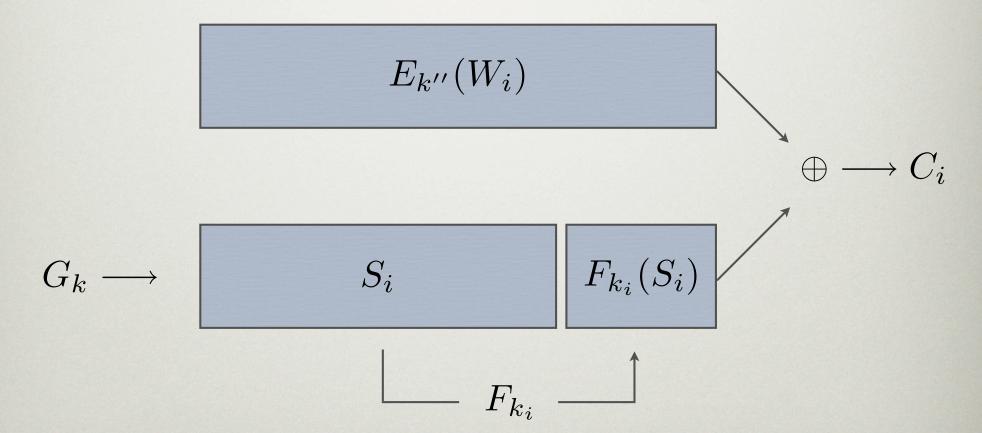

- $f: \mathcal{K} \times \{0,1\}^* \to \mathcal{K}$
 - pseudo-random function
- $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$
 - pseudo-random permutation

INTUITION

- Add structure to cipher-stream
 - Still secure
- Knowledge of word allows server to test for this structure

CONSTRUCTION #1

$$k_i \leftarrow f_{k'}(W_i)$$



LIMITATIONS OF #1

- Reveals the word we are searching
 - Fix this by encrypting the word
 - Must be a deterministic encryption!
- Who needs to decrypt anyway?

CONSTRUCTION #2

$$k_i \leftarrow f_{k'}(E_{k''}(W_i))$$

LIMITATIONS OF #2

- Reveals the word we are searching
- Who needs to decrypt anyway?
 - Problem: cipher-stream is a function of the plaintext---which we don't know!
 - Solution: make it a function of the plaintext that we can actually derive!

CONSTRUCTION #3

$$k_i \leftarrow f_{k'}(L_i)$$
 $E_{k''}(W_i)$
 E_k
 E_k

RECAP

- Achieved secure keyword searches
 - Sequential scan through ciphertext
 - Extract stream structure using PRF and knowledge of the word
 - Protect word using PRP/PRF
- Questions?

EXTENSIONS (1)

- Boolean searches
 - everyone buy this?
- Regular expressions
- Searching for the nth occurrence of a word
 - thwarts statistical attacks?

EXTENSIONS (2)

- Variable-length words
 - what does this do to search time and false-positive rate?
- A Searchable Index
 - Advantages: can limit statistical information
 - Disadvantage: Difficult to update

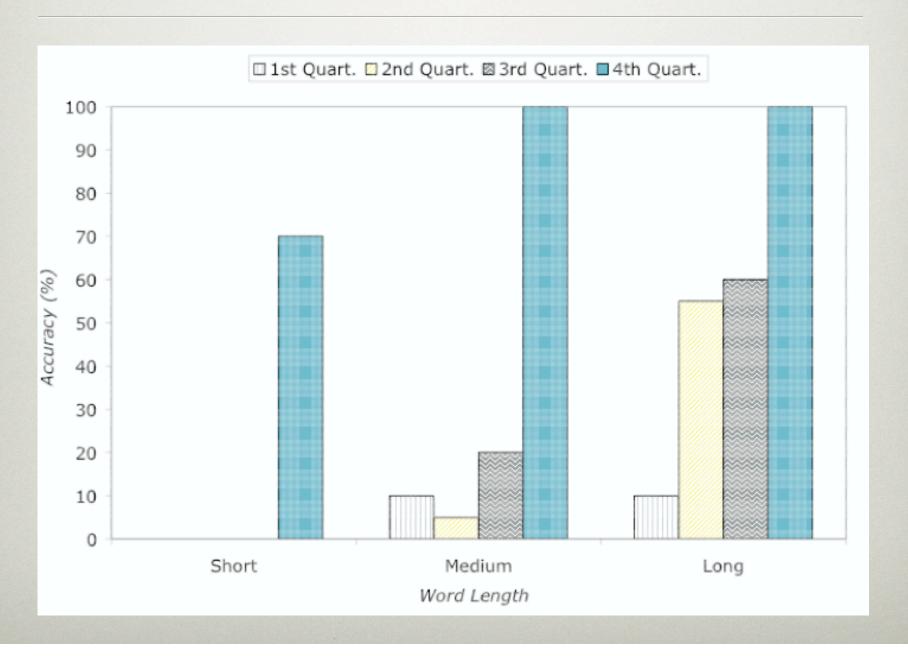
N & M?

- Parameters of the System
- n --- word length
 - e.g., n = 32 "hi there" \Rightarrow [hi--] [_---] [ther] [e---]
 - ullet Ciphertext expansion increases with n
 - ullet Search speed increases with n
- m --- "check" length
 - Number of false matches ($\ell 2^{-m}$) are inversely proportional to m ... is this the only factor?
 - *m* cannot be too small... why?

REALIZING N AND M

- Implemented the system
- Downloaded english text from Project Gutenberg
- Measured performance under different loads
- Showed best tradeoffs results when

$$n = 32$$
 bits, $m = 8$ bits


IMPLICATIONS OF N AND M

- Words are partitioned to have length 4
 - e.g., "Fabian" --> [Fabi] [an--]
- Searching of words spanning k partitions in a document of ℓ partitions has a false positive rate of $(\ell + 1 k)/2^{8k}$

STATISTICAL ATTACKS

- ECB mode encryption!!!
- Assumption: Malicious server has knowledge of plaintext distribution
- Records how many times a given query matches
 - Note: only considered ONE search

STATISTICAL ATTACKS (2)

STATISTICAL ATTACKS (3)

THE PROBLEM?

- Designed a new "encryption algorithm"
 - Revealed patterns in the plaintext
 - Perhaps we should consider alternate constructions

SECURITY?

- Is this construction secure?
- There are proofs...
 - What did they prove?
- More on that tomorrow.

RELATED WORK (SEE REFERENCES)

- Private Information Retrieval [CGKS95]
- Oblivious RAMs [KO97]
- Secure Indexes [G03]
- Keyword Search over Asymmetric Encryption [BdCOP04]
 - w/ applications to audit logs [WBDS04]
- Boolean Keyword Search [GSW04, PKL04, BKM05]

SECURE AUDIT LOG PROPERTIES

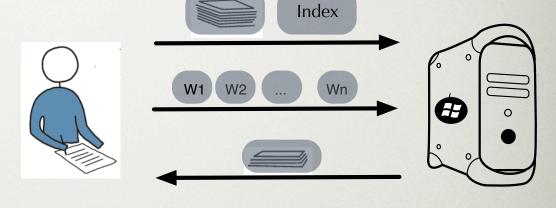
- Tamper Resistant/verifiable
 - May need to offload to other machines
- Private
 - Contents are generally sensitive
- Searchable
 - Perhaps outsourced to an auditor

APPLICATIONS: SECURE AUDIT LOGS

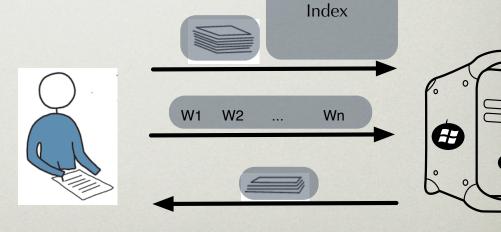
- Associate keywords with each log entry
 - e.g., "Failed login attempt"
- Encryption provides privacy
- Searchable Encryption allows auditors to do their job
- Problem: who encrypts the logs
 - the machine generating them?

IDENTITY-BASED ENCRYPTION

- Asymmetric Encryption
 - public key is a function of a string!!!
- Secret key (corresponding to a string) is created by TTP
 - has a master secret
- Greatly reduces PKI


A NEED FOR ASYMMETRIC SEARCHABLE ENCRYPTION

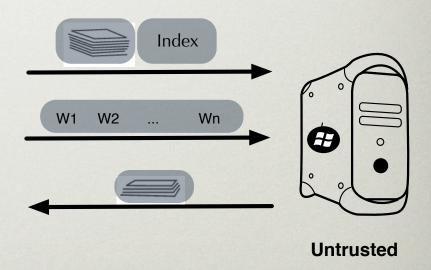
- Log entries encrypted with IBE
 - public key corresponds to keyword
- Escrow Agent knows IBE master secret
 - Can delegate secret-keys corresponding to any keyword to any auditor


BACK TO BOOLEAN SEARCHES

CONJUNCTIVE KEYWORD SEARCHES

Send a trapdoor for each conjunct

Add every keyword combination to the index


Untrusted

Untrusted

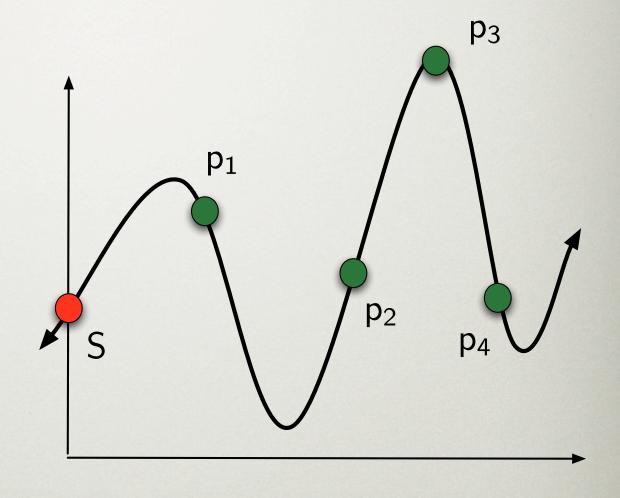
REQUIREMENTS OF SCKS

- Security!
- Reasonable Index Size
- Small trapdoors
- Efficient Index Generation
- Efficient trapdoor generation
- Efficient search

WORK WITH SENY & FABIAN

- Two constructions:
 - SCKS-SS and SCKS-XDH
- Symmetric conjunctive searchable encryption
- Use formal definitions from Goh (2003)
- constructions more efficient than Golle et al. (2004)

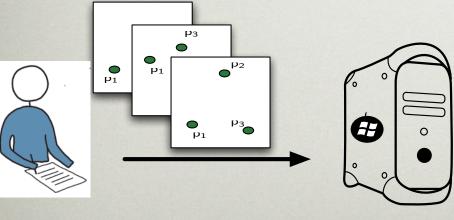
STANDARD ASSUMPTIONS

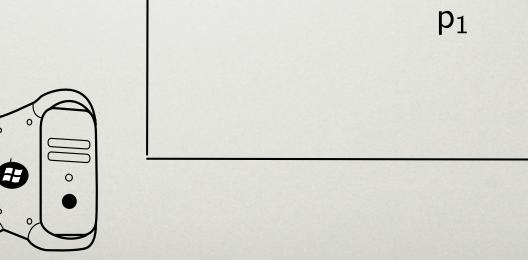

- For efficiency documents are associated with a list of keywords
- Trapdoors specify which elements of the index to search on
- Keywords are distinct
 - add field name such as SUBJECT: or FROM:
- Each document has a fixed number of keywords
 - add NULL keywords to pad

SCKS-SS

- Most computationally-efficient construction known to date
- Based on
 - Shamir Secret Sharing
 - PRFs

SHAMIR SECRET SHARING

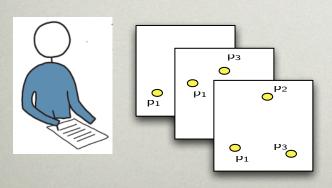

$$\begin{split} S \in \mathbb{Z}_p \\ \mathcal{P} \xleftarrow{R} \mathbb{Z}_p[x], \ deg = k-1 \\ share(S) \rightarrow p_1, \ldots, p_n \\ recover(p_1, \ldots, p_k) \rightarrow S \end{split}$$

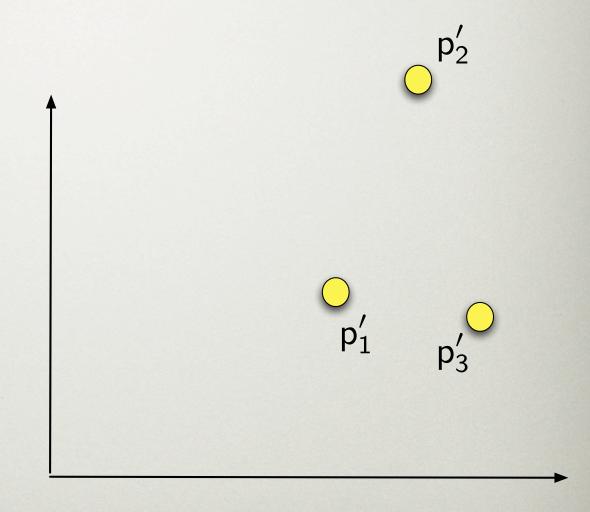

BUILD INDEX

Generate Index (for each document ID)

 $BuildIndex(w_1,w_2,w_3) \rightarrow p_1,p_2,p_3$

Untrusted



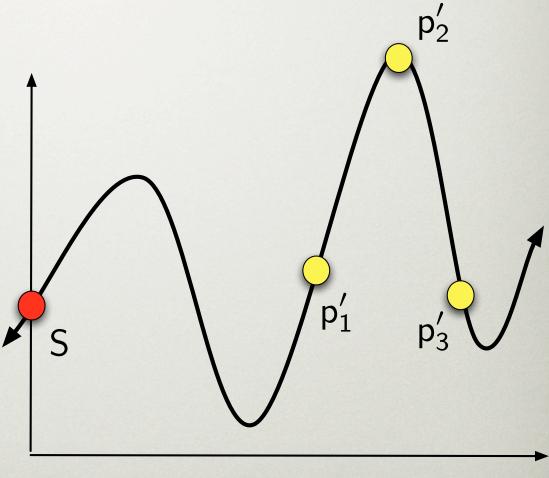

 p_2

TRAPDOOR (1/1)

Generate Trapdoor (for each document ID)

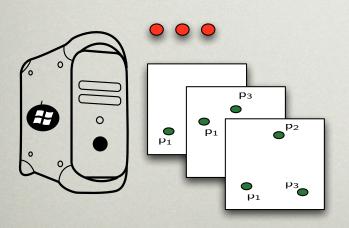
$$w_1' \wedge w_2' \wedge w_3'$$

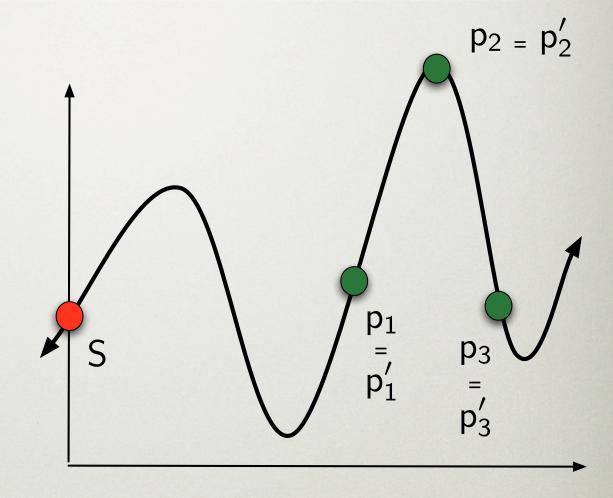
TRAPDOOR (2/2)


Generate Trapdoor (for each document ID)

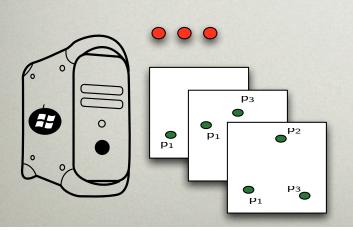
 $w_1' \wedge w_2' \wedge w_3'$

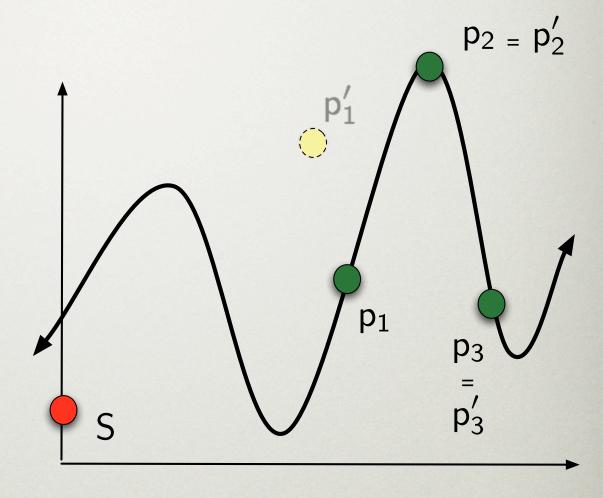
Trapdoor(w'_1, w'_2, w'_3) $\rightarrow S$


Untrusted



SUCCESSFUL SEARCH


Successful search (for each document)



FAILED SEARCH

Failed search

ASYMPTOTIC PERFORMANCE

	Linear Trapdoors		Constant Trapdoors	
	GSW-1	SCKS-SS	GSW-2	SCKS-XDH
Search	2m exp, m hash	m interpolations	m(2n+1) Pairings	2m Pairings

m: number of documents

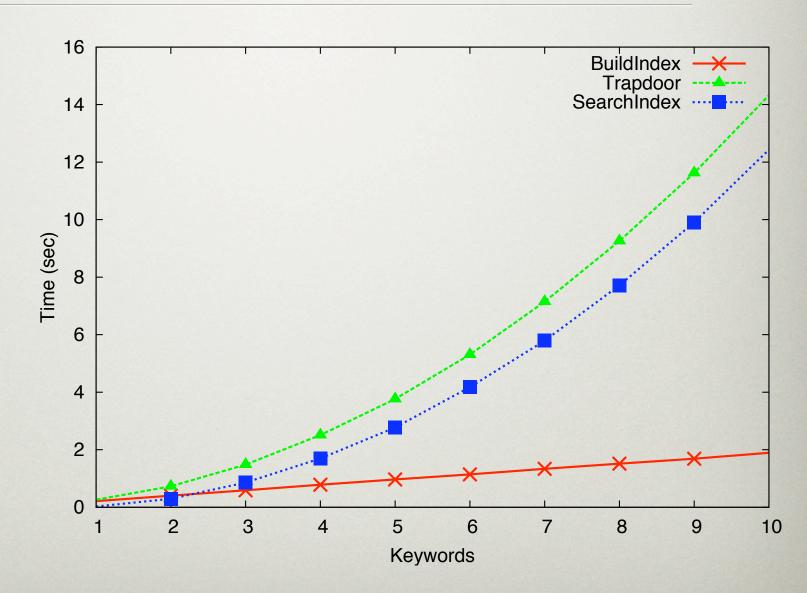
n: number of keywords

EMPIRICAL EVALUATION

- Ran tests on 3.0 GHz P4
- Implemented constructions with C++
 - OpenSSL (PRF)
 - MIRACL (curve operations, mod arithmetic)
- Measured time to process 10,000 documents with ≤ 10 keywords each
 - BuildIndex, Trapdoor, SearchIndex

SCKS-SS

Computation


10 000 documents

Storage

10 Keywords

Index: 3.1 MB

Trap: 156 KB

• Time for SCKS-XDH?

CONCLUSION

- Searchable Encryption
- Excellent Idea, area is gaining momentum
- Lots of interesting problems:
 - Work on adequate security models
 - Boolean Searches
 - Regular Expression Matching

QUESTIONS?

REFERENCES (1)

- M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee, G. Neven, P. Paillier, H. Shi, "Searchable Encryption Revisited: Consistency Properties, Relation to Anonymous IBE, and Extensions," CRYPTO 2005.
- L. Ballard, S. Kamara, F. Monrose, "Achieving Efficient Conjunctive Keyword Searches over Encrypted Data," ICICS 2005.
- D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano, "Public Key Encryption with Keyword Search," EUROCRYPT 2004.
- Y.C. Chang, M. Mitzenmacher, "Privacy Preserving Keyword Searches on Remote Encrypted Data," ACNS 2005.
- B. Chor, O. Goldreich, E. Kushilevitz, M. Sudan, "Private Information Retrieval," FOCS 1995.
- D. Davis, F. Monrose, M. Reiter, "Time Scoped Searching of Encrypted Audit Logs," ICICS 2004.

REFERENCES (2)

- E. Goh, "Secure Indexes", Cryptology ePrint Archive, Report 2003/216, 2003.
- P. Golle, J. Staddon, B. Waters, "Secure Conjunctive Keyword Searches over Encrypted Data," ACNS 2004.
- E. Kusilevitz, R. Ostrovsky, "Replication is not needed: Single Database, Computationally-Private Information Retrieval," FOCS 1997.
- D. Park, K. Kim, P. Lee, "Public Key Encryption with Conjunctive Field Keyword Search," WISA 2004.
- D. Song, D. Wagner, A. Perrig, "Practical Techniques for searches on Encrypted Data," S&P 2000.
- B. Waters, D. Balfanz, G. Durfee, D. Smetters, "Building an Encrypted and Searchable Audit Log," NDSS 2004.