

Scott E. Coull February 23, 2006

Overview

- What is traffic classification?
- Communities of Interest for classification
- BLINC
- Profiling Internet Backbone Traffic
- What is missing here?

Traffic Classification

 Determine application-level behavior from packet-level information

- Why bother?
 - Traffic shaping/QoS
 - Security policy creation
 - Detect new/abusive applications

Levels of Classification

- Payload classification In the clear
 - Becomes a type of text classification
 - Not so interesting, or realistic

- Transport-layer Classification In the fog
 - OTypical 4-tuple (Src. IP, Dst. IP, Src. Port, Dst.Port)
 - Sufficient condition for proving application-layer behavior?

Levels of Classification

- In the Dark Classification
 - Tunneling, NAT, proxying
 - Fully encrypted packets
 - OWhat is left for us?
 - Packet size, inter-arrival times, direction

Communities of Interest

"...a collection of entities that share a common goal or environment." [Aiello et. al. 2005]

- Uses -
 - Finding groups of malicious users in IRC [Camptepe et. al. 2004]
 - Groups of similar web pages [Google's PageRank]
 - Defining security policy?

Enterprise Security: A Community of Interest Based Approach

Aiello et. al. - NDSS '06

- Motivation Move enterprise protection from perimeter to hosts
 - Perimeter defenses weakening

Claims:

- Hosts provide best place to stop malicious behavior
- Past connection history indicates future connections

Communities of Interest for Enterprise Security

General Approach:

- Gather network data and 'clean' it
- Create a profile for each host from past behavior
- Create security policy to 'throttle' connections based on profiles

Communication Profiles

- Protocol, Client IP, Server Port, Server IP
 - Very specific communication between a host and server
 - Ex: (TCP, 123.45.67.8, 80, 123.45.67.89)
- Protocol, Client IP, Server IP
 - General communication profile between a host and server
 - Ex: (TCP, 123.45.67.8, 123.45.67.89)

Communication Profiles

- Protocol, Server IP
 - Global profile of server communication
 - OEx: (TCP, 123.45.67.89)
- Extended COI
 - k-means clustering
 - Specialized profile of most used communication channels
 - OGlobal, server-specific, ephemeral, unclassified ports

Extended COI – An Example

Throttling Disciplines

- n-r-Strict
 - Very strictly enforce profile behavior with strong punishment
 - No outside profile interaction
 - Block all traffic if > n out of profile interactions in r time
- n-r-Relaxed
 - Allow some relaxation of profile behavior, but keep punishment
 - n outside profile interactions allowed in time r
 - Block all traffic if > n out of profile interactions in r time
- n-r-Open
 - Allow some relaxation of profile, but minimize punishment
 - n outside profile interactions allowed in time r
 - Block out of profile traffic if > n out of profile interactions in r time

Experimental Methodology

- Test profiles and 'throttling' against worm
- Not-so-realistic worm
 - Assume all hosts with worm's target port in profile are susceptible
 - Fixed probability of infection during each time period
 - No connection with susceptible population distribution or scanning method
 - No exact description of worm scanning
 - 'Scanning' based on infection probability

Results and Observations

Port	Policy	s(%)	n	PSP	PCSP	PCSPP	Intelligent
135/tcp	strict	1	10	0.768%	0.741%	1.852%	1.852%
135/tcp	strict	5	10	0.872%	0.741%	1.852%	1.852%
135/tcp	strict	5	100	14.044%	0.785%	1.852%	1.852%
135/tcp	strict	10	100	31.048%	0.818%	1.852%	1.852%
135/tcp	strict	25	1000	33.421%	10.126%	1.852%	1.852%
135/tcp	strict	100	1000	33.421%	12.617%	1.852%	1.852%
135/tcp	relaxed	1	10	0.842%	0.793%	2.143%	2.109%
135/tcp	relaxed	5	10	1.383%	1.495%	3.841%	3.738%
135/tcp	relaxed	5	100	98.938%	98.996%	99.280%	99.331%
135/tcp	relaxed	10	100	99.997%	99.995%	100.000%	100.000%
135/tcp	relaxed	25	1000	100.000%	100.000%	100.000%	100.000%
135/tcp	relaxed	100	1000	100.000%	100.000%	100.000%	100.000%
135/tcp	open	1	10	92.060%	61.871%	1.989%	1.972%
135/tcp	open	5	10	95.734%	50.209%	16.907%	10.065%
135/tcp	open	5	10	98.621%	98.886%	99.949%	99.074%
135/tcp	open	10	100	100.000%	100.000%	99.983%	100.000%
135/tcp	open	25	1000	100.000%	100.000%	100.000%	100.000%
135/tcp	open	100	1000	100.000%	100.000%	100.000%	100.000%

How can we subvert this?

- Topological worms
 - Spread using topology information derived from infected machine
 - Local connection behavior appears normal
 - Weaver et. al.
 - A Taxonomy of Computer Worms, WORM '03
- Non-uniform scanning worms
- Traffic tunneling

Blind Classification (BLINC) Karagiannis et. al. – SIGCOMM '05

- Motivation payloads can be encrypted, forcing classification to be done 'in the dark'
 - Use remaining information in flow records

Claim:

Transport-layer info indicates service behavior

'In the Dark'

- No access to payloads
- No assumption of well-known port numbers

- Only information found in flow records can be used
 - Source and Destination IP addresses
 - Packet and byte counts
 - Timestamps
 - TCP flags

Robust 'In the Dark' Definition

- No information that would not be visible over an encrypted link
- Sun et. al.
 - Statistical Identification of Encrypted Web Browsing Traffic, Oakland '02
 - Examine size and number of objects per page
 - Use similarity metric between observed encrypted page requests and 'signatures'
 - Identify roughly 80% of web pages with near 1% false positive rate

Improvements over COI

- "Multi-level traffic classification"
 - Capture historical 'social' interaction among hosts
 - Capture source and destination port usage
- Novel 'graphlet' structure

Social Interaction

- Claim: Bipartite cliques indicate underlying protocol type
 - "Perfect" cliques indicate worm traffic

- Partial overlap indicates p2p, games, web, etc.
- Partial overlap in same "IP neighborhood" indicates server farm

Functional Interaction

- Claim: Source ports indicate host behavior
 - Client behavior indicated by many source ports
 - Server behavior indicated by a single source port
 - Collaborative behavior not easily defined
 - Some protocols don't follow this model
 - Multi-modal behavior

Graphlets

- Application level Combine functional and social level into a 'graphlet'
 - Example:

Heuristics

- Claim: Application layer behavior is differentiated by several heuristics
 - Transport layer protocol
 - Cardinality of destination IPs vs. Ports
 - Average packet size per flow
 - Community
 - Recursive detection

Thresholds

- Several thresholds to tune classification specificity
 - Minimum number of destination IPs before classification
 - Relative cardinality of destination IPs vs. Ports
 - Distinct packet sizes
 - Payload vs. nonpayload flows

Experimental Methodology

- Compare BLINC to payload classification
 - Compare completeness and accuracy
 - Ad hoc payload classification method
 - Non-payload data is never classified
 - ICMP, scans, etc...

Experimental Methodology

- Payload classification
 - Manually derive 'signature' payloads from observed flows, documentation, or RFCs
 - Classify flows based on 'signature' and create (IP, Port) mapping table to associate pair with application
 - Use this pair to classify packets with no 'signature' in the payload
 - Remove remaining 'unknown' mappings
- Similar to classification performed by: Zhang, Y.
 Z., and Paxson, V.
 - Detecting Backdoors, USENIX Sec. '00

Evaluation

- Collected from Genome Lab and University
- Collected several months apart to ensure variety
- Important questions are ignored
 - How long was the data collected for?
 - Which parts, if any, were used to create the 'graphlets'?
 - How were accuracy and completeness measured?

Results - Per Flow

 BLINC classifies almost as many flows as payload classification

Results - Per GByte

 Significant difference in size of the flows classified by payload versus BLINC

Completeness and Accuracy

- Extremely high accuracy
- Large disparity in completeness for GN

Protocol-Family Results

Web and Mail classification appear to be highly inconsistent

Recap of BLINC

- Determine social connectivity
- Determine port usage
- Create 'graphlet'
- Add some additional heuristics
- Test against data that was classified with payload in ad hoc fashion

Unanswered Questions

- How are 'graphlets' created?
- What are the effects of their heuristics and how are they used?
- What kind of 'tunability' can we achieve from the thresholds?
- Why do they do so well with so little information?

Graphlet Creation

In developing the graphlets, we used all possible means available: public documents, empirical observations, trial and error.

Is this practical?

Graphlet Creation

 Note that while some of the graphlets display port numbers, the classification and the formation of graphlets do not associate in any way a specific port number with an application

- Implication:
 - No one-to-one mapping of port numbers to applications

Graphlet Usage

- Significant similarity in graphlet structure
- Reliance on port numbers for differentiation
- Heuristics and thresholds also play a significant role

Application of Heuristics

- Heuristics recap:
 - Transport protocol, cardinality, packet size, community, recursive detection
- Transport protocol can be added to the 'graphlet'
- Cardinality and size in the thresholds
- Recursive detection and community
 - Not discussed in the paper

Application of Thresholds

- Threshold recap:
 - Distinct destinations, relative cardinality, distinct packet sizes, payload vs. non-payload packets
- Only distinct destination is ever discussed
 - Are two settings really enough to generalize the behavior?

System Tunability

Claim: Increasing the number of distinct IPs required will increase accuracy and decrease completeness

Why do they do so well?

- Top applications:
 - Web
 - OP2P
 - Non-payload
- 77.6% of flows at GN
- 82.2% at UN1
- 74.2% at UN2
- BLINC only classifies approximately 75-80%
 GN flows

Why do they do so well?

- Non-payload flows are never classified by the payload classifier
- Large proportion
 of non-payload
 flows explains
 size difference

Subverting BLINC

- Mimicry attack
 - Replicate connectivity
 - Replicate port number
 - Replicate destination port behavior
 - Be aware of thresholds
- Traffic tunneling
- NAT devices

Profiling Internet Backbone Traffic Xu et. al. – SIGCOMM '05

- Motivation Profile backbone traffic to automatically find significant behavior
 - Interpret behavior to identify classes of traffic
 - Allow for easy summary to network ops

Information Theory Refresher

- Entropy
 - Measure of uncertainty in empirical data

$$H(X) := -\sum_{x_i \in X} p(x_i) \log(p(x_i))$$

- Relative Uncertainty
 - Measures uniformity of empirical data regardless of sample (m) or support size (N_x)

$$RU(X) := \frac{H(X)}{\log(\min\{N_x, m\})}$$

Information Theory Refresher

- Conditional Relative Uncertainty
 - RU conditioned on a specific set
 - The sample size (m) equals the cardinality of the set (A)

$$RU(X \mid A) := \frac{H(X)}{\log(|A|)}$$

 Values near 1 indicate uniform distribution of values in set A

Connection to Classification

- Utilize the standard 4-tuple
 - (Src. IP, Dst. IP, Src. Port, Dst. Port)
 - Each dimension (e.g. Src. IP) in the tuple is analyzed individually to determine significant values
 - Set of all observed values in the dimension is the set A
 - e.g. A is the set of all source IPs seen in the data

Entropy-based Cluster Extraction

- Gather the most significant values from each dimension of the 4-tuple based on Conditional Relative Uncertainty
 - We will call these the 'fixed' dimensions from here on

Algorithm 1 Entropy-based Significant Cluster Extraction

```
1: Parameters: \alpha := \alpha_0; \beta := 0.9; S := \emptyset;
 2: Initialization: S := \emptyset; R := A; k := 0;
 3: compute prob. dist. \mathcal{P}_R and its RU \theta := RU(\mathcal{P}_R);
 4: while \theta \leq \beta do
      \alpha = \alpha \times 2^{-k}; k + +;
 5:
 6:
      for each a_i \in R do
           if \mathcal{P}_A(a_i) \geq \alpha then
              S := S \cup \{a_i\}; R := R - \{a_i\};
 9:
           end if
10:
        end for
11:
        compute (cond.) prob. dist. \mathcal{P}_R and \theta := RU(\mathcal{P}_R);
12: end while
```

Entropy-based Cluster Extraction

- For each fixed dimension of the tuple
 - Partition the remaining 3-tuple dimensions based on RU
 - e.g. With fixed dimension of Src. IP, partition the Dst. IP, Src. Port, and Dst. Port dimensions individually

$$L(ru) = \begin{cases} 0(low), & \text{if } 0 \le ru \le \epsilon, \\ 1(medium), & \text{if } \epsilon < ru < 1 - \epsilon, \\ 2(high), & \text{if } 1 - \epsilon \le ru \le 1, \end{cases}$$

Behavioral Classes

- 27 classes based on the RU category of each of the dimensions in the remaining 3-tuple
 - e.g. With fixed dimension Src. IP, [0,2,2] indicates
 stable Src. Ports, but highly variable Dst. IPs and Ports

 Specific instantiations of the behavioral class that occur often

Step 1:

 For each 3-tuple within the class, order the dimensions by their RU

- Step 2:
 - O Compute marginal probability of the lowest RU dimension and select all values greater than the threshold, δ
 - e.g. Src. Port is lowest RU dimension and
 a ∈ SrcPort

$$p(a) := \sum_{b \in \textit{DstIP}} \sum_{c \in \textit{DstPort}} p(a, b, c) \ge \delta$$

- Step 3:
 - Compute conditional marginal probability for each of the values of the next lowest dimension
 - e.g. Given a particular Src. Port value,
 calculate the probability of the Dst. IP values

$$\sum_{p(b_j \mid a_i) := \frac{c \in DstPort}{p(a_i)} \ge \delta$$

Step 4:

- Compute conditional marginal probability for each of the values of the highest RU dimension
- e.g. Given a particular Src. Port and Dst. IP value, calculate the probability of the Dst. Port values

Example Behavioral Classes

BC_6	$srcPrt(\cdot) \rightarrow dstIP(\cdot \cdot \cdot \cdot) \rightarrow dstPrt(*)$	server replying
[0, 2, 0]		to a few hosts
	$srcPrt(25) \rightarrow dstIP(\cdots) \rightarrow dstPrt(*)$	25: Email
	$\operatorname{srcPrt}(53) \rightarrow \operatorname{dstIP}(\cdots) \rightarrow \operatorname{dstPrt}(*)$	53: DNS
	$srcPrt(80) \rightarrow dstIP(\cdots) \rightarrow dstPrt(*)$	80: Web
	$srcPrt(443) \rightarrow dstIP(\cdots) \rightarrow dstPrt(*)$	443: https
BC_7	$srcPrt(\cdot) \rightarrow dstIP(\cdot \cdot \cdot \cdot) \rightarrow dstPrt(*)$	server replying
[0, 2, 1]		to many hosts
	$srcPrt(25) \rightarrow dstIP \rightarrow dstPrt(*)$	25: Email
	$srcPrt(80) \rightarrow dstIP \rightarrow dstPrt(*)$	80: Web
BC_8	$srcPrt(.) \rightarrow (dstPrt(*), dstIP(*))$	server replying to
[0, 2, 2]		large # of hosts
	$srcPrt(80) \rightarrow (dstPrt(*), dstIP(*))$	80: Web

 Variability in the Dst. IP dimension allows for classification of server load

 Information theoretic application of 'thresholds' discussed in BLINC

Discover significant traffic patterns without manual intervention

- Multiple 'views' on the patterns
 - Fix the source port dimension
 - Uncertainty in source IP can indicate global ports
 - Fix the destination IP dimension
 - Uncertainty in source IP and port indicate the 'activity' of the client

- Insight based on behavioral change
 - If a server moves from BC8 to BC6, it could indicate DoS
 - Appearance in certain behavioral classes indicate worm infection

BC_6	$\operatorname{srcPrt}(\cdot) \rightarrow \operatorname{dstIP}(\cdot \cdot \cdot) \rightarrow \operatorname{dstPrt}(*)$	server replying
[0, 2, 0]		to a few hosts
	$\operatorname{srcPrt}(25) \rightarrow \operatorname{dstIP}(\cdots) \rightarrow \operatorname{dstPrt}(*)$	25: Email
	$\operatorname{srcPrt}(53) \rightarrow \operatorname{dstIP}(\cdots) \rightarrow \operatorname{dstPrt}(*)$	53: DNS
	$srcPrt(80) \rightarrow dstIP(\cdots) \rightarrow dstPrt(*)$	80: Web
	$srcPrt(443) \rightarrow dstIP(\cdots) \rightarrow dstPrt(*)$	443: https
BC_7	$srcPrt(\cdot) \rightarrow dstIP(\cdot \cdot \cdot \cdot) \rightarrow dstPrt(*)$	server replying
[0, 2, 1]		to many hosts
	$srcPrt(25) \rightarrow dstIP \rightarrow dstPrt(*)$	25: Email
	$srcPrt(80) \rightarrow dstIP \rightarrow dstPrt(*)$	80: Web
BC_8	$srcPrt(.) \rightarrow (dstPrt(*), dstIP(*))$	server replying to
[0, 2, 2]		large # of hosts
	$srcPrt(80) \rightarrow (dstPrt(*), dstIP(*))$	80: Web

- Canonical clusters
 - Servers have low uncertainty in source port
 - Scan/exploits have low uncertainty in dest.
 port
 - Heavy hitters have low uncertainty in the dest. port

What is missing from these schemes?

- Transport-layer is easy to fool
 - Most characteristics are under user control
- Transport-layer characteristics are not a sufficient condition for proving the presence of a particular service/protocol

What is missing from these schemes?

- Attacks become difficult when additional information is added
 - COI General profile of communication behavior
 - BLINC Application-specific profile of communication behavior
 - Profiling Backbone Traffic Robust profiles of significant behavior
 - Flow-specific profiles based on underlying protocol artifacts

Challenges

- Single encrypted tunnel (IPSec)
 - Multiple hosts
 - Multiple protocols
 - What protocols are running in the tunnel?
 - OHow many connections in the tunnel?
- Single transport-layer profile no matter what protocols are running, or how many hosts are present

Open Questions

- Can classification occur in the tunnel?
- Does the tunnel assumption make it easier for attackers to fool the classification?
- Can we stop the mimicry attack completely?

References

- Aiello, W., Kalmanek, C., McDaniel, P., Sen, S., Spatscheck, O., and Van der Merwe, J. *Analysis of Communities of Interest in Data Networks*. In Proceedings of 6th Annual Workshop on Passive and Active Network Monitoring, Boston, MA. March 31 April 1, 2005. pp. 83-97.
- Campete, S. A., Krishnamoorthy, M., and Yener, B. A Tool for Internet Chatroom Surveillance. In Proceedings of the 2nd Symposium on Intelligence and Security Informatics. June 2004. pp. 252-265.
- McDaniel, P., Sen, S., Spatscheck, O., Van der Merwe, J., Aiello, W., and Kalmanek, C. Enterprise Security: A Community of Interest Based Approach. In Proceedings of the 13th Annual Network and Distributed System Security Conference. February 2006.
- Karagiannis, T., Papagiannaki, K., and Faloutsos, M. BLINC: Multilevel Traffic Classification in the Dark. In Proceedings of 2005 ACM SIGCOMM. August, 2005.

References

- Sun, Q., Simon, D. R., Yi-Min, W., Russell, W., Padmanabhan, V. N., and Qiu, L. Statistical Identification of Encrypted Web Browsing Traffic. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, Oakland, CA. May, 2002.
- Weaver, N., Paxson, V., Staniford, S., and Cunningham, R. A
 Taxonomy of Computer Worms. In Proceedings of the 2003 ACM
 Workshop on Rapid Malcode, Washington, DC. October, 2003. pp.
 11-18.
- Xu, K. Zhang, Z., and Bhattacharyya, S. Profiling Internet Backbone Traffic: Behavior Models and Applications. In Proceedings of 2005 ACM SIGCOMM. August, 2005.
- Zhang, Y., and Paxson, V. Detecting Backdoors. In Proceedings of the 9th Annual USENIX Security Symposium, Denver, CO. August 2000.

Scott E. Coull February 24, 2006

Graphlet Creation

 Note that while some of the graphlets display port numbers, the classification and the formation of graphlets do not associate in any way a specific port number with an application

- Implication:
 - No one-to-one mapping of port numbers to applications

Graphlet Usage

- Significant similarity in graphlet structure
- Reliance on port numbers for differentiation
- Heuristics and thresholds also play a significant role

Application of Heuristics

- Heuristics recap:
 - Transport protocol, cardinality, packet size, community, recursive detection
- Transport protocol can be added to the 'graphlet'
- Cardinality and size in the thresholds
- Recursive detection and community
 - Not discussed in the paper

A Question of 'Cliques'

• What is this figure showing us?

A Question of 'Cliques'

- Column Clusters are indexed destination IPs
- Row Clusters are indexed source IPs
- Binary matrix representing interaction between Column Index and Row Index

A Question of 'Cliques'

Defining Traffic Behavior

CO

- Simplistic profiles that blindly capture behavior straight from log data
- k-means clustering algorithm which uses frequency to determine significant behaviors

BLINC

- Manually derived 'graphlets' to capture behaviors
- Profiling Internet Backbone Traffic
 - Entropy-based clustering for general behavioral classes
 - Dynamic State Analysis for significant behavior within those classes

Information Theory Refresher

- Entropy
 - Measure of uncertainty in empirical data
- Relative Uncertainty
 - Measures uniformity of empirical data regardless of sample or support size
 - Values near 1 indicate uniform distribution

- Find the so-called 'heavy hitters' for a dimension of the 4-tuple
 - Example: Find Src. IPs that occur frequently within the set of all Src. IPs seen

- While the distribution of values in the set of Src. IPs is skewed there are particular Src. IPs which occur very frequently
 - i.e. while the Relative Uncertainty is low

- Take the values from the Src. IP set that occur most frequently
 - i.e. take the Src. IP values which have a probability greater than some threshold

- Continue taking the most frequent in the Src. IP set until the remaining Src. IP values are nearly uniformly distributed
 - i.e. continue taking values until the relative uncertainty of the remaining values is near 1

 After this iteration is complete, we have a set of tuples that contain 'heavy hitter' Src. IPs

Behavioral Classes

- 3 "Free" dimensions for each 4-tuple taken in the Entropy-based Clustering
 - e.g. when we cluster on Src. IP, we have Dst. IP, Dst. Port, and Src. Port "free"

 27 behavioral classes based on the relative uncertainty of each "free" dimension

Dominant States

- 4-tuples from Entropy-based Clustering lie within these 27 classes
- Probable values of the 3 "free" dimensions within these classes are used as the most significant states
 - i.e. if we see a particular Src. Port occurring often, then this is a dominant state

Wrap Up

- Entropy-based Clustering gets us the most significant tuples based on a particular dimension
 - e.g. we get the tuples that have Src. IPs that have very low entropy
- Behavioral classes denote a specific type of behavior for the dimension that was clustered
- Dominant states denote specific, significant instances of behavior within a class