Searches Through Encrypted
Data

presenter: Reza Curtmola

Advanced Topics in Network Security (600/650.624)

Introduction

e Searching usually done over plaintext

e But what if we could search encrypted
data?

™ il i i Iﬂ‘

Bloom Filters

» Efficient method to encode set membership
 The set: n elements (n Is large)
e The Bloom filter: array of m bits (m is small)

e I independent hash functions:
h:{0,1}" - [1,m]; i O [1,r]

Bloom Filters - example

h,(‘water’)=2 h,(‘sky’)=1
h,(‘water’)=5 h,(‘sky’)=5
h;(‘water’)=9 h,(‘sky’)=7

1|1 1 1 1

1 2 3 4 5 6 7 8 9 10

To minimize false

h,(‘air)=2 positive rate, need to
h,(‘air')=5 false positive! choose
hy(‘air)=7 r=1In2xm

FP=(3)

Bloom Filters

* Properties:
— History independent
— Once added, elements can’t be removed

 Examples of usage:

password schemes, IP traceback schemes, intrusion
detection, SED

Encrypted Bloom Filter

e Restrict ability to compute the hash functions by
using a secret

h,(w,ky) T(W,ky)
ny(W,ky) T(W,ks)

W) k)

Bloom Filters used for SED

 Model 1:
— Parties want to share data selectively

e Model 2:

— User stores encrypted data on untrusted
storage

Privacy-Enhanced Searches

* Bellovin, Cheswick, “Privacy-enhanced
Searches Using Encrypted Bloom Filters”

 Two parties want to share data selectively
 The parties don’t trust each other

Alice
(querier)

Bob

(information
provider)

Properties

 Alice should be able to retrieve only
documents matching valid queries

 Bob should not find contents of queries

Bob

* No third party should gain knowledge about
gueries or documents

The Basic Scheme

e Three-party negotiation between Alice, Bob
and Ted to provision Ted with the
transformation keys

 Bob prepares his DB as a collection of
encrypted Bloom filters

\
e
3. transformed query

Group Ciphers

 The set of all keys k forms an Abelian
group under the operation composition of
encryption

By (Ep,(W)) = Eg, ok, (W)
 Ted knows r4 p = kpo /ﬁl

* Given Ej, (W), Ted can compute
ETA,B(E/CA(W)) — ETA’BO/{A(W) — EkB(W)

Group Ciphers as Hash Functions

* Pohlig-Hellman encryption
PH.(X) = X* mod p

 Decryptusingd , suchthatkd =1 mod (p—1)

e Since p > 1024 bits, use output of
encryption as hash function

 Bob computes encrypted Bloom filters:

— For each document D

e For eachword W in D

— Compute PHj, (W) and use chunks of [log,m | of it as
hash functions to insert into Bloom filter for document D

Group Ciphers as Hash Functions

PH, (W) > 1024 bits
/\

~ N
h1 h, . hr
|092(m) |ng(m) |092(m)

Bloom Filter for document D

The Basic Scheme - revisited

TA,B

PHy, (W)

kA document handle kB

Bob uses PHy (W)
to query the Bloom filter
of each document in the DB

PHy , (W)

Model #2

e Eu-Jin Goh, “Secure Indexes”

User submits data

User retrieves data

adve rsary

query

i’f

user wants to preserve her privacy:
leak as little information as possible

Previous work

e [Song,Wagner,Perrig - 2000]
— Query isolation
— Controlled searching
— Hidden queries

« Additional property:
— Hide data access pattern

Private indexes

e |Index Is an additional structure that allows
the remote server to perform searches
efficiently

e Computed over unencrypted documents
e Private index should preserve user’s privacy

Secure Indexes

e |ndexes associated with each document
e Security model: IND-CKA

(a secure index does not reveal anything
about the a document’s content)

e Security game:

given two encrypted documents of equal
size, and an index, decide which document
IS encoded In the index

Secure Indexes

e An index Is a Bloom filter, with pseudorandom
functions used as hash functions

e A collection of 4 algorithms:
— Keygen(s)
— Trapdoor(K,;,,w)
— BuildIndex(D,K)
— Searchindex(T,,,Ip)
e Keygen generates:

— pseudo-random function f
— master key K_..,=(Ky,...,k,)

priv_

Buildindex

» For each word w in document D;,.
— Phase 1: compute trapdoor for w:

Tw = (CC]_ — f(wv kl)a ceey Ly — f(w7 kr))

— Phase 2: compute codeword for w:
w=(y1 = f(DidaiUl)a ey Yr = f(DidaZU'r))

— Insert codeword into document’s Bloom filter

Secure Index usage

Buildindex
(D’ Kpriv)

-

‘water’

v

trapdoor: x,= f(‘water’, k,)

|

codeword: y,= f(Diy, X;)

l

Bloom Filter

Searchindex
(trapdoor,

Index)

Achieving IND-CKA

e But, not enough to achieve IND-CKA:

— Adversary can win game easily

e Solution:
— U = upper bound on the number of words in D,y
— v = number of distinct words in D
— Insert into index (u-v) random words

e But:

— u Is computed relative to the encrypted document

— requires encryption of documents before building the
iIndex

Observations

* IND-CKA security requires “hidden queries”
property, although not stated specifically

* IND-CKAZ2 security

— stronger: indexes for documents with different
number of keywords cannot be distinguished

— more Inefficient to obtain: need to use a global
upper bound of number of words for all
documents

Occurrence Search

» Allows questions like:
“does ‘word’ appear at least n times?”

e Treat occurrences of same word as
different words when building the index:

Tw — (CC]_ — f(zsz)kl)? vy Ly — f(Z’LHwak?“))

where z; IS the number of times ‘word’
occurred so far in the document

Boolean queries

 Perform “AND” and c gueries

e Only as secure as performing individual
gueries for each term

e Can be done In a single pass:
— ‘water’ AND ‘sky’
— combine codewords for ‘water’ and ‘sky’
— search the index

Implementation

« HMAC-SHA1 as PRFs

e FP =21 _ =10 (PR functions)
(since FP= ()")

e Claim: search 15,151 indexes / sec on PIII
866 Mhz

1+1#2

e Largest document
— 876.6 Kbytes (plaintext or encrypted?)
— contains 72,982 words (distinct or not?)
—Index Is 774.3 Kbytes (difference encoded?)

 Choose BF parameters:
m =nr/In?2

Conclusions

e Computational complexity
O(N)

e Communicational complexity
1 round

e Drawbacks:
— Bloom filters result in false positives
— Updating procedure lacks security analysis

— Security model not satisfactory for boolean
searches

— Unclear experimental evaluation

