
Searches Through Encrypted
Data

presenter: Reza Curtmola

Advanced Topics in Network Security (600/650.624)

Introduction

• Searching usually done over plaintext

• But what if we could search encrypted
data?

Bloom Filters
• Efficient method to encode set membership

• The set: n elements (n is large)

• The Bloom filter: array of m bits (m is small)

• r independent hash functions:
hi:{0,1}* → [1,m]; i ∈ [1,r]

Bloom Filters - example
h1(‘water’)=2
h2(‘water’)=5
h3(‘water’)=9

h1(‘sky’)=1
h2(‘sky’)=5
h3(‘sky’)=7

1 11 1 1

h1(‘air’)=2
h2(‘air’)=5 false positive!
h3(‘air’)=7

1 2 3 4 5 6 7 8 9 10

To minimize false
positive rate, need to

choose

Bloom Filters
• Properties:

– History independent
– Once added, elements can’t be removed

• Examples of usage:
password schemes, IP traceback schemes, intrusion
detection, SED

Encrypted Bloom Filter
• Restrict ability to compute the hash functions by

using a secret

h1(w,k1)
h2(w,k2)
…
hr(w,kr)

f(w,k1)
f(w,k2)
…
f(w,kr)

Bloom Filters used for SED
• Model 1:

– Parties want to share data selectively
• Model 2:

– User stores encrypted data on untrusted
storage

Privacy-Enhanced Searches
• Bellovin, Cheswick, “Privacy-enhanced

Searches Using Encrypted Bloom Filters”
• Two parties want to share data selectively
• The parties don’t trust each other

Alice
(querier)

Bob
(information

provider)
DB

Properties
• Alice should be able to retrieve only

documents matching valid queries
• Bob should not find contents of queries

• No third party should gain knowledge about
queries or documents

Alice

Ted (TTP)

Bob

The Basic Scheme
• Three-party negotiation between Alice, Bob

and Ted to provision Ted with the
transformation keys

• Bob prepares his DB as a collection of
encrypted Bloom filters

Alice

Ted

Bob

1. query

2. tra
nsformed query

3. transformed query

Group Ciphers
• The set of all keys k forms an Abelian

group under the operation composition of
encryption

• Ted knows

• Given , Ted can compute

• Bob computes encrypted Bloom filters:
– For each document D

• For each word W in D
– Compute and use chunks of log2m of it as

hash functions to insert into Bloom filter for document D

Group Ciphers as Hash Functions
• Pohlig-Hellman encryption

• Decrypt using , such that
• Since p > 1024 bits, use output of

encryption as hash function

Group Ciphers as Hash Functions

…

PHK(w) > 1024 bits

log2(m) log2(m)

h1 h2 hr

log2(m)

Bloom Filter for document D

The Basic Scheme - revisited

Bob uses
to query the Bloom filter
of each document in the DB

Alice

Ted

Bob
document handle

Model #2
• Eu-Jin Goh, “Secure Indexes”

User submits data

User retrieves data

query

user wants to preserve her privacy:
leak as little information as possible

honest-but-curious
adversary

Previous work
• [Song,Wagner,Perrig - 2000]

– Query isolation
– Controlled searching
– Hidden queries

• Additional property:
– Hide data access pattern

Private indexes
• Index is an additional structure that allows

the remote server to perform searches
efficiently

• Computed over unencrypted documents
• Private index should preserve user’s privacy

Secure Indexes
• Indexes associated with each document
• Security model: IND-CKA

(a secure index does not reveal anything
about the a document’s content)

• Security game:
given two encrypted documents of equal
size, and an index, decide which document
is encoded in the index

Secure Indexes
• An index is a Bloom filter, with pseudorandom

functions used as hash functions
• A collection of 4 algorithms:

– Keygen(s)
– Trapdoor(Kpriv,w)
– BuildIndex(D,Kpriv)
– SearchIndex(Tw,ID)

• Keygen generates:
– pseudo-random function f
– master key Kpriv=(k1,…,kr)

BuildIndex
• For each word w in document Did:

– Phase 1: compute trapdoor for w:

– Phase 2: compute codeword for w:

– insert codeword into document’s Bloom filter

Secure Index usage
‘water’

trapdoor: x1= f(‘water’, k1)

codeword: y1= f(Did, x1)

Bloom Filter

BuildIndex

(D, Kpriv)

SearchIndex

(trapdoor,

Index)

Achieving IND-CKA
• But, not enough to achieve IND-CKA:

– Adversary can win game easily

• Solution:
– u = upper bound on the number of words in Did

– v = number of distinct words in Did

– insert into index (u-v) random words

• But:
– u is computed relative to the encrypted document
– requires encryption of documents before building the

index

Observations
• IND-CKA security requires “hidden queries”

property, although not stated specifically

• IND-CKA2 security
– stronger: indexes for documents with different

number of keywords cannot be distinguished
– more inefficient to obtain: need to use a global

upper bound of number of words for all
documents

Occurrence Search
• Allows questions like:

“does ‘word’ appear at least n times?”
• Treat occurrences of same word as

different words when building the index:

where is the number of times ‘word’
occurred so far in the document

Boolean queries

• Perform “AND” and “OR” queries

• Only as secure as performing individual
queries for each term

• Can be done in a single pass:
– ‘water’ AND ‘sky’
– combine codewords for ‘water’ and ‘sky’
– search the index

Implementation
• HMAC-SHA1 as PRFs

• FP = 2-10 → r = 10 (PR functions)
(since)

• Claim: search 15,151 indexes / sec on PIII
866 Mhz

1 + 1 ≠ 2
• Largest document

– 876.6 Kbytes (plaintext or encrypted?)
– contains 72,982 words (distinct or not?)
– index is 774.3 Kbytes (difference encoded?)

• Choose BF parameters:

Conclusions
• Computational complexity

O(N)
• Communicational complexity

1 round
• Drawbacks:

– Bloom filters result in false positives
– Updating procedure lacks security analysis
– Security model not satisfactory for boolean

searches
– Unclear experimental evaluation

