
Space-Efficient Block
Storage Integrity

Alina Oprea, Michael Reiter, and Ke Yang
NDSS ‘05

Presented by
Lucas Ballard and Josh Mason

Outline

• Description of the problem

• Related Work

• Background Material

• Proposed Schemes / Performance

The Problem

• Untrusted Network Area Storage/ Storage
Area Network

• Want to secure your data

• Confidentiality

• Integrity

• Efficiency

Goal

• To efficiently provide confidentiality and
integrity within the constraints of a SAN.

• This requires length-preserving operations

Security Model

• Confidentiality

• Integrity

• The server returns a block that was never
written to a specific location

• The server returns an older version of a
block

Efficiency

• Minimize Storage Overhead

• block accesses

• Client v. Server

• No Computationally-expensive algorithms

Related Work

Related Work

• NAS/SAN

• TCFS

• Sirius

NAS

• Network Attached Storage

• Employs file I/O (fetch entire files,
referenced by file names)

• Easy to implement/manage

!"#$%&'()*)+#%&',+-.#+/.#0

! "#$%&%'((')*+*, -&.//!&%'23'245+'6

1)/2.#3)4'5/.#+6)'50*/)7*8'195:';<5:'591

195
=1)/2.#3>+//+%&)4'5/.#+6)?

@)/

1A5:'BCA5

=DBEFCE?

@)/

G*

&-+

$@.4)

-H3

G*

+II

591
=5/.#+6)>+#)+'1)/2.#3?

-H3

AB:'$5B5C

@)/

-H3

&-+@)/

$@.4)

G*

+II

;-J)%/'5/.#+6)
=;<5:'I#.I.*)4'/.'51C9'?

$@.4)

@)/

;<5'E#./.%.H'

@)/

$@.4)

-H3

&-+

G*

+II

SANs

• Storage Area Networks

• Employ block I/O (fetch a block at a
time)

• Much faster, can be more bandwidth
efficient

• Efficiency determined by number of
block accesses

!"#$%&'()*)+#%&',+-.#+/.#0

! "#$%&%'((')*+*, -&.//!&%'23'245+'6

1)/2.#3)4'5/.#+6)'50*/)7*8'195:';<5:'591

195
=1)/2.#3>+//+%&)4'5/.#+6)?

@)/

1A5:'BCA5

=DBEFCE?

@)/

G*

&-+

$@.4)

-H3

G*

+II

591
=5/.#+6)>+#)+'1)/2.#3?

-H3

AB:'$5B5C

@)/

-H3

&-+@)/

$@.4)

G*

+II

;-J)%/'5/.#+6)
=;<5:'I#.I.*)4'/.'51C9'?

$@.4)

@)/

;<5'E#./.%.H'

@)/

$@.4)

-H3

&-+

G*

+II

TCFS Model

• By Cattaneo, et. al. Usenix 2001.

• Distributed filesystem

• Server deals only with encrypted
data

• User trusts his client machine, not
the server housing data

TCFS Keys

• Each user has a master key

• For each file, a file key is randomly
chosen

• For each block, a block key is
formed.

• Hash of file-key and block number

TCFS (cont)

Header (Version number, cipher id,

encrypted file key, etc)

Block of data (Encrypted under new

block-key for each block)

Authentication Tag (Hash block data

concatenated with block key)

Block of data

Authentication Tag

....

EOF

TCFS - Achieved Security
Goals

• Files cannot be read without file-key
or user master key

• Cannot tell two cipher texts decrypt
to the same plain text

• Cannot tell if two cipher blocks are
the same plain text block

• Cannot reorder blocks

• Cannot modify blocks

Is TCFS Applicable?

• Requires accessing the block itself as
well as the authentication tag

• Also requires accessing the header

Sirius Model

• Goh, et al. NDSS 2003.

• Data on an untrusted network file
server

• Multi-user

• Provides access control

Sirius Keys

• FEK - File encryption key

• FSK - File signature key

• MEK - master encryption key

• MSK - master signature key

• User public/private keys

MD-File

Encrypted

Key Block

(Owner)

Encrypted

Key Block

(User 1)

File

Signature

Public Key

(FSK)

Timestamp Filename
Owner's

Signature

Encrypted Block Explained

Username (Plain text)

File Encryption Key

(Encrypted with public

key for username)

File Signature Key

(Encrypted)

Encrypted File

Encrypted File Data
Signature (Hash)

signed with FSK

mdf-file

Is Sirius Applicable?

• This scheme requires accessing a file
and verifying the signature

• Our model does not allow extra
block accesses

Back to Current Model

• Other Models achieve security, what about
efficiency?

• Efficiency Mandates:

• Space preserving encryption

• Cannot Chain blocks (CBC)

• Cannot store MACs remotely

• No Signatures

Space Preserving E()

Pi Pi+1 Pi+kLocal View:

Ci
Server View:

Two remote block access for
each local block access!

Much slower

Chaining E()

Pi Pi+1 Pi+kLocal View:

Server View:

Cannot chain to ensure diversity!

Ci Ci+1 Ci+k

f()

MACs

Pi Pi+1 Pi+kLocal View:

Server View:

Cannot store MACs remotely

Ci Ci+1 Ci+k
M(Ci)

...

How to do things in place?

• Start with Encryption

• Return to integrity

In-place Encryption

• Block cipher with block length dividing disk
block size

• Must be secure --- random

• Tweakable Block Ciphers

• Liskov, Rivest, Wagner (Crypto ‘02)

• Formalizes the concept

Tweakable Encryption

• Goal: provide another input to the BLOCK
CIPHER to guarantee random encryption

• NOT a Mode of Operation

• Security of block cipher shouldn’t depend
on usage

Tweakable Encryption

• Formally:

• Note: Not a mode of operation

• Security of scheme is not based on
secrecy of the tweak

E : K × T ×M → M = E
T

K(M) = C

D
T

K(C) = M ↔ E
T

K(M) = C

K = {0, 1}k

M = {0, 1}m

T = {0, 1}t

Not a new idea

• IVs are a form of tweak

• Hasty Pudding Cipher (R. Schroeppel)

• Mercy Cipher (L. Granboulan et. al.)

• OCB (Rogaway et. al.)

Bad Constructions

E
T1,T2

K (M) = EK(M ⊕ T1) ⊕ T2

Similar to DESX:

T1 and M are linked

Ma: 01101100 Mb: 00101100

Ta: 00111101 Tb: 01111101

Bad Constructions (2)

E
T

K(M) = EK⊕T (M)

Due to scheduling algorithms,
Some block ciphers don’t use all key bits
(e.g., Loki and Lucifer --- Bihim, 1994)

Key: 01010011

T1: 11110010

T2: 10110010

Provably-Secure
Constructions

• Encrypting twice:

E
T

K(M) = EK(T ⊕ EK(M))

Properties of Hashes

Given h(x) find x

Given x find x
′
s.t. h(x) = h(x′)

Find x, x′
s.t. h(x) = h(x′)

Preimage Resistance

Second Preimage Resistance

Collision Resistance

Provably-Secure
Constructions (2)

• Involving special hash function

E
T

K(M) = EK(M ⊕ h(T)) ⊕ h(T)

Problematic in practice?
(SHA1 v. AES, MD5 v. AES-256)

h : T → M

Construction used in Paper

• “A Tweakable Enciphering Mode”

• Halevi and Rogaway, Crypto ‘03

• Present CMC[E] (CBC-Mask-CBC)

• Changes block cipher (e.g., AES) to a
tweakable block cipher

• CMC[E]’s block size > E’s block size

CMC[E]

E
T
K,K2

(P1 . . . Pm) :

T ← EK2
(T)

P ← CBC[E](K, T, P1 . . . Pm)

M ← 2(P1 ⊕ Pm)

C
′
← INV⊕(P, M)

C ← CBC[E](K, 0|T|, C′)
C1 ← C1 ⊕ T

return C

P1 P2 P3 P4 P5 P6

P1 P2 P3 P4 P5 P6

M

C'1C'2C'3C'4C'5C'6

C1C2C3C4C5C6

CBC

CBC

Invert / ⊕

CMC[E] (2)

• Decryption: invert E, same algorithm

• Notes:

• 2m+1 calls to E

• Provably secure (reduces to security of E
as a PRP)

How to do things in place?
(2)

• MACs

• Offload to client (now hashes)

• Reduces remote block-accesses

• How can we do this efficiently?

Generic Secure Storage
System

Generic Storage Scheme

• INIT

• generates keys

• E (K, bid, m)

• outputs ciphertext

• D(K, bid, c)

• outputs plaintext

Generic Storage Scheme (2)

• WRITE (K, bid, M)

• send C, bid to server

• READ (K, bid, C)

• receive M from server

• VER(M, bid)

• Verifies that M is valid

D
bid
K (C) = M

E
bid
K (M) = C

Three schemes

• Naive (S1) -- Motivational Example

• Efficient (S2) -- Efficient, lacking in security

• Hybrid (S3) -- Less efficient, secure

S1
• WRITE

• Send to server

• store bid, SHA1(M)

• READ

• Receive from server

• VER

• check SHA1(M) with stored version

E
bid
K (M) = C

D
bid
K (C) = M

S1 (2)

• Security: server cannot insert data

• Would break second-preimage resistance

• Efficiency: store 22-24 bytes per block!

• 2% extra on 1024 byte block

• (SHA1 per verification)

• Can we do better?

S2

• Selectively store hashes of plaintext

• Which ones?

• Relation between CMC[E] and PRPs

• if C is modified, or decrypted with wrong
tweak, will have random
output (high entropy)

D
bid
K (C) = M

Sidenote on Entropy

• Informally:

• Measure of uncertainty

• bits of information in a string

• theoretical lower bound on compression

• ciphertext has high entropy

Entropy (2)

• Formally if X ∼ p(x)

H(X) =
∑

x∈X

−p(x) log p(x)

Entropy (3)

• Examples (range is a 2 bit space)

• Example: 1,4,2,1,1,3,2,1 (realization of X)

H(X) =
1

2
log 2 +

1

8
log 8 +

1

4
log 4 +

1

8
log 8 =

7

4

Entropy (4)

• Example: 1,4,2,3,1,3,2,4 (realization of X)

•

•

• Example: 1,1,1,1,1,1,1,1 (realization of X)

H(X) =
1

4
log 4 +

1

4
log 4 +

1

4
log 4 +

1

4
log 4 = 2

H(X) = 1 log 1 = 0

Back to S2

• When to store hash of data?

• Need to differentiate between tampered
ciphertexts and legitimate random data

• Only store hashes for random data

• How to determine... IsRand(M)

• Compares H(M) to a threshold (τ)

IsRand

• Two versions: based on range of X

• 4 bit range and 8 bit range

• Partition blocks into chunks, compute H()

• Compare to τ

Computing threshold

• Determine τ:

• Compute entropy of Random 1K blocks

• 8 bit: 7.73-7.86 bits τ = 7.73

• 4 bit: 2.55-2.64 bits τ = 2.55

S2 Modifications

• Write:

• compare IsRand(M) to τ (store hash)

• proceed as before

• Ver:

• compute IsRand(M) (check hash)

Experiments

Experimental Setup

• Collected 1 month of disk traces

• One user, normal load

• 200 MB disk

• 1K blocks (some tests varied this)

S2 Performance

S2 Performance

S2 Security

• Server cannot trick (with high probability) a
client into accepting a block that has not
been written.

• What about replays?

False Negative Rate

• Pr. that a block that is modified decrypts to a
sequence with H < τ (and is therefore
accepted)

• for 1024 byte block

• 4 bit test: false neg. of ~ 2^{-90} (hash?)

• 8 bit test: false neg. of ~ >>2^{-90}

S2 Security

I owe
Josh $2

I owe
Josh $1

I owe
Josh $2

I owe
Josh $1

Server

I owe
Josh $2

I owe
Josh $1

Give bid

I owe
Josh $2
I owe

Josh $2

How can we fix it?

• Only a problem if we write to a block twice

• Fortunately, block access follow Zipf dist.

• i.e., few blocks accessed frequently

• many blocks accessed once

Zipf distribution

P (X = x) = x−a, a ≈ 1

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20

B
lo

c
k
 A

c
c
e
s
s
e
s

of Blocks

a = 0.8

a = 1.0

a = 1.2

Changes
• Associate tweaks with # of writes

• Store a flag for each block

• On write, mark the flag

• On second write, increment a counter (c)

• Change E(), D():

• Recall Construction with Tweaks

D
bid||c
K

(C)E
bid||c
K

(M)

Storage Comparison

S1 S2 S3

16.263 MB 0.022 MB 0.351 MB

Do these numbers seem to add up? (no)

813,124 distinct blocks, 113,785 written only once

Conclusion

• Model: untrusted SAN

• Provide confidentiality/integrity within
limited model

• Does so efficiently

• Provides Theoretical AND Analytical results

Neat Tricks

• Exploit Entropy of bad decryptions

• Exploit File Access Patterns

References

• E. Biham, “New types of Cryptanalytic Attacks using Related Keys,”
Journal of Cryptology, Fall 1994.

• G. Cattaneo, L. Catuogno, A. Del Sorbo, P. Presiano, “The Design and
Implementation of a Transparent Cryptographic File System for UNIX,”
USENIX 2001.

• E. Goh, H. Shacham, N. Modadugu, D. Boneh, “SiRiUS: Securing
Remote Untrusted Storage,” NDSS 2003.

References (2)

• S. Halevi, P. Rogaway, “A Tweakable Enciphering Mode,” Crypto 2003.

• A. Oprea, M. K. Reiter, K. Yang, “Space-Efficient Block Storage Integrity,”
NDSS 2005.

• M. Liskov, R. L. Rivest, D. Wagner, “Tweakable Block Ciphers,” Crypto
2002.

