
New Client Puzzle
Outsourcing Techniques for
DoS Resistance

 Paper by Waters, Juels, Halderman, and
Felten

 Presenter: Michael Peck

2

 Need for client puzzles
 Basic idea of client puzzles
 Related ideas
 Juels/Brainard paper
 Waters et al. Client Puzzle

Outsourcing paper

Outline

3

 Fight DoS/DDoS attacks
– SYN floods and other connection

depletion attacks
– Attackers consume all server

resources, leaving none for legit
clients

 Fight spam

Need for client puzzles

SYN floods
Client Server

SYN

SYN

SYN

SYN

Backlog queue

5

 Two sample tokens:
– 1:20:050323:mpeck@jhu.edu::sa0D5ybM1AMVmoJ6:000

07EOW
– 1:20:050323:mpeck@jhu.edu::nyRy2TzXOSGMVRlR:000

00twV
 Verification:

– echo -n
"1:20:050323:mpeck@jhu.edu::sa0D5ybM1AMVmoJ6:00007EOW" |
openssl sha1
000003ec0cda9b5f640cdd1caaf6081bad65dfa0

– echo -n "1:20:050323:mpeck@jhu.edu::nyRy2TzXOSGMVRlR:00000twV"
| openssl sha1
000008f39f027ce00891554f2620c7563245c672

Hashcash (Adam Back)
Ver # bits Date Resource Ext Rand Counter

6

 Force client to commit resources (CPU
or memory) before the server commits
resources on the client’s behalf
– Workstations have more power than they

really need, might as well use some of it.
– Makes client put in some effort of its own

Basic idea

7

 “Postage” - client sticks on some kind
of proof that it paid a nickel or other
small amount - proposed for e-mail.

 CAPTCHAs - client proves that there’s
a human on its end actively
participating
– Widely used - especially for registering for

free e-mail accounts (Gmail, Yahoo!,
Hotmail, etc.)

Alternative strategies

8

 SYN cookies
– Don’t keep any state on the server until

the connection is established.
– Minor eavesdropping weaknesses

Alternative strategies

Src
Addr

Dst
Addr

Src
Port

Dst
Port

Time Secret
SHA1()

Client Server
SYN

SYN/ACK with sequence number set as shown below

ACK sends back the sequence number

9

 Attacker can’t modify packets between
clients and servers

 Attacker can’t significantly delay
packets

 Attacker can’t saturate server,
network, or any port

 Attacker can perform IP spoofing
 Can attacker eavesdrop?

– Juels paper and Waters paper disagree

Attack Model

10

 Stateless on server until client
provides valid solution

 Server can verify solution quickly
 Client takes time to compute solution

– But not too much or too little
– Hard to account for varying CPU speeds

Properties of good client
puzzles

11

 Server hands out puzzles to clients when
under attack.

 Puzzle made up of n independent
subpuzzles each of difficulty k to solve

Juels/Brainard Paper (NDSS ‘99)

Server secret s and other metadata
hash

x<1...k> bits x<k...L> (revealed)

hash

y (revealed to client)

12

 complexity for client to solve
puzzle
– m = number of subpuzzles
– k = # of bits of x not revealed to client

Juels/Brainard Paper

Juels/Brainard Paper

 Improvement suggested to make
subpuzzles dependent, for quicker
verification on server.

14

 Wang, Reiter - 2003
– Client decides puzzle difficulty (bids)
– Server allocates resources first to client

who solved most difficult puzzles
 Somewhat backwards-compatible
 More on this tomorrow

Puzzle auctions

15

 Existing schemes themselves can be
subject to DoS attack
– Puzzle creation/verification requires hash

computations in Juels/Brainard scheme
 Existing solutions require on-line

computation by clients - wastes users’
time
– On-line computation doesn’t hurt attackers as

much since they’re not interactive users

Shortcomings

16

 Outsource puzzle creation and
distribution to a bastion
– Same puzzles can be used by clients for

multiple, unrelated servers
• Bastion can be mirrored
• Servers don’t have to worry about creating

puzzles
• Servers & bastion need to stay in sync

Waters et al.

17

 Outsource puzzle creation to bastion
– Servers can all share the same puzzles

 Solution verification only requires a
table lookup

 Clients can solve puzzles slightly
ahead of time

 Solving puzzle only gives client
access to a small slice of the
server’s resources (virtual channels)

Approach

18

 Each puzzle solution is only valid for
a specific channel - but, the solution
can be used for ANY server

 Server limits how many connections
are accepted per channel

 Channels designed to separate
attackers & regular users

Virtual channels

19

Virtual channels
1

Solution
1

2
Solution

2

3
Solution

3

4
Solution

4

...

N
Solution

N

Client ServerSYN with Puzzle Solution attached

SYN/ACK

ACK

Channels

20

 Unique puzzle solutions (needed for
lookup)

 Per-channel puzzle distribution
 Per-channel puzzle solution
 Random-beacon property
 Identity-based key distribution
 Forward secrecy
 But, make sure a server can’t

compute another server’s solution

Puzzle construction goals

21

 Doesn’t meet the per-channel puzzle
distribution property

 So, use Diffie-Hellman based
scheme for constructing puzzles
– Bastion creates puzzles, distributes to

clients & servers
– Servers adapt puzzles to themselves

(compute puzzle solution using
backdoor)

Hash function inversion won’t work

22

 Each server has a D-H secret key
x1 and a D-H public key gx1
– Public keys distributed to clients

 Bastion selects a random integer rc,T

DH based construction

23

 Bastion uses first random number as
a range for seed to generate a
second number a

 Second D-H secret key set to f’(a).
– gf’(a) (f’ is a one-way function)

 Bastion publishes gf’(a) and r

DH Construction

24

srand (r +/- L)
r =

9112 a = 12121 f’(a) gf’(a)

DH Example

Bastion publishes range for the seed, and a D-H
public key

25

 Server precomputes each puzzle
solution by doing one modular
exponentiation.
– But, has to do this once for each channel

 Stores solutions in a table for quick
lookup

 Cost: (calculated with BouncyCastle)
– Modular exponentation (768 bit): 10ms
– SHA-1 hash computation (448 bit): 0.4 ms

Steps taken by server

26

 Client brute-forces the seed
1.Guess a candidate a’
2.Apply one-way function to a’
3.Compute gf’(a’)

4.If matches published value, save, and
combine with server’s public key as
needed

 Requires an average of L/2
modular exponentiations

Steps taken by client

27

 Could use identity-based public keys
– Server’s public key derived from a string

representing the server & public
parameters.

 Trusted dealer gives servers their
private keys

 Not used for prototype
implementation due to inefficiencies

Server public key distribution

28

 Proposed by Rivest, Shamir, Wagner
(1996)

 Achieves random-beacon property
– Puzzles can be based on stock index quote or

some other widely distributed value
 May not achieve per-channel puzzle

solution property
– Client has to compute a solution for each

individual server that it wants to access

Time-lock puzzles

29

 Each server has n virtual channels
– n is fixed for all servers using bastion

 Each solution to a channel is valid
for time period t (several minutes).

System description

30

System description

 Ti denotes the ith time period.
 At beginning of Ti, bastion publishes

puzzles whose solutions will be valid
during Ti+1.
– Each server computes all puzzle solutions

for all channels and stores in table for easy
lookup to have ready by Ti+1

– Each client solves puzzles for randomly
chosen channels to have ready by Ti+1

31

 More channels are better
– Decreases chance that a legitimate client is using

same channel as an attacker
 Server’s memory & CPU power limit the

number of channels
 Unlike other client puzzle schemes, this

scheme directly benefits from technological
advances
– Hopefully advances benefit server more than

attacker

How many channels?

32

 Client puts token into an option
field of TCP SYN packet

 Server uses token to put client in a
channel

 Each channel only accepts a new
connection every n seconds.

 Bastion:
– Creates/distributes new puzzles at

regular interval via HTTP

Prototype Implementation

33

 Server: Two applications
– User space: Retrieve new puzzles from

bastion & precompute solutions using
D-H private key

– Kernel space: Filter incoming SYN
packets, rate limit virtual channels

Prototype Implementation

34

 Compared implementation to
simulated conventional hash puzzles
and Linux syncookies
– Simulated conventional hash puzzles:

• Server computes a SHA-1 hash in place of
puzzle verification, then drops packet

– Juels/Brainard use MD4, does this matter?

 10,000 virtual channels
– Approximately 100 seconds needed for

server to precompute solutions

Experiment

35

Performance

36

Experiment limitations

 We’ll cover these tomorrow

37

 Flexible number of channels per
server
– Servers have varying needs / processing

capabilities
– Secondary puzzles

• Solutions to secondary puzzles encrypted
with solutions of primary puzzles

Extensions

38

Extensions

 Deploy at IP level instead of TCP level
– Implement in routers
– “Biggest challenge” - where to put the token in IP packet?

 Fight eavesdropping attacks (even though out of
scope of the attack model)
– Problem: Eavesdroppers can steal channels from

legitimate clients by replaying tokens
– Proposed solution: Create an IPSec tunnel?

39

Summary

 Client puzzle creation/distribution can
be outsourced, to prevent DoS attacks
on the client puzzle scheme itself

 Client puzzle verification can be done
with a simple table lookup, once again
to prevent DoS attacks on the client
puzzle scheme itself

