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Abstract

We present new methods to provide block-level in-
tegrity in encrypted storage systems, i.e., so that a client
will detect the modification of data blocks by an un-
trusted storage server. We present cryptographic defini-
tions for this setting, and develop solutions that change
neither the block size nor the number of sectors ac-
cessed, an important consideration for modern storage
systems. In order to achieve this, a trusted client com-
ponent maintains state with which it can authenticate
blocks returned by the storage server, and we explore
techniques for minimizing the size of this state. We
demonstrate a scheme that provably implements basic
block integrity (informally, that any block accepted was
previously written), that exhibits a tradeoff between the
level of security and the additional client’s storage over-
head, and that in empirical evaluations requires an av-
erage of only 0.01 bytes per 1024-byte block. We extend
this to a scheme that implements integrity resistant to re-
play attacks (informally, that any block accepted was the
last block written to that address) using only 1.82 bytes
per block, on average, in our one-month long empirical
tests.

1. Introduction

Modern network attached storage (NAS) and storage
area network (SAN) architectures provide remote block-
level data storage services for clients, essentially pro-
viding the same interface as a local disk would to the
client file system. Particularly in the case of a SAN,
this service is often owned and managed by an organiza-
tion other than the client’s, and it may additionally store
other client organizations’ data using the same physi-
cal resources. In such an environment, it is prudent for
each client to treat the storage service as untrusted, and
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to take measures before transmitting blocks to the stor-
age service to protect the privacy and integrity of these
blocks.

For this purpose, two years ago the IEEE Security In
Storage Working Group (SISW) [15] announced a call
for algorithms for block level encryption. Among the
requirements was that the new encryption algorithm be
length preserving, so that block boundaries do not shift
or need to be adjusted as a result of encryption. This
call led to the design of length-preserving encryption al-
gorithms (e.g., [13, 14]) that are now being considered
for standardization.

In this paper, we address the storage integrity problem
in this context. Due to the length-preserving require-
ments for cryptographic operations on blocks, it is not
possible to add information to each block (e.g., a MAC)
in order to detect its modification, a fact explicitly noted
in the SISW requirements. Moreover, due to the perfor-
mance demands of I/O intensive applications, it would
be undesirable to put these MACs in separate blocks also
stored at the service, which would require the retrieval
of two blocks (one of data, one of MACs) on the critical
path of client read operations. Therefore, here we con-
sider a strategy in which a trusted client component—
presumably the same one that holds keys for encrypting
blocks before their transmission to the storage service,
and for decrypting blocks upon their retrieval—holds
this integrity information. Among our primary goals is
to minimize the size of this integrity information, since
for a client with large storage needs, retaining, e.g., a
MAC per block would itself require significant storage
and resulting overheads.

In this context, we present new, storage-efficient con-
structions for two definitions of storage integrity. One of
the definitions, based on a similar definition for authen-
ticated encryption [4], formally expresses the notion that
if the client returns a blockB in response to a read re-
quest for addressa, then the client previously wroteB
to a. The second definition is stronger by providing de-
fense against “replay attacks”; informally, it expresses
the notion that if the client returns a blockB in response
to a read request for addressa, thenB is the content
most recently written to addressa.

Our constructions are novel in exploiting the fact that
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distributions of block contents and of block access pat-
terns are not random in practice, and by doing so they
minimize the storage required at the client. We confirm
through a month-long empirical evaluation in a Linux
environment that we accomplish this goal. For exam-
ple, our scheme satisfying our weaker notion of integrity
achieves client storage overhead of less than 0.01 bytes
per block on average (compared to 16-20 bytes per block
for the scheme in which a hash or MAC is stored for
each block), assuming a block size of 1024 bytes. Our
scheme defending against replay attacks is more expen-
sive in terms of storage, but still cheaper than hashing
each block: it requires 1.82 bytes per block on average
for 1024-byte blocks.

The rest of the paper is structured as follows. We dis-
cuss related work in authenticated encryption and stor-
age security in Section 2. We review necessary defini-
tions in Section 3. We define our system model in Sec-
tion 4. Our new integrity definitions are given in Sec-
tion 5 and our constructions are described and evaluated
in Sections 6 and 7, respectively.

2. Related Work

Encryption algorithms for secure storage have re-
ceived much attention in recent years, leading to the de-
velopment oftweakableblock ciphers [21]. In addition
to a key and a plaintext, a tweakable block cipher has
as input atweak, for variability. In the secure storage
model, a tweak might be the address of a disk block or
the block identifier. This notion has been extended to
that of tweakable enciphering schemes [13] that oper-
ate on larger plaintexts (e.g., 512 or 1024 bytes), and a
new CMC encryption mode, about twice as expensive
as CBC, has been designed for this purpose. Recently,
a parallelizable tweakable enciphering scheme was pro-
posed with similar serial efficiency as CMC [14]. These
schemes, being length-preserving, provide good solu-
tions to disk block encryption and are currently being
considered for standardization by the storage commu-
nity.

Adopting one of these tweakable encryption schemes
for confidentiality, our goal is to augment it to provide
efficient integrity for the storage scenario. Therefore,
there are two main orthogonal fields related to our work:
authenticated encryption and storage security.

Authenticated encryption (e.g., [4, 17, 19]) is a prim-
itive that provides privacy and message authenticity at
the same time. That is, in addition to providing some
notion of encryption scheme privacy (e.g., [2]), authen-
ticated encryption ensures either integrity of plaintexts
or integrity of ciphertexts. The traditional approach
for constructing authenticated encryption is by generic
composition, i.e., the combination of a secure encryp-

tion scheme and an unforgeable message authentication
code (MAC). However, Bellare and Namprempre [4] an-
alyze the security of the composition and provide proofs
that some of the widely believed secure compositions
are actually insecure. Krawczyk [19] proves that the
generic composition method used in the Secure Socket
Layer (SSL) protocol is insecure, but the particular stan-
dard implementation is secure with respect to both pri-
vacy and integrity. The authenticated encryption in SSH
is also insecure, as demonstrated by Bellare et al. [3].
There, a new definition for integrity is given, that pro-
tects against replay and out-of-order delivery attacks;
Kohno et al. [18] also supply such definitions. While
we also define integrity against replay attacks, our def-
initions are particularly tailored to the storage scenario,
and are thus different from the network case.

A different approach to obtain integrity is to add re-
dundancy to plaintexts. Bellare and Rogaway [5] and
Ann and Bellare [1] give necessary and sufficient condi-
tions for the redundancy code such that the composition
of the encryption scheme and the redundancy code pro-
vide integrity. Our constructions exploit a similar prin-
ciple in a different way, leveraging the redundancy in-
herent in typical disk writes to achieve integrity rather
than adding redundancy to do so (which is not permitted
in the storage case).

In the area of storage system security, to our knowl-
edge all systems that verify the authenticity of re-
trieved blocks store block data integrity information on
the server, in contrast to the scenario we study here.
For example, TCFS [8], ECFS [6] (both extensions of
CFS [7]), NASD [11] and SNAD [23] each store a hash
or a keyed hash for each block, which increases either
the size of each block or the number of blocks that
must be written per write operation. Cepheus [9] and
SUNDR [20] keep for each file the root of a Merkle
hash tree with leaves the hashes of the corresponding
data blocks. Sirius [12] stores a digital signature for
each file. In such systems, there is a tradeoff between
the amount of server-side storage of integrity informa-
tion and the access time to read and write files: e.g., if
the root of a Merkle hash tree is the only information
stored at the server, then each read and write involves
O(log n) block accesses, withn the number of blocks
in the file. Similarly, Sirius retrieves all blocks in a file
in order to check the file’s digital signature (and hence
the authenticity of any block). In our schemes, we take a
different approach, in which we do not increase server-
side storage or block accesses, and strive to minimize
client-side storage to the extent possible.

Riedel et al. [25] provide a framework to evaluate ex-
isting storage systems from both the security and perfor-
mance perspective. We refer the reader to this paper for



an extensive comparison of the security properties of the
storage systems considered.

3. Preliminaries

3.1. Tweakable Enciphering Schemes

In this section, we review the definitions and secu-
rity notions for tweakable enciphering schemes [13].
An enciphering scheme is a strong, length-preserving
pseudorandom permutation. A tweakable enciphering
scheme is a function of a tweak and has the property
that for a fixed tweak, it is an enciphering scheme. More
formally, a tweakable enciphering scheme is a func-
tion E : K × T × M → M, whereK is the key
space,T is the tweak set,M is the plaintext space
(strings of lengthl bits), and for everyK ∈ K, T ∈ T ,
E(K, T, ·) = ET

K(·) is a length preserving permutation.
The inverse of the enciphering schemeE is the encipher-
ing schemeD : K×T ×M→M, whereX = DT

K(Y )
if and only if ET

K(X) = Y .
We definePerm(M) the set of all permutationsπ :

M → M andPermT (M) the set of all functionsπ :
T × M → M such thatπ(t) ∈ Perm(M) for any
t ∈ T . For a functionπ : T × M → M, we define
π−1 : T ×M → M such thatπ−1(T, y) = x if and
only if π(T, x) = y.
Definition 3.1 LetE : K × T ×M →M be a tweak-
able enciphering scheme andA an adversary.A has
access to oraclesEK(·, ·) andDK(·, ·) that take as in-
put a tweak and a plaintext, and a tweak and a cipher-
text, respectively. The PRP-advantage of adversaryA is
defined as:

Advprp
E (A) = Pr[K R←K : AEK ,DK = 1]

− Pr[π R← PermT (M) : Aπ,π−1
= 1]

In the rest of the paper, we denote byAdvprp
E (q1, q2)

the maximum over all polynomial time adversariesA,
that makeq1 queries toEK andq2 queries toDK , of
Advprp

E (A). We omit other resources, such as time, from
the advantages. The definition of PRP-security is a nat-
ural extension of the strong pseudorandom permutation
definition from [24].

3.2. Second Preimage Resistant Hash Functions

Let h : M → {0, 1}s be an unkeyed hash function.
Intuitively, second preimage resistantance requires that
given a messagem ∈ M, it is hard to find a collision,
i.e.,m′ 6= m such thath(m′) = h(m). More formally:
Definition 3.2 For an adversary algorithmA, we define
the advantage ofA in breaking the second preimage re-
sistance of hash functionh as:

Advspr
h (A) = Pr[m R←M, m′ ← A(m) :

(m 6= m′) ∧ h(m′) = h(m)]

Advspr
h denotes the maximum advantageAdvspr

h (A)
for all polynomial-time adversariesA.

4. System Model

We consider a limited storage client that keeps its
data on an untrusted storage device, denoted by “storage
server”. The data is partitioned into fixed-length sectors
or blocks. The client can perform two basic operations:
read a block from a physical address (orblock identifier)
and write a block to a certain address on the server.

In our model, the server can behave maliciously,
by mounting attacks against the confidentiality and in-
tegrity of the client’s data. We assume that the server
is available, i.e., it responds to client’s read and write
queries. However, no guarantees are given about the cor-
rectness of its replies.

For data confidentiality, we assume that blocks are
encrypted by clients using a tweakable enciphering
scheme, in which tweaks are functions of block iden-
tifiers. This ensures that the encryptions of two different
blocks with identical content are different.

The client is responsible for protecting its data in-
tegrity from malicious server behavior by keeping ad-
ditional integrity information. Our goal is to design
schemes that minimize the client storage and provide
provable integrity.

We define a storage scheme to be a tuple of algo-
rithms S = (INIT, E, D,WRITE, READ, VER) where
E is a tweakable enciphering scheme,D is its inverse,
and where:

1. The initialization algorithmINIT() outputs a secret
keyK for the client for the encryption schemeE;

2. The write algorithmWRITE(K, m, bid) takes as
input the secret key generated by theINIT algo-
rithm, block contentm and block identifierbid.
The client first encrypts the blockm with a tweak
T derived frombid under the enciphering scheme
E and then sends the resulting ciphertext,c =
ET

K(m) andbid to the server.

3. When performing aREAD(K, bid) operation, the
client gets from the server the ciphertextc of
block bid which should be the last ciphertext writ-
ten by the client with that particular block identi-
fier. The client decryptsc with tweakT generated
from bid and outputs the corresponding plaintext
m = DT

K(c). We denote the read operation by
m ← READ(K, bid).

4. The verification algorithmVER(m, bid) is given
block contentm and block identifierbid. It checks
m’s integrity, and outputs 1 if it is valid, and 0, oth-
erwise. Note thatVER is not a keyed function.



Expint-st
S,A1

() : Expint-st-rep
S,A2

() :
K ← INIT(); K ← INIT();
A1 adaptively queriesEK(·, ·) andDK(·, ·), A2 adaptively queriesEK(·, ·) andDK(·, ·)

and replies to client’s queries. and replies to client’s queries.
If A1 replies to aREAD(K, bid) client query with If A2 replies to aREAD(K, bid) client query with
ciphertextc such that, ifm = DT

K(c) with T ciphertextc such that, ifm = DT
K(c) with T

generated frombid, then: generated frombid, then:
1. VER(m, bid) returns 1 1. VER(m, bid) returns 1
2. c was never sent by the client in a 2. c was not sent by the client in themost recent

WRITE(K, ·, bid) query WRITE(K, ·, bid) query
3.A1 did not queryEK(T, m) 3.A2 did not queryEK(T,m)

then return 1, else return 0. then return 1, else return 0.

Figure 1. Experiments for Defining Storage Integrity

5. Notions of Integrity for Storage Schemes

In defining integrity for storage schemes, we consider
polynomial time adversariesA1 andA2 with access to
two oracles: an enciphering oracleEK(·, ·) and a deci-
phering oracleDK(·, ·). The enciphering oracle returns
the ciphertext corresponding to a tweak and a block. The
deciphering oracle returns the plaintext corresponding to
a tweak and a ciphertext. AdversariesA1 andA2 play
the server’s role in our model. They also acceptREAD
andWRITE queries from clients.

Intuitively, an adversary for a storage scheme wins if
it tricks the client into accepting a block that he never
wrote at a particular address. This is the first notion of
integrity that we define, and it is a straightforward gen-
eralization of the notions of integrity for symmetric en-
cryption schemes from [4]. A replay attack is one in
which the server returns an old version of a block (not
the last block written by the client at the block address),
and the client accepts it as valid. Our second notion of
integrity incorporates defense against replay attack, be-
ing stronger than the first one.

To formalize our intuition, we define the two experi-
ments from Figure 1.

We define the advantages of the adversaries in attack-
ing the integrity of the scheme as:

Advint-st
S (A1) = Pr[Expint-st

S,A1
() = 1]

Advint-st-rep
S (A2) = Pr[Expint-st-rep

S,A2
() = 1]

The two notions of integrity require different correct-
ness properties:

1. int-st: If the client performsWRITE(K,m, bid),
then block m is accepted as valid, i.e.,
VER(m, bid) = 1.

2. int-st-rep: If WRITE(K, m, bid) is the most recent
write operation to blockbid, then block contentm
is accepted as valid, i.e.,VER(m, bid) = 1.

6. Constructions of Storage Schemes

In this section, we first describe a very simple
int-st-rep secure construction, which is similar to con-
structions from [8, 20]. We include this basic scheme
here to compare its client-side storage and performance
to the more sophisticated schemes described next. In
the second part of this section, we give a new, space-
efficient int-st construction.

6.1. int-st-rep Simple Construction

The construction we give here is very simple: for each
block written at a particular address, the client com-
putes and stores the block identifier and a hash of the
block. For a given address, the stored hash corresponds
to the last written block, thus preventing the adversary
in succeeding with a replay attack. The amount of addi-
tional storage kept by the client is linear in the number
of blocks written to the server, i.e., 20 bytes per block if
a cryptographically secure hash function such as SHA-1
is used plus the block identifiers (2 or 4 bytes, depending
on the implementation).

In order to fully specify the scheme, we need a tweak-
able enciphering schemeE and a second preimage re-
sistant hash function on the plaintext spaceM of E,
h : M → {0, 1}s. The client keeps a listL of pairs
(tweak, block hash), that is initialized to the empty set.
The schemeS1 = (INIT, E,D, WRITE, READ, VER)
is detailed in Figure 2. The proof of the following propo-
sition is given in Appendix A.
Proposition 6.1 If h is a second preimage resistant
hash function, then the storage schemeS1 is int-st-rep
secure:Advint-st-rep

S1
(q1, q2) ≤ Advspr

h

6.2. New Efficientint-st Construction

We design a new, storage-efficient construction to ob-
tain int-st integrity. Our construction is based on two
observations. The first one is that blocks written to disk



INIT() WRITE(K, m, bid) READ(K, bid) VER(m, bid)

K
R←K remove(bid, ∗) from L receivec from server if (bid, h(m)) ∈ L

L ← ∅ insert(bid, h(m)) into L T ← bid output 1
T ← bid outputm = DT

K(c) else
send(bid, c = ET

K(m)) to server output 0

Figure 2. Scheme S1

do not look random in practice; in fact they have very
low entropy. And, secondly, if an adversary tries to mod-
ify ciphertexts encrypted with a tweakable enciphering
scheme, the resulting plaintext looks random with very
high probability. The second property derives immedi-
ately from theprp-security of a tweakable enciphering
scheme defined in Section 3.1.

In our construction, we need a statistical testIsRand
that can distinguish uniformly random blocks from non-
random ones. More explicitly,IsRand(M),M ∈ M
returns 1 with high probability ifM is a uniformly ran-
dom block inM, and 0 otherwise. Of course, the statis-
tical test is not perfect. It is characterized by the false
negative rateα, defined as the probability that a uni-
formly random element is considered not random by
the test. In designing such a statistical test, the goal is
to have very small false negative rate. We will discuss
more in Section 6.2.2 about a particular instantiation for
IsRand.

The idea of our new construction is very intuitive:
before encrypting a blockM , the client computes
IsRand(M). If this returns1, then the client keeps a
hash of that block for authenticity. Otherwise, the client
stores nothing, as the low entropy of the block will be
used to verify its integrity upon return. The block is
then encrypted with the tweak equal to the block iden-
tifier and sent over to the server. When reading a ci-
phertext from an address, the client first decrypts it to
obtain a plaintextM and then computesIsRand(M). If
IsRand(M) = 1 and its hash is not stored in the hash
list, then the client knows that the server has tampered
with the ciphertext. Otherwise, the block is authentic.
The new constructionS2 is detailed in Figure 3.

6.2.1 The Integrity of the Construction

We give the following theorem that guarantees theint-st
integrity ofS2, whose proof is deferred to Appendix B.
Theorem 6.2 If E is a PRP-secure tweakable encipher-
ing scheme,h is a second preimage resistant hash func-
tion andα (the false negative rate ofIsRand) is small,
thenS2 is int-st secure:

Advint-st
S2

(q1, q2) ≤ Advprp
E (q1, q2) + Advspr

h +
(q2+1)α2l

2l−q1

Write M asM = M1M2 . . . Mn with Mi ∈ {1, 2, . . . , b}
Computepi = the frequency of symboli in M , i = 1, . . . , b

ComputeH = −∑b
i=1 pi log2(pi)

If H < τ , then return 0
Else return 1

Figure 4. IsRandb,τ (M)

6.2.2 The Entropy Statistical Test

In this section we give an example of a statistical test
IsRand that can distinguish between random and non-
random blocks.IsRand(M),M ∈ M returns 1 with
high probability if M is a uniformly random block
in M, and 0 otherwise. Consider a blockM di-
vided inton parts of fixed lengthM = M1M2 . . . Mn

with Mi ∈ {1, 2, . . . , b}. For example, a 1024-byte
block could be either divided into 1024 8-bit parts (for
b = 256), or alternatively into 2048 4-bit parts (for
b = 16). The empirical entropy ofM is defined as
H = −∑b

i=1 pi log2(pi), wherepi is the frequency of
symboli in the sequenceM1, . . . ,Mn.

If we fix τ a threshold, depending onn andb (we will
discuss later how to chooseτ ), then the entropy test pa-
rameterized byb and τ is defined in Figure 4. In the
following, we denoteIsRand8,τ (·) by the 8-bit entropy
test andIsRand4,τ (·) by the 4-bit entropy test.

Analysis. We give an analytical bound for the false
negative rate, as a function ofn, b andτ .
Theorem 6.3 For a given thresholdτ , if we denoteδ the
solution of equation (1):

τ = −(1− δ) log2

(
1− δ

b

)
(1)

then the false negative rateα of IsRandb,τ (·) satisfies:

α ≤ be−
n
2b δ2

+ b

(
1
e

)n
b

(
4e

b

)n
4

(2)

The proof of the theorem is detailed in Appendix C.

Numerical Interpretation. We performed an analysis
for both the 8-bit and 4-bit entropy tests. We determined
the thresholdτ experimentally: we generated 100,000



INIT() WRITE(K, m, bid): READ(K, bid): VER(m, bid)

K
R←K remove(bid, ∗) from L receivec from server if IsRand(m) = 0

L ← ∅ if IsRand(m) = 1 T ← bid output 1
insert(bid, h(m)) into L outputm = DT

K(c) else
T ← bid if (bid, h(m)) ∈ L
send(bid, c = ET

K(m)) to server output 1
else

output 0

Figure 3. Scheme S2

b τ δ n α

256 7.7 0.05 224 e−80

256 7.7 0.05 225 e−160

16 2.53 0.5 10000 e−80

16 2.53 0.5 20000 e−160

Figure 5. Relations Among the Parameters
of the Entropy Test

uniformly random 1024-byte blocks and computed, for
each, its entropy. For the 8-bit test, the range of the en-
tropy was 7.73-7.86 and for the 4-bit test, 2.55-2.64. We
picked τ smaller than the minimum entropy of all the
random blocks generated. This way, we ensure that uni-
formly random blocks have the entropy greater thanτ
with high probability.

Having setτ , we determineδ from (1). We also set
the false negative rate desired and from the bound (2),
we computen, the number of parts that we need to en-
sure this false negative rate. The results are in Figure 5.
The 4-bit entropy test performs better, in the sense that
it requires smallern for getting the sameα. The results
demonstrate, that, in theory, we could get false negative
rates as low as needed, at the expense of increasing the
block length and of modifying the parameterb of the
entropy test.

6.3. Performance Evaluation on Disk Traces

In order to project the behavior ofS1 andS2 in prac-
tice, we collected approximately 200 MB of block disk
traces from a SuSe Linux environment. They represent
a sampling of disk activity of one of the authors during
one month. The applications used most frequently were:
Netscape browser and e-mail client, G++ compiler, Java
compiler from Sun, XMMS for playing audio, image
viewer GIMP, text editor Kedit, LATEX compiler, Ac-
robat and GV viewers, and VNC server. The reasons we
collected traces only from one computer are two-fold:
first, getting the traces proved to be cumbersome, as it
required non-trivial kernel modification and the installa-
tion of a new drive to store them. Secondly, collecting

disk traces from users has strong implications for users’
privacy.

The block sizes used by the disk interface were 1024
and 4096 bytes. For our experiments, we further divided
the blocks into different sizes: 4096, 2048, 1024, 512,
256, 128, 64 and 32 bytes to test the applicability of the
integrity schemes proposed in this paper. We performed
three different types of experiments:

Entropy Plots We first plot (Figures 6 and 7) the 8-
bit entropy of 1024-byte random blocks, compared to
1024-byte trace blocks. The entropy of random blocks
is highly concentrated, all the values being between 7.73
and 7.86. In contrast, the entropy of trace blocks is
largely varying, between 0.01 and 7.99. Only less than 2
percent of trace blocks have an entropy larger than 7.73,
the minimum entropy of a random block.

Storage Plots For each of the eight block sizes, we
performed experiments with the 8-bit and 4-bit entropy
tests. In Figure 8, we plot the average (i.e, per block)
client storage for each of these tests, when we instan-
tiate the collision resistant hash function with SHA-1,
whose output length is 20 bytes. For schemeS1 (MAC
scheme), the client keeps 20 bytes per block. For the
8-bit and 4-bit entropy schemes, the average storage de-
creases as a function of block length. This is intuitive
in the sense that, as a data block gets larger, its entropy
value has less chance of approaching that of a random
block.

For the 4-bit entropy test we can obtain a better the-
oretical bound for the false negative rate than for the 8-
bit test. But, in practice, the average storage that the
client keeps for the 4-bit test is larger for block sizes less
than 256. Fortunately, both tests perform very well for
large values of the block size (e.g., 1024), which are very
common in practice. The 4-bit entropy test performs ac-
tually very well for 4096-byte blocks, both theoretically
and experimentally: theoretically, the false negative rate
α is arounde−64 ≈ 2−90 and the client storage is 0.0094
bytes per block, on average.
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Performance Plots Lastly, but very importantly, we
measured the average time to encrypt the collected
blocks using the CMC-AES tweakable enciphering
mode described in [13]. We also implemented the two
schemes for integrity and compared their overhead with
that of the CMC encryption.

The results in Figure 9 show that the overhead due
to hashing is 44% more than encryption alone, while
the overhead for the entropy test is 19% for 4096-byte
blocks. ForS1, we have used the hash function SHA-1.
Our entropy test is about twice as fast as SHA-1. As ex-
pected, the measured times rise linearly with the block
size.

From the experiments, the advantages and disadvan-
tages of the two integrity schemes are clear. SchemeS1

provides integrity against the replay attack, at the ex-
pense of high storage cost on the client and increased
client computation time. On the other hand, our second
schemeS2 is very efficient in both computation time and

additional storage on the client. This comes at the ex-
pense of guaranteeing only a weaker notion of integrity,
namely one that permits replays (and leaves them to be
dealt with at a higher layer).

7. Is There A More Efficient Solution for
Preventing Replay Attacks?

We have analyzed two schemes, one that keeps a hash
for each block and defends against the replay attack; and
the second one more efficient that only satisfies a weaker
notion of integrity. The natural question that comes into
mind is whether there are other schemes that prevent re-
play attacks more efficiently than storing a hash for each
block. In this section, we answer this question affirma-
tively.

First we give a simple example to demonstrate that
schemeS2 is vulnerable to replay attacks. Consider a
scenario in which the client writes two messagesm1 and
m2 to blockbid in that order, both messages having low



INIT() WRITE(K, m, bid): READ(K, bid): VER(m, bid)

K
R←K if F (bid) = 1 if (bid, w) ∈ LC if IsRand(m) = 0

LR ← ∅ if (bid, w) ∈ LC T ← bid‖w output 1
LC ← ∅ remove(bid, w) from LC else else
F (bid) ← 0, ∀bid w ← w + 1 if F (bid) = 1 if (bid, h(m)) ∈ LR

else T ← bid‖1 output 1
w ← 2 else else

insert(bid, w) into LC T ← bid‖0 output 0
else receivec from server
w ← 1 outputm = DT

K(c)
F (bid) ← 1

T ← bid‖w
if IsRand(m) = 1

insert(bid, h(m)) into LR

send(bid, c = ET
K(m)) to server

Figure 10. Scheme S3

entropy. Later, when the client performs a read onbid,
imagine that the server replies withm1 instead of the
legitimate more recent writtenm2. Becausem1 has low
entropy (i.e.,IsRand(m1) = 0), the client accepts it as
valid. This demonstrates that the server succeeds in a
replay attack.

The solution that we propose here stems from the ob-
servation that the block access distribution in practice is
not uniformly random, in fact it follows a Zipf-like dis-
tribution. More specifically, there are few blocks that
are written more than once, with the majority of the
blocks being written just once. If all the blocks were
written only once, then schemeS2 would suffice to de-
fend against replays, as well. If the blocks were written
uniformly, then schemeS1 could be used. The solution
we give here is a hybrid scheme, that combines the pre-
vious two constructions.

Briefly, the solution is to keep a counter for each block
that is written more than once. The counter denotes the
number of writes to a particular block. We also keep a
flag (one bit for each block) that is initially set to 0 for
all blocks and becomes 1 when the block is written first.
We make the observation that we do not need to store
counters for blocks that are written once or not written
at all, as the counter could be inferred in these cases from
the flags. We then compute the tweak as a function of
the block identifier and the counter, so that if a block is
written more than once, it is encrypted every time with a
different tweak. After computing the tweak as indicated,
the scheme proceeds as inS2: at eachWRITE operation,
if the message has high entropy, then its hash is stored in
a list LR. A message is considered valid if either it has
low entropy or its hash is stored inLR. The intuition for
the correctness of this scheme is that decryptions of the
same ciphertext using the same key, but different tweaks,
are independent. Thus, if the server replies with an older

version of an encrypted block, the client uses a differ-
ent tweak for decrypting it than the one with which it
was originally encrypted. Then, the chances that it still
yields a low-entropy plaintext are small.

We denote byLR the associative array of (block
identifiers, block hashes) pairs for random-looking
blocks, byLC the associative array of (block identifiers,
counter) pairs and byF (bid) the flags for each block
identifier. The detailed scheme,S3 is given in Figure 10.

Security ofS3 The proof for the integrity ofS3 is sim-
ilar to that of the integrity ofS2. Here we just state
the theorem that relates the security ofS3 to the prp-
security ofE, the collision resistance of the hash func-
tion and the false negative rate of the entropy test.
Theorem 7.1 If E is a PRP-secure tweakable encipher-
ing scheme,h is a second preimage resistant hash func-
tion andα (the false negative rate ofIsRand) is small,
thenS3 is int-st-rep secure:

Advint-st-rep
S3

(q1, q2) ≤ Advprp
E (q1, q2) + Advspr

h +
(q2+1)α2l

2l−q1

Scheme Evaluation A fundamental difference be-
tween this scheme and the previous two is that inS3

the block tweak (or the block identifier) is used to de-
cide whether to keep the hash of the block or not. For
this reason, it was not possible to divide a block into
sub-blocks and we chose to evaluate this scheme sepa-
rately. We evaluate this scheme for the one-month long
trace that we collected, that has 4096-byte and 1024-
byte blocks. In the trace, there were 813,124 distinct
block IDs, from which only 113,785 were written more
than once. The amount of storage that the client needs
to keep for the three schemes is given in Figure 11. As
expected, the amount of client storage forS3 is between



Storage forS1 Storage forS2 Storage forS3

16.262 MB 0.022 MB 0.351 MB

Figure 11. Client Storage for the Three
Schemes for One-Month Traces

the storage forS1 andS2. Of course, the client storage
increases with the lifetime of the system, as more blocks
are overwritten. One solution to prevent the indefinite
expansion of client state is to periodically change the en-
cryption key, re-encrypt all the data under the new key
(perhaps opportunistically), recompute all the integrity
information and reset all the block flags.

8. Conclusions

We have given new cryptographic definitions and con-
structions for block-level storage integrity in a scenario
in which storage servers are assumed to be untrusted.
In order to authenticate data without changing the block
size or the number of sectors accessed, clients need to
keep themselves additional integrity information. Our
constructions minimize the size of the integrity infor-
mation, are provably secure, and are storage-efficient as
demonstrated by our experimental evaluation.
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A. Proof of Proposition 6.1

Proof: Assume there is an adversaryA with an advan-
tageAdvint-st-rep

S1
(A) of success in attacking the scheme.

A replies to aREAD(K, bid) query with c such that:
(1) VER(m, bid) = 1, i.e., (bid, h(m)) ∈ L, with
m = DT

K(c) andT = bid; and (2)c was not sent by
the client in the lastWRITE(K, ·, bid) query. There are
two possibilities:

• c was never written with block identifierbid. Since
(bid, h(m)) ∈ L, there exists a different query
WRITE(K, m′, bid) with m′ 6= m andh(m′) =
h(m). But this contradicts the second preimage re-
sistance ofh.

• c was written with block identifierbid, but
it was overwritten by a subsequent query
WRITE(K, m′, bid). Assume thatm′ is the
last query written with block identifierbid. Then
h(m) = h(m′) and this again breaks the second
preimage resistance ofh.

Simulation ofET
K(m): Simulation ofDT

K(c):
outputc = G(T, m) outputm = G−1(T, c)

Figure 12. Simulation for A

B. Proof of Theorem 6.2

Proof: Assume there is a polynomial-time attackerA for
theint-st integrity ofS2 that makesq1 queries to the en-
cryption oracle andq2 queries to the decryption oracle.
We construct a distinguisherD for the PRP-security of
E. D has access to oraclesG andG−1, which are either
EK , DK with K

R←K or π, π−1 with π
R← PermT (M).

D has to simulate oraclesEK andDK for A. The
simulation is in Figure 12.D makes the same number of
encryption and decryption queries asA.

If A succeeds, i.e., replies to aREAD(K, T ) query
with c such that the corresponding blockm = DT

K(c)
is valid (VER(m,T ) = 1) and c was not sent in a
WRITE(K, ·, T ) query or generated in anE(·, ·) query,
then D outputs 1. Otherwise,D outputs 0. Since
T = bid we useT instead ofbid in the READ and
WRITE queries. We express the advantage of distin-
guisherD as a function of the advantage of adversary
A.

The PRP-advantage of adversaryD, from Definition
3.1 is:

Advprp
E (D) = Pr[K R←K,DEK ,DK = 1]−

Pr[π R← PermT (M),Dπ,π−1
= 1]

It is immediate that the probability ofD outputting 1
in the case when the oraclesG andG−1 areEK , DK ,
respectively, is equal to the probability of success ofA:

Pr[K R←K,DEK ,DK = 1]
= Pr[A succeeds] = Advint-st

S2
(A)

In the case when the oraclesG andG−1, areπ, π−1

with π drawn randomly fromPermT (M), we can ex-
press the probability ofD outputting 1 as a function
of the false negative rate ofIsRand and the collision-
resistance ofh:

Pr[π R← PermT (M),Dπ,π−1
= 1]

= Pr[A succeeds|A sees randomc1, . . . , cq1 from
EK and randomm1, . . . , mq2 from DK ]

Making the notationA ∼ (m, c, T ) for A reply-
ing with c to a READ(K,T ) query such thatm =
G−1(T, c), the last probability can be written as:



Pr[π R← PermT (M),Dπ,π−1
= 1]

= Pr[A ∼ (m, c, T ) : c was not sent in a
WRITE(K, ·, T ) query toA
AND VER(m, T ) = 1]

= Pr[A ∼ (m, c, T ) : (K, m, T ) was not a query to
WRITE AND (IsRand(m) = 0

OR (h(m), T ) ∈ L)]
≤ Pr[A ∼ (m, c, T ) : (K, m, T ) was not a query to

WRITE, IsRand(m) = 0]+
Pr[A ∼ (m, c, T ) : (K, m, T ) was not a query to

WRITE, (h(m), T ) ∈ L]

Denote the last of these probabilities byp1 andp2:
p1 = Pr[A ∼ (m, c, T ) : (K, m, T ) was not a

query toWRITE, IsRand(m) = 0]
p2 = Pr[A ∼ (m, c, T ) : (K, m, T ) was not a

query toWRITE, (h(m), T ) ∈ L]
We try to upper bound each of these two probabili-

ties. In order to boundp1, let’s compute the probabil-
ity thatA outputs a ciphertextc for which π−1(T, c) is
considered not random by the entropy test.A makesq1

queries toπ, which could not be returned to the client,
from the int-st definition of adversary’s success. IfA
picks a c ∈ M, then IsRand(π−1

K (T, c)) = 0 with
probabilityα, the false negative rate of the entropy test.
So, inM, there areα|M| = α2l ciphertexts for which
IsRand(π−1

K (T, c)) = 0. A makesq2 queries toπ−1,
and he can make one more guess to return to the client
if the decryption of none of those resulting plaintextsm
satisfiesIsRand(m) = 0. Thus:

p1 ≤ (q2+1)α2l

2l−q1

For boundingp2, if (h(m), T ) ∈ L and (K, m, T )
was not a query toWRITE, then there existsm′ ∈
M such that(K,m′, T ) was a query toWRITE and
h(m) = h(m′). Thenp2 ≤ Advspr

h .
To conclude, we have:

Pr[π R← PermT (M),Dπ,π−1
= 1]

≤ p1 + p2 ≤ (q2+1)α2l

2l−q1
+ Advspr

h

and:
Advint-st

S2
(A) = Advprp

E (D)+
Pr[π R← PermT (M),Dπ,π−1

= 1]
≤ Advprp

E (D) + Advspr
h + (q2+1)α2l

2l−q1

The statement of the theorem follows from the last
relation.

C. Proof of Theorem 6.3

In the proof, we are using the following lemma, whose
proof is obvious and omitted here.
Lemma C.1 AssumeA1, . . . , Am are some events, not
necessarily independent. Then:

1. Pr(A1 ∪ · · · ∪Am) ≤ ∑m
i=1 Pr(Ai)

2. Pr(A1 ∩ · · · ∩Am) ≥ 1−∑m
i=1(1− Pr(Ai))

We also use Chernoff bounds:

Chernoff Bounds Let X1, . . . , Xn be independent
Poisson trials:Pr[Xi = 1] = pi, Pr[Xi = 0] = 1 − pi,
0 < pi < 1. DenoteX =

∑n
i=1 Xi, µ = E(X) =∑n

i=1 pi. Then the following bounds hold:

1. For anyε > 0, Pr[X > (1 + ε)µ] <
(

eε

(1+ε)1+ε

)µ

2. For any0 < ε ≤ 1, Pr[X < (1− ε)µ] < e−
µε2

2

Now we can proceed to the analysis.
α = Pr(H(R = R1R2 . . . Rn) ≤ τ), for

R1, R2, . . . , Rn random in{1, 2, . . . , b}.
Consider a fixedi ∈ {1, 2, . . . , b}. To eachRj we

associate a 0-1 variableXj with the property:Xj =
1 ⇔ Rj = i. X1, . . . , Xn are independent and the mean
of eachXj isE(Xj) = 1

b .
Define fi =

∑n
j=1 Xj , i.e, fi denotes the number

of blocks that have valuei. From the independence of
X1, . . . , Xn, it follows thatE(fi) = n

b .
We also definepi = fi

n . Then the entropy ofR is

H = −∑b
i=1 pi log2(pi).

We will use Chernoff bounds forfi:
For anyδ ∈ (0, 1]:

Pr(pi < 1
b (1− δ)) = Pr(fi < n

b (1− δ))

= Pr(fi < E(fi)(1− δ)) < e
−E(fi)δ2

2 = e−
n
2b δ2

Now, assume that allpi are less or equal to14 .
The functionx → −x log2(x) is monotonically in-

creasing on the interval(0, 1
4 ], so ifpi ≥ 1

b (1− δ), then:

H = −∑b
i=1 pi log2(pi) ≥ −(1− δ) log2(

1−δ
b )

For a fixedi, from the Chernoff bounds,pi ≥ 1
b (1−δ)

with probability at least1 − e−
n
2b δ2

. pi ≥ 1
b (1 − δ) for

all i = 1, . . . , b with probability at least1 − be−
n
2b δ2

,
from Lemma C.1.

τ was defined asτ = −(1 − δ) log2(
1−δ

b ) and this

impliesPr(H ≥ τ |pi ≤ 1
4 , i = 1, . . . , b) ≥ 1−be−

n
2b δ2

.
Let’s bound the probabilityPr(pi ≤ 1

4 , i = 1, . . . , b)
using Chernoff bounds.

For a fixedi ∈ {1, . . . , b}, let’s denoteε = b
4 − 1.

Then:
Pr(pi > 1

4 ) = Pr(pi > 1
b (1 + b

4 − 1))

= Pr(fi > n
b (1 + b

4 − 1)) <
(

eε

(1+ε)1+ε

)n
b

=
(

1
e

)n
b

(
4e
b

)n
4

Using the lemma, it follows that:

Pr(pi ≤ 1
4 , i = 1, . . . , b) ≥ 1− b

(
1
e

)n
b

(
4e
b

)n
4



Combining the bounds, we get:
Pr(H ≥ τ)

= Pr(H ≥ τ |pi ≤ 1
4 , i = 1, . . . , b)·

Pr(pi ≤ 1
4 , i = 1, . . . , b)

+ Pr(H ≥ τ |∃ i = 1, . . . , b stpi ≤ 1
4 )·

Pr(∃ i = 1, . . . , b stpi ≤ 1
4 )

≥ (1− be−
n
2b δ2

)(1− b
(

1
e

)n
b

(
4e
b

)n
4 )

In conclusion:

α ≤ 1− (1− be−
n
2b δ2

)

(
1− b

(
1
e

)n
b

(
4e

b

)n
4
)

≤ be−
n
2b δ2

+ b

(
1
e

)n
b

(
4e

b

)n
4

. (3)


