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Abstract
We present an automated, scalable, method for craft-

ing dynamic responses to real-time network requests.
Specifically, we provide a flexible technique based on
natural language processing and string alignment tech-
niques for intelligently interacting with protocols trained
directly from raw network traffic. We demonstrate the
utility of our approach by creating a low-interaction web-
based honeypot capable of luring attacks from search
worms targeting hundreds of different web applications.
In just over two months, we witnessed over 368, 000
attacks from more than 5, 600 botnets targeting several
hundred distinct webapps. The observed attacks included
several exploits detected the same day the vulnerabilities
were publicly disclosed. Our analysis of the payloads of
these attacks reveals the state of the art in search-worm
based botnets, packed with surprisingly modular and di-
verse functionality.

1 Introduction

Automated network attacks by malware pose a signif-
icant threat to the security of the Internet. Nowadays,
web servers are quickly becoming a popular target for
exploitation, primarily because once compromised, they
open new avenues for infecting vulnerable clients that
subsequently visit these sites. Moreover, because web
servers are generally hosted on machines with signifi-
cant system resources and network connectivity, they can
serve as reliable platforms for hosting malware (particu-
larly in the case of server farms), and as such, are entic-
ing targets for attackers [25]. Indeed, lately we have wit-
nessed a marked increase in so-called “search worms”
that seek out potential victims by crawling the results
returned by malevolent search-engine queries [24, 28].
While this new change in the playing field has been noted
for some time now, little is known about the scope of this
growing problem.

To better understand this new threat, researchers and
practitioners alike have recently started to move towards
the development of low-interaction, web-based honey-
pots [3]. These differ from traditional honeypots in that
their only purpose is to monitor automated attacks di-
rected at vulnerable web applications. However, web-
based honeypots face a unique challenge—they are in-
effective if not broadly indexed under the same queries
used by malware to identify vulnerable hosts. At the
same time, the large number of different web applica-
tions being attacked poses a daunting challenge, and the
sheer volume of attacks calls for efficient solutions. Un-
fortunately, current web-based honeypot projects tend
to be limited in their ability to easily simulate diverse
classes of vulnerabilities, require non-trivial amounts of
manual support, or do not scale well enough to meet this
challenge.

A fundamental difference between the type of mal-
ware captured by traditional honeypots (e.g., Hon-
eyd [23]) and approaches geared towards eliciting pay-
loads from search-based malware stems from how poten-
tial victims are targeted. For traditional honeypots, these
systems can be deployed at a network telescope [22], for
example, and can simply take advantage of the fact that
for random scanning malware, any traffic that reaches
the telescope is unsolicited and likely malicious in na-
ture. However, search-worms use a technique more akin
to instantaneous hit-list automation, thereby only target-
ing authentic and vulnerable hosts. Were web-based hon-
eypots to mimic the passive approach used for traditional
honeypots, they would likely be very ineffective.

To address these limitations, we present a method for
crafting dynamic responses to on-line network requests
using sample transcripts from observed network inter-
action. In particular, we provide a flexible technique
based on natural language processing and string align-
ment techniques for intelligently interacting with proto-
cols trained directly from raw traffic. Though our ap-
proach is application-agnostic, we demonstrate its util-



ity with a system designed to monitor and capture au-
tomated network attacks against vulnerable web appli-
cations, without relying on static vulnerability signa-
tures. Specifically, our approach (disguised as a typical
web server) elicits interaction with search engines and,
in turn, search worms in the hope of capturing their il-
licit payload. As we show later, our dynamic content
generation technique is fairly robust and easy to deploy.
Over a 72-day period we were attacked repeatedly, and
witnessed more than 368,000 attacks originating from
28,856 distinct IP addresses.

The attacks target a wide range of web applications,
many of which attempt to exploit the vulnerable appli-
cation(s) via a diverse set of injection techniques. To
our surprise, even during this short deployment phase,
we witnessed several attacks immediately after public
disclosure of the vulnerabilities being exploited. That,
by itself, validates our technique and underscores both
the tenacity of attackers and the overall pervasiveness
of web-based exploitation. Moreover, the relentless na-
ture of these attacks certainly sheds light on the scope of
this problem, and calls for immediate solutions to better
curtail this increasing threat to the security of the Inter-
net. Lastly, our forensic analysis of the captured pay-
loads confirms several earlier findings in the literature, as
well as highlights some interesting insights on the post-
infection process and the malware themselves.

The rest of the paper is organized as follows. Sec-
tion 2 discusses related work. We provide a high-level
overview of our approach in Section 3, followed by
specifics of our generation technique in Section 4. We
provide a validation of our approach based on interaction
with a rigid binary protocol in Section 5. Additionally,
we present our real-world deployment and discuss our
findings in Section 6. Finally, we conclude in Section 7.

2 Related Work

Generally speaking, honeypots are deployed with the in-
tention of eliciting interaction from unsuspecting adver-
saries. The utility in capturing this interaction has been
diverse, allowing researchers to discover new patterns
and trends in malware propagation [28], generate new
signatures for intrusion-detection systems and Internet
security software [16, 20, 31], collect malware binaries
for static and/or dynamic analysis [21], and quantify ma-
licious behavior through widespread measurement stud-
ies [26], to name a few.

The adoption of virtual honeypots by the security com-
munity only gained significant traction after the introduc-
tion of low-interaction honeypots such as Honeyd [23].
Honeyd is a popular tool for establishing multiple virtual
hosts on a single machine. Though Honeyd has proved
to be fairly useful in practice, it is important to recognize

that its effectiveness is strictly tied to the availability of
accurate and representative protocol-emulation scripts,
whose generation can be fairly tedious and time con-
suming. High-interaction honeypots use a different ap-
proach, replying with authentic and unscripted responses
by hosting sand-boxed virtual machines running com-
mon software and operating systems [11]1.

A number of solutions have been proposed to bridge
the separation of benefits and restrictions that exist be-
tween high and low-interaction honeypots. For example,
Leita et al. proposed ScriptGen [18, 17], a tool that auto-
matically generates Honeyd scripts from network traffic
logs. ScriptGen creates a finite state machine for each
listening port. Unfortunately, as the amount and diver-
sity of available training data grows, so does the size and
complexity of its state machines. Similarly, RolePlayer
(and its successor, GQ [10]) generates scripts capable of
interacting with live traffic (in particular, worms) by ana-
lyzing series of similar application sessions to determine
static and dynamic fields and then replay appropriate re-
sponses. This is achieved by using a number of heuris-
tics to remove common contextual values from annotated
traffic samples and using byte-sequence alignment to find
potential session identifiers and length fields.

While neither of these systems specifically target
search-based malware, they represent germane ap-
proaches and many of the secondary techniques they in-
troduce apply to our design as well. Also, their respective
designs illustrate an important observation—the choice
between using a small or large set of sample data man-
ifests itself as a system tradeoff: there is little diversity
to the requests recognized and responses transmitted by
RolePlayer, thereby limiting its ability to interact with
participants whose behavior deviates from the training
session(s). On the other hand, the flexibility provided by
greater state coverage in ScriptGen comes at a cost to
scalability and complexity.

Lastly, since web-based honeypots rely on search en-
gines to index their attack signatures, they are at a disad-
vantage each time a new attack emerges. In our work, we
sidestep the indexing limitations common to static signa-
ture web-based honeypots and achieve broad query rep-
resentation prior to new attacks by proactively generating
“signatures” using statistical language models trained on
common web-application scripts. When indexed, these
signatures allow us to monitor attack behavior conducted
by search worms without explicitly deploying structured
signatures a priori.

3 High-level Overview

We now briefly describe our system architecture. Its
setup follows the description depicted in Figure 1, which
is conceptually broken into three stages: pre-processing,
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Figure 1: Setup consists of three distinct stages conducted in tandem in preparation for deployment.

classification, and language-model generation. We ad-
dress each part in turn. We note that although our
methodology is not protocol specific, for pedagogical
reasons, we provide examples specific to the DNS pro-
tocol where appropriate. Our decision to use DNS for
validation stems from the fact that validating the correct-
ness of an HTTP response is ill-defined. Likewise, many
ASCII-based protocols that come to mind (e.g., HTTP,
SMTP, IRC) lack strict notions of correctness and so
do not serve as a good conduit to demonstrate the cor-
rectness of the output we generate.

To begin, we pre-process and sanitize all trace data
used for training. Network traces are stripped of trans-
port protocol headers and organized by session into pairs
of requests and responses. Any trace entries that cor-
respond to protocol errors (e.g., HTTP 404) are omit-
ted. Next, we group request and response pairs using
a variant of iterative k-means clustering with TF/IDF
(i.e., term frequency-inverse document frequency) co-
sine similarity as our distance metric. Formally, we
apply a k-medoids algorithm for clustering, which as-
signs samples from the data as cluster medoids (i.e., cen-
troids) rather than numerical averages. For reasons that
should become clear later, pair similarity is based solely
on the content of the request samples. Upon completion,
we then generate and train a collection of smoothed n-
gram language-models for each cluster. These language-
models are subsequently used to produce dynamic re-
sponses to online requests. However, because message
formats may contain session-specific fields, we also post-
process responses to satisfy these dependencies when-
ever they can be automatically inferred. For example, in
DNS, a session identifier uniquely identifies each record
request with its response.

During a live deployment, online-classification is used
to deduce the response that is most similar to the in-
coming request (i.e., by mapping the response to its best
medoid). For instance, a DNS request for an MX record
will ideally match a medoid that maps to other MX re-

quests. The medoid with the minimum TF/IDF distance
to an online request identifies which language model is
used for generating responses. The language models are
built in such a way that they produce responses influ-
enced by the training data. The overall process is de-
picted in Figure 2. For our evaluation as a web-based
honeypot (in Section 6), this process is used in two dis-
tinct stages: first, when interacting with search engines
for site indexing and second, when courting malware.

4 Under the Hood

In what follows, we now present more specifics about
our design and implementation. Recall that our goal is
to provide a technique for automatically providing valid
responses to protocols interactions learned directly from
raw traffic.

In lieu of semantic knowledge, we instead apply clas-
sic pattern classification techniques for partitioning a set
of observed requests. In particular, we use the iterative
k-medoids algorithm. As our distance metric we choose
to forgo byte-sequence alignment approaches that have
been previously used to classify similarities between pro-
tocol messages (e.g, [18, 9, 6]). As Cui et. al. observed,
while these approaches are appropriate for classifying
requests that only differ parametrically, byte-sequence
alignment is ill-suited for classifying messages with dif-
ferent byte-sequences [8]. Therefore, we use TF/IDF
cosine similarity as our distance metric.

Intuitively, term frequency-inverse document fre-
quency (TF/IDF) is the measure of a term’s significance
to a string or document given its significance among a set
of documents (or corpus). TF/IDF is often used in infor-
mation retrieval for a number of applications including
automatic text retrieval and approximate string match-
ing [29]. Mathematically, we compute TF/IDF in the
following way: let τdi denote how often the term τ ap-
pears in document di such that di ∈ D, a collection of
documents. Then TF/IDF = TF · IDF where
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Figure 2: Online classification of requests from malware and search engine spiders influences which language model
is selected for response generation.

TF =
√

τdi

and

IDF =

√
log

|D|
|{dj : dj ∈ D and τ ∈ dj}|

The term-similarity between two strings from the
same corpus can be computed by calculating their
TF/IDF distance. To do so, both strings are first rep-
resented as multi-dimensional vectors. For each term in
a string (e.g., word), its TF/IDF value is computed as
described previously. Then, for a string with n terms, an
n-dimensional vector is formed using these values. The
cosine of the angle between two such vectors represent-
ing strings indicates a measure of their similarity (hence,
its complement is a measure of distance).

In the context of our implementation, terms are delin-
eated by tokenizing requests into the following classes:
one or more spaces, one or more printable characters (ex-
cluding spaces), and one or more non-printable charac-
ters (also excluding spaces).2 We chose the space char-
acter as a primary term delimiter due to its common oc-
currence in text-based protocols; however, the delimiter
could have easily been chosen automatically by identi-
fying the most frequent byte in all requests. The collec-
tion of all requests (and their constituent terms) form the
TF/IDF corpus.

Once TF/IDF training is complete we use an iterative
k-medoids algorithm, shown in Algorithm 1, to identify
similar requests. Upon completion, the classification al-
gorithm produces a k (or less) partitioning over the set
of all requests. In an effort to rapidly classify online re-
quests in a memory-efficient manner, we retain only the
medoids and dissolve all clusters. For our deployment,
we empirically choose k = 30, and then perform a triv-
ial cluster-collapsing algorithm: we iterate through the

k clusters and, for each cluster, calculate the mean and
standard deviation of the distance between the medoid
and the other members of the cluster. Once the k-means
and standard deviations are known, we collapse pairs of
clusters if the medoid requests are no more than one stan-
dard deviation apart.

4.1 Dynamic Response Generation
Since one of the goals of our method is to generate not
only valid but also dynamic responses to requests, we
employ natural language processing techniques (NLP) to
create models of protocols. These models, termed lan-
guage models, assign probabilities of occurrence to se-
quences of tokens based on a corpus of training data.
With natural languages such as English we might define
a token or, more accurately, a 1-gram as a string of char-
acters (i.e., a word) delimited by spaces or other punctu-
ation. However, given that we are not working with nat-
ural languages, we define a new set of delimiters for pro-
tocols. The 1-gram token in our model adheres to one of
the following criteria: (1) one or more spaces, (2) one or
more printable characters, (3) one or more non-printable
characters, or (4) the beginning of message (BOM) or end
of message (EOM) tokens.

The training corpora we use contain both requests and
responses. Adhering to our assumption that similar re-
quests have similar responses, we train k response lan-
guage models on the responses associated with each of
the k request clusters. That is, each cluster’s response
language model is trained on the packets seen in response
to the requests in that cluster. Recall that to avoid having
to keep every request cluster in memory, we keep only
the medoids for each cluster. Then, for each (request, re-
sponse) tuple, we recalculate the distance to each of the
k request medoids. The medoid with the minimal dis-
tance to the tuple’s request identifies which of the k lan-
guage models is trained using the response. After train-



1: MedoidSet← SelectKRandomElements(ObservedRequests)
2: RequestMap < RequestType, MedoidType >← ⊥ // for mapping requests to medoids
3: repeat
4: for all R ∈ (ObservedRequests−MedoidSet) do
5: for all M ∈MedoidSet do
6: Distance← TF/IDF (R,M)
7: if RequestMap[R] = ⊥ or Distance < TF/IDF (RequestMap[R],M) then
8: RequestMap[R]←M
9: for all M ∈MedoidSet do

10: M ← FindMemberWithLowestMeanDistance(M,RequestMap)
11: until HasConverged(MedoidSet)
12: for all (Mi,Mj) ∈MedoidSet s.t. i 6= j do
13: if TF/IDF (Mi,Mj) < FindThresholdDistance(Mi,Mj) then
14: MedoidSet←MedoidSet− {Mi,Mj}
15: MedoidSet←MedoidSet ∪Merge(Mi,Mj , RequestMap)

Algorithm 1: Iterative k-Medoids Classification for Observed Requests

ing concludes, each of the k response language models
has a probability of occurrence associated with each ob-
served sequence of 1-grams. A sequence of two 1-grams
is called a 2-gram, a sequence of three 1-grams is called a
3-gram, and so on. We cut the maximum n-gram length,
n, to eight.

Since it is unlikely that we have witnessed every pos-
sible n-gram during training, we use a technique called
smoothing to lend probability to unobserved sequences.
Specifically, we use parametric Witten-Bell back-off
smoothing [30], which is the state of the art for n-gram
models. This smoothing method estimates, if we con-
sider 3-grams, the 3-gram probability by interpolating
between the naive count ratio C(w1w2w3)/C(w1w2)
and a recursively smoothed probability estimate of the 2-
gram probability P (w3|w2). The recursively smoothed
probabilities are less vulnerable to low counts because of
the shorter context. A 2-gram is more likely to occur in
the training data than a 3-gram and the trend progresses
similarly as the n-gram length decreases. By smoothing,
we get a reasonable estimate of the probability of occur-
rence for all possible n-grams even if we have never seen
it during training. Smoothing also mitigates the possibil-
ity that certain n-grams dominate in small training cor-
pora. It is important to note that during generation, we
only consider the states seen in training.

To perform the response generation, we use the lan-
guage models to define a Markov model. This Markov
model can be thought of as a large finite state machine
where each transition occurs based on a transition prob-
ability rather than an input. As well, each “next state” is
conditioned solely on the previous state. The transition
probability is derived directly from the language models.
The transition probability from a 1-gram, w1 to a 2-gram,
w1w2 is P (w2|w1), and so on. Intuitively, generation is
accomplished by conducting a probabilistic simulation

from the start state (i.e., BOM) to the end state (i.e., EOM).

More specifically, to generate a response, we perform
a random walk on the Markov model corresponding to
the identified request cluster. From the BOM state, we
randomly choose among the possible next states with the
probabilities present in the language model. For instance,
if the letters (B, C,D) can follow A with probabilities
(70%, 20%, 10%) respectively, then we will choose the
AB path approximately 70% of the time and similarly
for AC and AD. We use this random walk to create re-
sponses similar to those seen in training not only in syn-
tax but also in frequency. Ideally, we would produce the
same types of responses with the same frequency as those
seen during training, but the probabilities used are at the
1-gram level and not the response packet level.

The Markov models used to generate responses at-
tempt to generate valid responses based on the training
data. However, because the training is over the entire
set of responses corresponding to a cluster, we cannot
recognize contextual dependencies between requests and
responses. Protocols will often have session identifiers
or tokens that necessarily need to be mirrored between
request and response. DNS, for instance, has a two byte
session identifier in the request that needs to appear in
any valid response. As well, the DNS name or IP re-
quested also needs to appear in the response. While the
NLP engine will recognize that some session identifier
and domain name should occupy the correct positions in
the response, it is unlikely that the correct session iden-
tifier and name will be chosen. For this reason, we au-
tomatically post-process the NLP generated response to
appropriately satisfy contextual dependencies.
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4.1.1 Detecting Contextual Dependencies

Generally speaking, protocols have two classes of con-
textual dependencies: invariable length tokens and vari-
able length tokens. Invariable length tokens are, as the
name implies, tokens that always contain the same num-
ber of bytes. For the most part, protocols with vari-
able length tokens typically adhere to one of two stan-
dards: tokens preceded by a length field and tokens sep-
arated using a special byte delimiter. Overwhelmingly,
protocols use length-preceded tokens (DNS, Samba,
Netbios, NFS, etc.). The other less-common type
(as in HTTP) employ variable length delimited tokens.

Our method for handling each of these token types dif-
fers only slightly from techniques employed by other ac-
tive responder and protocol disassembly techniques ([8,
9]). Specifically, we identify contextual dependencies
using two techniques. First, we apply the Needleman-
Wunsch string alignment algorithm [19] to align requests
with their associated responses during training. Since the
language models we use are not well suited for this par-
ticular task, this process is used to identify if, and where,
substrings from a request also appear in its response. If
certain bytes or sequences of bytes match over an em-
pirically derived threshold (80% in our case), these bytes
are considered invariable length tokens and the byte po-
sitions are copied from request to response after the NLP
generation phase.

To identify variable length tokens, we make the sim-
plifying assumption that these types of tokens are pre-
ceded by a length identifier; we do so primarily because
we are unaware of any protocols that contain contex-
tual dependencies between request and response through
character-delimited variable length tokens. As depicted
in Figure 3, we iterate over each request and consider
each set of up to four bytes as a length identifier if and
only if the token that follows it belongs to a certain char-
acter class3 for the described length. In our example,
Tokeni is identified as a candidate length-field based
upon its value. Since the next immediate token is of the
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Figure 4: Frequency of dominant type/class per request
cluster (with k = 30), sorted from least to most accurate.

length described by Tokeni (i.e., 8), Tokenj is identi-
fied as a variable length token. For each variable length
token discovered, we search for the same token in the
observed response. We copy these tokens after NLP gen-
eration if and only if this matching behavior was com-
mon to more than half of the request and response pairs
observed throughout training.

As an aside, the content-length header field in our
HTTP responses also needs to accurately reflect the num-
ber of bytes contained in each response. If the value
of this field is greater than the number of bytes in a
response, the recipient will poll for more data, causing
transactions to stall indefinitely. Similarly, if the value of
the content-length field is less than the number of bytes
in the response, the recipient will prematurely halt and
truncate additional data. While other approaches have
been suggested for automatically inferring fields of this
type, we simply post-process the generated HTTP re-
sponse and automatically set the content-length value to
be the number of bytes after the end-of-header character.

5 Validation

In order to assess the correctness of our dynamic re-
sponse generation techniques, we validate our overall ap-
proach in the context of DNS. Again, we reiterate that
our choice for using DNS in this case is because it is
a rigid binary protocol, and if we can correctly gener-
ate dynamic responses for this protocol, we believe it
aptly demonstrates the strength (and soundness) of our
approach. For our subsequent evaluation, we train our
DNS responder off a week’s worth of raw network traces
collected from a public wireless network used by approx-
imately 50 clients. The traffic was automatically par-



titioned into request and response tuples as outlined in
Section 4.
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Figure 5: Frequency of dominant type/class per response
cluster (with k = 30), sorted from least to most accurate.

To validate the output of our clustering technique,
we consider clustering of requests successful if for each
cluster, one type of request (A, MX, NS, etc.) and the class
of the request (IN) emerges as the most dominant mem-
ber of the cluster; a cluster with one type and one class
appearing more frequently than any other is likely to cor-
rectly classify an incoming request and, in turn, generate
a response to the correct query type and class. We report
results based on using 10,000 randomly selected flows
for training. As Figures 4 and 5 show, nearly all clusters
have a dominating type and class.

To demonstrate our response generation’s success rate,
we performed 20,000 DNS requests on randomly gen-
erated domain names (of varying length). We used
the UNIX command host4 to request several types of
records. For validation purposes, we consider a response
as strictly faithful if it is correctly interpreted by the re-
questing program with no warnings or errors. Likewise,
we consider a response as valid if it processes correctly
with or without warnings or errors. The results are shown
in Figure 6 for various training flow sizes. Notice that
we achieve a high success rate with as little as 5,000
flows, with correctness ranging between 89% and 92%
for strictly faithful responses, and over 98% accuracy in
the case of valid responses.

In summary, this demonstrates that the overall design
depicted in Figures 1 and 2—that embodies our train-
ing phase, classification phase, model generation, and
preposing phase to detect contextual dependencies and
correctly mirror the representative tokens in their correct
location(s)—produces faithful responses. More impor-
tantly, these responses are learned automatically, and re-

quire little or no manual intervention. In what follows,
we further substantiate the utility of our approach in the
context of a web-based honeypot.

Valid
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Figure 6: Faithful, valid, or erroneous response suc-
cess rate for 20,000 random DNS requests under different
numbers of training flows.

6 Evaluation

Our earlier assertion was that the exploitation of web-
apps now pose a serious threat to the Internet. In order
to gauge the extent to which this is true, we used our dy-
namic generation techniques to build a lightweight HTTP
responder — in the hope of snatching attack traffic tar-
geted at web applications. These attackers query popular
search engines for strings that fingerprint the vulnerable
software and isolate their targets.

Type Appearances
.PHP 3165
.PL 29
.CGI 49
.HTML 15
.PHTML 2

Table 1: Query Types

With this in mind, we obtained a list of the 3,285 of
the most searched queries on Google by known botnets
attempting to exploit web applications.5 We then queried
Google for the top 20 results associated with each query.
Although there are several bot queries that are ambigu-
ous and are most likely not targeting a specific web ap-
plication, most of the queries were targeted. However,
automatically determining the number of different web
applications being attacked is infeasible, if not impossi-
ble. For this reason, we provide only the break down in



the types of web applications being exploited (i.e., PHP,
Perl, CGI, etc.) in Table 1.

Nearly all of the bots searching for these queries ex-
ploit command injection vulnerabilities. The PHP vul-
nerabilities are most commonly exploited through re-
mote inclusion of a PHP script, while the Perl vul-
nerabilities, are usually exploited with UNIX delimiters
and commands. Since CGI/HTML/PHTML can house
programs from many different types of underlying lan-
guages, they encompass a wide range of exploitation
techniques. The collected data contains raw traces of the
interactions seen when downloading the pages for each
of the returned results. Our corpus contained 178,541
TCP flows, of which we randomly selected 24,000 flows
as training data for our real-world deployment (see Sec-
tion 6.1).

Since our primary goal here is to detect (and catch)
bots using search engines to query strings present in vul-
nerable web applications, our responder must be in a po-
sition to capture these prey — i.e., it has to be broadly
indexed by multiple search engines. To do so, we first
created links to our responder from popular pages,6 and
then expedited the indexing process by disclosing the
existence of a minor bug in a common UNIX applica-
tion to the Full-Disclosure mailing list. The bug we
disclosed cannot be leveraged for privilege escalation.
Bulletins from Full-Disclosure are mirrored on several
high-ranking websites and are crawled extensively by
search-engine spiders; less than a few hours later, our
site appeared in search results on two prominent search
engines. And, right on queue, the attacks immediately
followed.

6.1 Real-World Deployment

For our real-world evaluation, we deployed our system
on a 3.0 GHz dual-processor Intel Xeon with 8 GB of
RAM. At runtime, memory utilization peaked at 960 MB
of RAM when trained with 24,000 flows. CPU utiliza-
tion remained at negligible levels throughout operation
and on average, requests are satisfied in less than a sec-
ond. Because our design was optimized to purposely
keep all data RAM during runtime, disk access was un-
necessary.

Shortly after becoming indexed, search-worms began
to attack at an alarming rate, with the attacks rapidly
increasing over a two month deployment period. Dur-
ing that time, we also recorded the number of indexes
returned by Google per day (which totaled just shy of
12,000 during the deployment). We choose to only show
PHP attacks because of their prominence. Figure 7 de-
picts the number of attacks we observed per day. For
reference, we provide annotations of our Google index
count in ten day intervals until the indices plateau.
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Figure 7: Daily PHP attacks. The valley on day 44 is due
to an 8 hr power outage. The peak on day 56 is because
two bots launched over 2,000 unique script attacks.

For ease of exposition, we categorize the observed at-
tacks into four groups. The first denotes the number of at-
tacks targeting vulnerabilities that have distinct file struc-
tures in their names. The class “Unique PHP attacks”,
however, is more refined and represents the number of at-
tacks against scripts but using unique injection variables
(i.e., index.php?page= and index.php?inc=).
The reason we do so is that the file names and struc-
tures can be ubiquitous and so by including the vari-
able names we glean insights into attacks against poten-
tially distinct vulnerabilities. We also attempt to quan-
tify the number of distinct botnets involved in these at-
tacks. While many botnets attack the same applica-
tion vulnerabilities, (presumably) these botnets can be
differentiated by the PHP script(s) they remotely in-
clude. Recall that a typical PHP remote-include exploit is
of the form “vulnerable.php?variable=http:
//site.com/attack\ script?”, and in practice,
botnets tend to use disjoint sites to store attack scripts.
Therefore, we associate bots with a particular botnet by
identifying unique injection script repositories. Based on
this admittedly loose notion of uniqueness [27], we ob-
served attacks from 5,648 distinct botnets. Lastly, we
record the number of unique IP addresses that attempt to
compromise our responder.

The results are shown in Figure 7. An immediate ob-
servation is the sheer volume of attacks—in total, well
over 368,000 attacks targeting just under 45,000 unique
scripts before we shutdown the responder. Interest-
ingly, notice that there are more unique PHP attacks than
unique IPs, suggesting that unlike traditional scanning
attacks, these bots query for and attack a wide variety
of web applications. Moreover, while many bots attempt



to exploit a large number of vulnerabilities, the repos-
itories hosting the injected scripts remain unchanged
from attack to attack. The range of attacks is perhaps
better demonstrated not by the number of unique PHP
scripts attacked but by the number of unique PHP web-
applications that are the target of these attacks.

6.1.1 Unique WebApps

In general, classifying the number of unique web ap-
plications being attacked is difficult because some bots
target PHP scripts whose filenames are ubiquitous (e.g.,
index.php). In these cases, bots are either targeting
a vulnerability in one specific web-application that hap-
pens to use a common filename or arbitrarily attempting
to include remote PHP scripts.

To determine if an attack can be linked to a specific
web-application, we downloaded the directory structures
for over 4,000 web-applications from SourceForge.net.
From these directory structures, we matched the web
application to the corresponding attacked script (e.g.,
gallery.php might appear only in the Web Gallery
web application). Next, we associated an attack with
a specific web application if the file name appeared in
no more than 10 web-app file structures. We choose a
threshold of 10 since SourceForge stores several copies
of essentially the same web application under different
names (due to, for instance, “skin” changes or different
code maintainers). For non-experimental deployments
aimed at detecting zero-day attacks, training data could
be associated with its application of origin, thereby mak-
ing associations between non-generic attacks and spe-
cific web-applications straightforward.

Based on this heuristic, we are able to map the 24,000
flows we initially trained on to 560 “unique” web-
applications. Said another way, by simply building our
language models on randomly chosen flows, we were
able to generate content that approximates 560 distinct
web-applications — a feat that is not as easy to achieve
if we were to deploy each application on a typical web-
based honeypot (e.g., the Google Hack Honeypot [3]).
The attacks themselves were linked back to 295 distinct
web applications, which is indicative of the diversity of
attacks.

We note that our heuristic to map content to web-
apps is strictly a lower bound as it only identifies web-
applications that have a distinct directory structure and/or
file name; a large percentage of web-applications use
index.php and other ubiquitous names and are there-
fore not accounted for. Nonetheless, we believe this
serves to make the point that our approach is effective
and easily deployable, and moreover, provides insight
into the amount of web-application vulnerabilities cur-
rently being leveraged by botnets.

6.1.2 Spotting Emergent Threats

While the original intention of our deployment was to
elicit interaction from malware exploiting known vulner-
abilities in web applications, we became indexed under
broader conditions due to the high amount of variabil-
ity in our training data. As a result, a honeypot or ac-
tive responder indexed under such a broad set of web ap-
plications can, in fact, attract attacks targeting unknown
vulnerabilities. For instance, according to milw0rm (a
popular security advisory/exploit distribution site), over
65 PHP remote inclusion vulnerabilities were released
during our two month deployment [1]. Our deployment
began on October 27th, 2007 and used the same training
data for its entire duration. Hence, any attack exploiting
a vulnerability released after October 27th is an attack
we did not explicitly set out to detect.

Nonetheless, we witnessed several emergent threats
(some may even consider them “zero-day” attacks) be-
cause some of the original queries used to bootstrap
training were generic and happened to represent a wide
number of webapps. As of this writing, we have iden-
tified more than 10 attacks against vulnerabilities that
were undisclosed at deployment time (some examples
are illustrated in Table 2). It is unlikely that we wit-
nessed these attacks simply because of arbitrary attempts
to exploit random websites—indeed, we never witnessed
many of the other disclosed vulnerabilities being at-
tacked.

We argue that given the frequency with which these
types of vulnerabilities are released, a honeypot or an ac-
tive responder without dynamic content generation will
likely miss an overwhelming amount of attack traffic—in
the attacks we witnessed, botnets begin attacking vulner-
able applications on the day the vulnerability was pub-
licly disclosed! An even more compelling case for our
architecture is embodied by attacks against vulnerabili-
ties that have not been disclosed (e.g., the recent Word-
Press vulnerability [7]). We believe that the potential to
identify these attacks exemplifies the real promise of our
approach.

6.2 Dissecting the Captured Payloads

To better understand what the post-infection process en-
tails, we conducted a rudimentary analysis of the re-
motely included PHP scripts. Our malware analysis was
performed on a Linux based Intel virtual machine with
the 2.4.7 kernel. We used a deprecated kernel version
since newer versions do not export the system call ta-
ble of which we take advantage. Our environment con-
sisted of a kernel module and a preloaded library7 that
serve to inoculate malware before execution and to log
interesting behavior. The preloaded library captures calls



Disclosure Date Attack Date Signature
2007-11-04 2007-11-10 /starnet/themes/c-sky/main.inc.php?cmsdir=
2007-11-21 2007-11-23 /comments-display-tpl.php?language file=
2007-11-22 2007-11-22 /admin/kfm/initialise.php?kfm base path=
2007-11-25 2007-11-25 /Commence/includes/db connect.php?phproot\ path=
2007-11-28 2007-11-28 /decoder/gallery.php?ccms library path=

Table 2: Attacks targeting vulnerabilities that were unknown at time of deployment

to connect() and send(). The connect hook de-
ceives the malware by faking successful connections, and
the send function allows us to record information trans-
mitted over sockets.8

Our kernel module hooks three system calls: (open,
write, and execve). We execute every script under
a predefined user ID, and interactions under this ID are
recorded via the open() hook. We also disallow calls to
open that request write access to a file, but feign success
by returning a special file descriptor. Attempts to write
to this file descriptor are logged via syslog. Doing so
allows us to record files written by the malware without
allowing it to actually modify the file system. Similarly,
only commands whose file names contain a pre-defined
random password are allowed to execute. All other com-
mand executions under the user ID fail to execute (but
pretend to succeed), assuring no malicious commands
execute. Returning success from failed executions is im-
portant because a script may, for example, check if a
command (e.g., wget) successfully executes before re-
questing the target URL.

To determine the functionality of the individual mal-
ware scripts, we batched processed all the captured mal-
ware on the aforementioned architecture. From the tran-
scripts provided by the kernel module and library, we
were able to discern basic functionality, such as whether
or not the script makes connections, issues IRC com-
mands, attempts to write files, etc. In certain cases, we
also conducted more in-depth analyses by hand to un-
cover seemingly more complex functionality. We discuss
our findings in more detail below.

The high-level break-down for the observed scripts is
given in Table 3. The challenge in capturing bot pay-
loads in web application attacks stems from the ease with
which the attacker can test for a vulnerability; unique
string displays (where the malware echoes a unique to-
ken in the response to signify successful exploitation)
accounts for the most prevalent type of injection. Typ-
ically, bots parse returned responses for their identifying
token and, if found, proceed to inject the actual bot pay-
load. Since these unique tokens are unlikely to appear
in our generated response, we augment our responder to
echo these tokens at run-time. While the use of random
numbers as tokens seem to be the soup du jour for testing

Script Classification Instances
PHP Web-based Shells 834
Echo Notification 591
PHP Bots 377
Spammers 347
Downloaders 182
Perl Bots 136
Email Notification 87
Text Injection 35
Java-script Injection 18
Information Farming 9
Uploaders 4
Image Injection 4
UDP Flooders 3

Table 3: Observed instances of individual malware

a vulnerability, we observed several instances where at-
tackers injected an image. Somewhat comically, in many
cases, the bot simply e-mails the IP address of the vulner-
able machine, which the attacker then attempts to exploit
at a later time. The least common vulnerability test we
observed used a connect-back operation to connect to an
attacker-controlled system and send vulnerability infor-
mation to the attacker. This information is presumably
logged server-side for later use.

Interestingly, we notice that bots will often inject sim-
ple text files that typically also contain a unique identi-
fying string. Because PHP scripts can be embedded in-
side HTML, PHP requires begin and end markers. When
a text file is injected without these markers, its contents
are simply interpreted as HTML and displayed in the out-
put. This by itself is not particularly interesting, but we
observed several attackers injecting large lists of queries
to find vulnerable web applications via search engines.
The largest query list we captured contained 7,890 search
queries that appear to identify vulnerable web applica-
tions — all of which could be used to bootstrap our con-
tent generation further and cast an even wider net.

Overall, the collected malware was surprisingly mod-
ular and offered diverse functionality similar to that re-
ported elsewhere [26, 15, 13, 12, 25, 5, 4]. The cap-
tured scripts (mostly PHP-based command shells), are
advanced enough that many have the ability to display



the output in some user-friendly graphical user interface,
obfuscate the script itself, clean the logs, erase the script
and related evidence, deface a site, crawl vulnerability
sites, perform distributed denial of service attacks and
even perform automatic self-updates. In some cases, the
malware inserted tracking cookies and/or attempted to
gain more information about a system’s inner-workings
(e.g., by copying /etc/passwd and performing local
banner scans). To our surprise, only eight scripts con-
tained functionality to automatically obtain root. In
these cases, they all used C-based kernel vulnerabili-
ties that write to the disk and compile upon exploita-
tion. Lastly, IRC was used almost exclusively as the
communication medium. As can be expected, we also
observed several instances of spamming malware us-
ing e-mail addresses pulled from the web-application’s
MySQL database backend. In a system like phpBB,
this can be highly effective because most forum users
enter an e-mail address during the registration process.
Cross-checking the bot IPs with data from the Spamhaus
project [2] shows that roughly 36% of them currently ap-
pear in the spam black list.

One noteworthy functionality that seems to transcend
our categorizations among PHP scripts is the ability to
break out of PHP safe mode. PHP safe mode disables
functionality for, among others, executing system com-
mands, modifying the file system, etc. The malware we
observed that bypass safe mode tend to contain a hand-
ful of known exploits that either exploit functionality
in PHP, functionality in mysql, or functionality in web
server software. Lastly, we note that although we ob-
served what appeared to be over 5,648 unique injection
scripts from distinct botnets, nearly half of them point
to zombie botnets. These botnets no longer have a cen-
tralized control mechanism and the remotely included
scripts are no longer accessible. However, they are still
responsible for an overwhelming amount of our observed
HTTP traffic.

6.3 Limitations

One might argue that a considerably less complex (but
more mundane) approach for eliciting search worm traf-
fic may be to generate large static pages that con-
tain content representative of a variety of popular web-
applications. However, simply returning arbitrary or
static pages does not yield either the volume or diver-
sity of attacks we observed. For instance, one of our
departmental websites (with a much higher PageRank
than our deployment site) only witnessed 437 similar at-
tacks since August 2006. As we showed in Section 6,
we witnessed well over 368,000 attacks in just over two
months. Moreover, close inspection of the attacks on the
university website show that they are far less varied or

interesting. These attacks seem to originate from either
a few botnets that issue “loose” search queries (e.g., “in-
url:index.php”) and subsequently inject their attack, or
simply attack ubiquitous file names with common vari-
able names. Not surprisingly, these unsophisticated bot-
nets are less widespread, most likely because they fail
to infect many hosts. By contrast, the success of our
approach lead to more insightful observations about the
scope and diversity of attacks because we were able to
cast a far wider net.

That said, for real-world honeypot deployments, de-
tection and exploitation of the honeypot itself can be a
concern. Clearly, our system is not a true web-server
and like other honeypots [23], it too can be trivially de-
tected using various fingerprinting techniques [14]. More
to the point, a well-crafted bot that knows that a partic-
ular string always appears in pages returned by a given
web-application could simply request the page from us
and check for the presence of that string. Since we will
likely fail to produce that string, our phony will be de-
tected9.

The fact that our web-honeypot can be detected is a
clear limitation of our approach, but in practice it has not
hindered our efforts to characterize current attack trends,
for several reasons. First, the search worms we witnessed
all seemed to use search engines to find the identifying
information of a web-application, and attacked the vul-
nerability upon the first visit to the site; presumably be-
cause verifying that the response contains the expected
string slows down infection. Moreover, it is often times
difficult to discern the web-application of origin as many
web-applications do not necessarily contain strings that
uniquely identify the software. Indeed, in our own analy-
sis, we often had difficulty identifying the targeted web-
application by hand, and so automating this might not be
trivial.

Lastly, we argue that the limitations of the approach
proposed herein manifests themselves as trade-offs. Our
decision to design a stateless system results in a memory-
efficient and lightweight deployment. However, this de-
sign choice also makes handling stateful protocols nearly
impossible. It is conceivable that one can convert our
architecture to better interact with stateful protocols by
simply changing some aspects of the design. For in-
stance, this could be accomplished by incorporating flow
sequence information into training and then recalling its
hierarchy during generation (e.g., by generating a re-
sponse from the set of appropriate first round responses,
then second round responses, etc.). To capture multi-
stage attacks, however, ScriptGen [18, 17] may be a bet-
ter choice for emulating multi-stage protocol interaction,
and can be used in conjunction with our technique to cast
a wider net to initially entice such malware.



7 Conclusion

In this paper, we use a number of multi-disciplinary tech-
niques to generate dynamic responses to protocol in-
teractions. We demonstrate the utility of our approach
through the deployment of a dynamic content generation
system targeted at eliciting attacks against web-based
exploits. During a two month period we witnessed an
unrelenting barrage of attacks from attackers that scour
search engine results to find victims (in this case, vulner-
able web applications). The attacks were targeted at a
diverse set of web applications, and employed a myriad
of injection techniques. We believe that the results herein
provide valuable insights on the nature and scope of this
increasing Internet threat.
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http:/spar.isi.jhu.edu/botnet data/.
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Notes
1 The drawback, of course, is that high-interaction honeypots are

a heavy-weight solution, and risk creating their own security prob-
lems [23].

2Protocol messages are tokenized similarly in [18, 17] and [8].
3In practice, we use printable and non-printable.
4The results are virtually the same for nslookup, and hence, omit-

ted.
5These initial queries were provided by one of the authors, but simi-

lar results could easily be achieved by crawling the WebApp directories
in SourceForge and searching Google for identifiable strings (similar to
what we outline in Section 6.1.1).

6We placed links on 3 pages with Google PageRank ranking of 6, 2
pages with rank 5, 3 pages with rank 2, and 5 pages with rank 0.

7A preloaded library loads before all other libraries in order to hook
certain library functions

8Because none of the malware we obtained use direct system calls
to either connect() or send(), this setup suffices for our needs.

9Notice however that if a botnet has n bots conducting an attack
against a particular web-application, we only need to probabilistically
return what the malware is seeking 1/nth of the time to capture the
malicious payload.


