
An Empirical Study of the Performance, Security and Privacy
Implications of Domain Name Prefetching

Srinivas Krishnan and Fabian Monrose
Department of Computer Science,

University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
{krishnan, fabian}@cs.unc.edu

Abstract—An increasingly popular technique for
decreasing user-perceived latency while browsing the
Web is to optimistically pre-resolve (or prefetch) do-
main name resolutions. In this paper, we present
a large-scale evaluation of this practice using data
collected over the span of several months, and show
that it leads to noticeable increases in load on name
servers—with questionable caching benefits. Further-
more, to assess the impact that prefetching can have
on the deployment of security extensions to DNS
(DNSSEC), we use a custom-built cache simulator
to perform trace-based simulations using millions
of DNS requests and responses collected campus-
wide. We also show that the adoption of domain
name prefetching raises privacy issues. Specifically,
we examine how prefetching amplifies information
disclosure attacks to the point where it is possible to
infer the context of searches issued by clients.

Keywords-Domain Name System; Measurements;
Security; Privacy

I. Introduction

Most savvy Internet users would probably not
be surprised if told that detailed dossiers of their
browsing habits were being kept by the online
merchants they do business with. In fact, many
people understand that getting better personaliza-
tion on the Web often means divulging information
about themselves. This sentiment has not gone
unnoticed, and today, new markets for tracking
and sharing online activities are blossoming [1]. As
the surreptitious collection of personal information
becomes more rampant, however, we are “losing
our ability to understand and control those trade-
offs to choose, consciously and with awareness of the
consequences, what information about ourselves we
disclose and what we don’t” [2].

This loss of control is exacerbated by several
recent optimizations within modern browsers and
monolithic search engines, all of which are geared
towards improving responsiveness on the world’s
largest distributed system — i.e., the Web. To help
people find the answers to the questions they
seek (e.g., directions to a weekend getaway, rec-

ommendations for that restaurant they just drove
by, etc.) more readily, designers of such systems
are constantly fiddling with new ways to improve
responsiveness on the Web.

The soup du jour for decreasing user perceived
latency is to optimize the use of the domain name
system by pre-resolving (or prefetching) names in
hyperlinks. Since DNS is responsible for trans-
lating human-readable names into IP addresses,
nearly every initial visit to a website involves a
name resolution. Thus, by proactively resolving
hyperlinks in pages a user visits, the sites being
referred to can be immediately contacted if, and
when, the user decides to click on one of the links.

At first blush, this seems like a relatively neat
idea. DNS itself was designed with high availabil-
ity in mind, but because of its distributed nature,
resolving a domain name often involves commu-
nication with at least one remote server, and in
some cases, might require following referral chains
across many servers—a process that could take sec-
onds to complete. Prefetching, therefore, can lead
to a much faster browsing experience for clients.
As of April 2011, four of the top five browsers
support prefetching (some more aggressively than
others), and one major search engine (Google) em-
ploys an “Instant Search” feature wherein prefetch-
ing of links in the results page is performed while
the user types in the search bar.

This trend is sure to continue, but as is the case
with many of the classic trade-offs that arise in
the design of any highly distributed system, this
increase in speed does come at a cost. Indeed, one
contribution of this paper is in raising awareness
that DNS prefetching introduces significant perfor-
mance overheads on name servers; we observed
decreases in throughput of over 15% in our trace-
based evaluations, high volumes of requests to
non-existent domain names, and limited caching
benefits overall. Moreover, we believe that the
current state of the practice has dire implications

for the deployment of security extensions (called
DNSSEC) aimed at making DNS more resilient [3].
These security extensions have witnessed a recent
resurgence in interest, partly because of highly vis-
ible cache poisoning attacks [4]—that take advan-
tage of the lack of security protections in DNS—to
deceive unsuspecting users.

We also show that current practices for DNS
prefetching enable new privacy threats that are
ripe for abuse. In particular, we believe that
prefetching introduces new ways for infringing on
users’ privacy, to the extent that the context of their
searches can be gleaned simply by inspecting DNS
queries. The success of these attacks relies on the
fact that prefetching inserts a significant amount
of information into the cache of the name servers
contacted by clients, allowing domain name oper-
ators to glean far more detailed insights than when
this feature is turned off.

The rest of the paper is outlined as follows.
Related work is presented in Section II. Section III
covers our experimental setup and the data used
in our large-scale evaluation. In Section IV, we
provide an empirical study of the effect of prefetch-
ing, followed by an analysis of its impact on
DNSSEC in Section V. In Section VI, we show
how prefetching enables new disclosure attacks
that unveil the context of searches performed by
clients. We conclude in Section VII.

II. RelatedWork

The domain name system plays a critical role
in the operation of Internet applications, and so
it is not surprising that understanding its perfor-
mance has been the topic of much research (e.g.,
[5, 6]). These works all share the common goal of
understanding how to improve DNS performance
bottlenecks. In particular, Jung et al. [7, 8] pro-
vide extensive analysis of DNS performance and
the effectiveness of caching. Additionally, several
studies (e.g., [9, 10]) explore performance charac-
teristics of DNSSEC. Unlike this paper, however,
none of these work focus on DNS prefetching as
it is a very recent practice. Also, to the best of our
knowledge, the dataset and evaluation presented
in this paper is the largest study on this subject.

More closely related to this paper is the work
on DNS cache snooping. Grangeia [11] provides
an excellent review of how to remotely inspect
a cache for evidence of a specific lookup (e.g.,
www.nytimes.com). Remote cache inspection of
this type has been used for a number of measure-

ment studies that include, for example, inferring
the relative popularity of websites [12] and track-
ing malware infections [13]. In contrast, in this
paper we explore how DNS prefetching amplifies
new privacy threats, allowing one to gain far more
insights than these prior techniques envisioned.

To date, a few proposals have been suggested
for improving the responsiveness of connection es-
tablishment by optimistically issuing DNS queries.
These ideas include prefetching of domain names
based on popularity, prefetching of related do-
main names using piggyback schemes, and pre-
caching of records based on several renewal poli-
cies (e.g., [14, 15]). However, none of these works
perform large scale analyses or study the privacy
and security implications for any of their pre-
scribed prefetching policies.

Lastly, this paper significantly extends our pre-
liminary work [16] to include a large-scale empir-
ical evaluation on campus-wide data, new tech-
niques for applying instance-based learning ap-
proaches to boost the accuracy of our search re-
construction process, as well as the design and im-
plementation of a cache simulator. The simulator
is used to study the impact that prefetching can
have on the deployment of DNSSEC [3].

III. Overview

To aid in our pursuit of understanding the impli-
cations of browser-based DNS pre-resolution, we
collected and analyzed two DNS datasets from
several name servers at our campus. The first
dataset (Summer) was collected from June to Au-
gust 2010, and spans the summer break. The sec-
ond dataset (Fall) was collected from September to
November 2010. The trace collection was planned
to span these two periods to allow for trend es-
timation as the population on campus increased.
The monitored campus servers included the pri-
mary name servers for the entire wireless network,
as well as the authoritative name servers for the
University. This pool of servers was used by over
26,000 internal clients per day during the summer,
over 44,000 internal clients in the Fall, and serviced
an average of 42 and 63 million queries per day,
respectively. Next, we first present our collection
infrastructure and the techniques we used for iso-
lating prefetching events.

A. Data Collection Infrastructure

Our data collection configuration consists of two
core components, namely: i) a DNS trace collector

DNS Server
Pool

ns1 ns2 ns3

All Traffic
Collection

DNS Traffic
Collection

DAG

Edge

Internet

Campus Network

Figure 1. Campus-wide data collection and control framework.

and ii) a campus network trace collector (see Fig-
ure 1). The campus network is served by a single
upstream provider, and is connected via a pair
of optical links. The server pool we monitored is
situated behind a load-balancer, and all wireless
clients using the campus network are assigned a
name server from this pool during their initial
DHCP registration. DHCP leases on this network
are bound to the client’s MAC address, and remain
in effect for at least a few weeks. The DNS traces
are collected via a mirrored port on the load-
balancer switch, using CoralReef’s [17] engine to
process and anonymize [18] the client IPs. The
payloads are stored at a secure location housing
the collection server.

To quantify the utility of a prefetching event, we
also require access to network traces of connections
to the resolved domains. To obtain this insight,
we tapped the optical links from the campus to
the upstream provider and mirrored the traffic
to a network monitoring system. The network
monitoring system is a Linux server with a spe-
cialized Data Acquisition and Generation (DAG)
card that allows us to capture network traces
at line rate with negligible loss and nanosecond
timestamp accuracy. Since all campus traffic must
traverse these links, we can observe all post name-
resolution events for any arbitrary domain and
determine whether TCP connections are made for
that resolved name. For two five-day periods dur-
ing the monitoring timeframe, we also captured
all incoming and outgoing network traffic from
the campus during peak hours. In this case, only
packet headers are collected, and all client ad-
dresses were anonymized in a consistent fashion
with the DNS traces. Our collection servers were

synchronized with a common NTP server.
Data Generation Framework: Apart from the

real-world data we collected, we also required
the ability to instrument and collect data from
browsers in a controlled manner. To do so, we
built a framework that allows us to fully auto-
mate our data generation process. This framework
provides the basic functionality needed to inject
keystrokes into several browsers and to automat-
ically collect the resulting DNS data. To simulate
user interaction, our framework accepts a set of
terms, actions, and a desired typing rate, and
injects keystrokes into a given browser. The ac-
tions dictate how the framework interacts with
the browser, e.g., whether it enters keystrokes into
the location bar or search engine. This framework
is used for injecting the queries used as ground
truth in our analysis in Section VI. We note that
all subsequent performance results presented in
this paper excludes any queries/responses resulting
from the data generation framework.

B. Finding Prefetching Events

Recall that our main goal is to study the effects of
browser-based DNS pre-resolution. To effectively
filter DNS traffic not relevant to the study at
hand, we apply heuristics to select only those
queries that are created in response to browsing
events; i.e., as a precursor to a web connection.
To find the queries of interest, we take advan-
tage of the fact that browsers rarely make non-
recursive queries, i.e., they delegate the task of
discovering the internet addess of a qualified name
to an external name server. Hence, the Recursion-
Desired (RD) flag in DNS query packets for inter-
nal source addresses can be used to discard extra-
neous (i.e., non-browser related) DNS queries. Sec-
ondly, we filter address ranges for known services
that use DNS (e.g., Active Directory and mail)
within the university. Lastly, using the campus
network traces, we discard DNS queries that result
in ensuing connections to non-http/https servers
(e.g., itunes.apple.com).

Having isolated the browser-related queries, the
next challenge is in determining whether or not the
queries belong to a pre-fetching event. Recall that
pre-resolution of domain names is implemented as
a means to reduce response latency on a potential
click of a link on a website. This is realized in
the browsers by extracting the 〈href〉 tags from
each rendered page, and automatically performing
lookups for the resulting domains. This implies

All clients Internal clients Internal browser clients
Summer Fall Summer Fall Summer Fall

Average Queries per day 42.4M 63.3M 32.1M 51.4M 20.3M 31.3M
Average Unique Clients per day 242,676 330,665 26,100 44,026 18,905 38,400
Average Cache Miss rate per day 20.8%±4.5% 22.0% ±4.3% 57.1% ±5.1% 55.2% ±3.1% 73.2% ±5.6% 69.1% ±4.1%

Table I
Summary statistics for the Summer and Fall 2010 datasets

that all the queries for the extracted domains will
arrive at the name server within a small timeframe.

Window
Inter-Arrival

Time
Packet
Count

Slide Window

Append to
Cluster

> 1s

< 1s

Construct Window

Label Cluster
as Prefetch

Event

> threshold (10)

Cluster Packet Count

Time

Prefetch Event Normal browser event

DNS Query Packets

Figure 2. Identifying and labeling prefetching events.

We validated this observation by extracting all
http/https connections in the campus trace dur-
ing peak periods for 10 days. The related DNS
queries were extracted for each web request using
the connection’s destination address, and queries
that did not match any web connection were la-
beled as ‘extraneous’. Close inspection of the query
inter-arrival times (not shown) revealed that for a
given client a valid query would be followed by a
set of extraneous ones, and the inter-arrival time
for 95% of these sets was less than 1 second. We
take advantage of this observation to implement a
straightforward approach for identifying prefetch-
ing events (see Figure 2).

A final task is to identify legitimate queries
that are needed to successfully render a page,
and separate them from extraneous queries within
each event. Using our data generation framework,
we rendered each webpage for Alexa’s Top-1000
websites and studied the DNS query patterns with
prefetching turned off. We found that most pages
induced queries for locating elements such as im-
ages, multimedia components, advertisements and
trackers. Furthermore, these queries were usually
to a select few domains (e.g., akamai, doubleclick,

googleads) and were fairly easily identifiable by the
prefix used in the query (e.g., img, ads, cdn). Having
identified these prefixes, we took special care to
eliminate them as part of any prefetching groups in
which they appeared, since we considered them to
be “required” elements for rendering the webpage
in question. We validated the correctness of this
step by comparing the DNS queries we deemed
as being necessary for rendering a page to the
actual observance of http/https connections in
the campus trace. We found that 96.7% of the
required queries were mapped to subsequent Web
connections. To be clear, we do not count these
required queries in the prefetching overheads.

IV. On the Impact of Prefetching
Before exploring the security and privacy im-

plications of DNS pre-resolution, we first analyze
the overhead it imposes on the name servers in
our study. Table I summarizes some of the key
statistics of our datasets. Note the increase in traffic
in the Fall dataset, which corresponds to increased
campus population with the start of the school
year. The cache miss rate in Table I is calculated by
observing whether the name server has to make
an upstream query in order to satisfy a client’s
request. The overall low cache miss rate when
considering “all clients” is due to the fact that most
queries from external clients result in cache hits
because the vast majority of such queries are for
authoritative records. The high cache-miss rate for
internal request by browser clients, however, sug-
gests a power-law distribution for domain name
accesses. We return to this observation later in
Section IV-A and Section VI.

Figures 3(a) and 3(b) depicts the load pattern
for the internal UNC clients in 1-minute intervals
for the Summer and Fall datasets, respectively. The
graph shows that the weekly query load follows a
diurnal pattern with most of activity happening
during a workday. Peak requests hovered around
40,000 queries over the Summer and over 68,000
queries during the Fall semester with the influx of
returning students.

Approximately 60% of the internal requests seen
in the Fall are due to browser-related queries. We

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

07/06 07/07 07/08 07/09 07/10 07/11 07/12

Q
ue

rie
s/

M
in

Time

All Internal Queries
Browser Queries

Browser Prefetching Queries

FIFA worldcup final

(a) Query Load in July, 2010 (Summer)

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

10/19 10/20 10/21 10/22 10/23 10/24 10/25

Q
ue

rie
s/

M
in

Time

All Internal Queries
Browser Queries

Browser Prefetching Queries

(b) Query Load in October, 2010 (Fall)

Figure 3. Query load in 1-minute intervals, including the
contribution of prefetching traffic for both datasets

then identified prefetching events for the browser
queries using the approach outlined in Figure 2.
During the summer they constitute, on average,
35% of the browser related queries, with peaks
near 44%. Several spikes in the browser-related
load over the summer can be attributed to searches
for ‘hot topics’ (e.g., the peak during the FIFA
world-cup final on 7/11) using Google’s search
engine — in this case, a dynamic results page with
real-time scrolling feeds is returned, wherein pre-
resolution was performed.

As expected, prefetching activity increased in
the Fall, and contributes over 45% of the browser

co cn mo ne ind bi

0
20
0

40
0

60
0

80
0

10
00

Country Code TLD

Q
ue
rie
s/
m
in
ut
e

(Columbia) (China) (Macau) (Niger) (India) (Burundi)

Figure 4. Box-and-Whisker plots for the number of non-
existent (NX) answers observed per minute over 3 weeks

related queries with peaks near 55%. Interestingly,
this increased load is not due solely to the in-
creased student population, but could also have
been influenced by the launch of ‘Instant Search’
by Google in October 2010. Instant search provides
dynamically updating results as a user types in
the search box—all the while pre-resolving on each
new update to the search results. Overall, the
induced load from prefetching is a disturbing sign,
especially given the fact that the browser with over
60% market share (Internet Explorer) has yet to
turn on DNS pre-resolution.

For ease of presentation, for the remainder of
this section we present analysis for a representative
week of data from the Fall dataset.

Typed-in Navigation: As eluded to earlier, some
modern browsers try to guess the site the user
is trying to visit, providing suggestions along the
way to get her to the intended destination quickly.
As the browser attempts to guess the user’s inten-
tion, DNS queries are created — most times after
only a few characters are typed; For example, if
a user starts to type www.cnn.com in a browser’s
location bar, the browser attempts to autocomplete
the user’s intended site generating queries such as
www.cn., www.cnn.co. and in some extreme cases
w., ww., www.. While some of these queries can
be easily discarded as non-existent (NX) domains
(w., ww., www.), several will trigger queries to
nameservers since the queries inadvertently con-
tain valid domains hosted in Colombia or China.

As a cursory examination, we studied the pre-
resolutions that occur during typed-in navigation

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

C
D

F

TTL (seconds)

A RR
CNAME RR

20 sec

5 min

1 hour

(a) TTL distribution

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1 10 100 1000 10000 100000 1e+06 1e+07

N
o

of
 U

ni
qu

e
C

lie
nt

s

Unique Domain Name

Domain Reuse
Domain Reuse w TTL Normalization

(b) Domain Reuse for Prefetched data

Figure 5. Domain Reuse Patterns and TTL distribution for common TTL value ranges

in Chrome. For the most part, the majority of the
prefetches result in non-existent (NX) responses,
or valid domains for sites other than the intended
domain. Moreover, certain top-level domains are
unduly affected by this practice, and receive the
majority of these bogus queries. Figure 4 shows the
responses per minute for browser auto-completion
during a three week period. The box plot shows
the mean, lower and upper quartiles, while the
whiskers cover the min and max values. Circles
denote outliers. Here we only consider a prefetch-
ing event as being related to auto-completion if
it is followed by queries to the same name, but
with a different gTLD, in a short window of time.
Notice that for certain gTLDs (.co and .cn) the
rate is very high (nearing 1000 queries/min in some
cases); most are autocompletions for a user intend-
ing to visit a website with a .com TLD. Similar
NX responses are generated from gTLDs shown in
Figure 4 for users intending to visit websites with
.mobi,.net,.info and .biz TLDs.

A. Impact on Caching

One would expect that active pre-resolving of
domains on a per-client basis might not only im-
prove user-perceived latency, but possibly have
benefit to other clients. Such benefit would arise if
the records fetched as part of a prefetching event
remain in the server’s cache for extended periods
of time. Figure 5(a) plots the TTL values of A and
CNAME records in the Fall dataset. As we can see,
67.2% of the A records have TTL values of less than
5 minutes. Even worse, 31.2% of the records have

TTLs less than 20 seconds. The use of such low TTL
values can be attributed to content distribution
networks (CDNs). CDNs often set the TTL value
for their A records on the order of minutes as a
means of supporting dynamic load balancing [19].

Figure 5(a) also shows that CNAMEs, on the
other hand, can reside in cache for long periods
of time. CNAMEs are often used for redirection to
a CDN, e.g. <www.realestate.yahoo.com CNAME TTL
3600> might redirect to <rel.fy7.b.yahoo.com A TTL
300>. Figure 5(a) shows that 37% of the CNAME
records have TTLs of atleast 1 hour, and over 7%
of the records last longer than a day. A side effect
of this is that CNAMEs offer many hints as to a
site’s topical classification, and their high lifetime
enables remote cache inspection attacks [16].

To explore the caching benefits of prefetching,
we analyzed the reuse for domain names requested
in prefetching events. The reuse value for a domain
is computed based on the access frequency of all
clients requesting that name. Figure 5(b) shows a
Zipf-like reuse distribution, with 98% of the do-
main names accessed less than 10 times. However,
from a caching perspective, an entry is only valid
within its TTL window, so we normalized the
access frequencies to take TTLs into consideration.
The result shows that the overall usage pattern
(even for popular domains) falls by about 40%.
This means that for many of these domains, by
the time they are requested again (if at all), the
entry has already expired in the cache; thus the
prefetched domains are of little value to others.

V. Impact on DNS Security Extensions

Over the past few years there has been steady
progress in efforts to deploy DNSSEC, partly in
response to highly visible cache poisoning attacks.
Although common wisdom suggests that the over-
head of DNSSEC is non-trivial, we examine the
impact that prefetching can have on its deploy-
ment [3]. Specifically, we examine the additional
overhead imposed by prefetching, particularly as
it relates to the verification of responses for extra-
neous requests.

Before discussing the details of our analysis, we
briefly review some key elements of DNSSEC. In
short, DNSSEC extends the existing DNS archi-
tecture to use public key cryptography for secur-
ing the transactions between servers and clients.
Essentially, each response in a DNSSEC enabled
zone must be authenticated by building a “chain of
trust” to a trusted anchor. These zones are signed
using a Zone Signing Key (ZSK). The key is au-
thenticated by traversing the zone hierarchy until
a trusted anchor is reached. For a DNS response to
be considered authentic, each step in the verifica-
tion chain must succeed. The key elements [20] of
DNSSEC pertinent to how verification works (and
implemented in our simulator) are:
• a Resource Record Set (RRSet): A set of DNS

Resource Records (RR) of the same type and
TTL. In DNSSEC, signatures are created for
the entire RRSet included in a response.

• a DNSKEY: The public key of the zone that
signed the RRSet.

• a RRSIG: A signed digest of a RRSet.
• a Delegation Signer (DS): A record that con-

tains the digest of a child zones’ DNSKEYs.
To study the impact of prefetching, we designed

and implemented a cache simulator that performs
trace driven simulations using the datasets de-
scribed earlier (see Section III). The cache simula-
tor has two components: a local caching resolver
and a “remote server”. The caching resolver sends
queries to the remote server and performs verifica-
tion of the responses. The remote server emulates
the DNS zone hierarchy and the nameservers for
each zone. The zone hierarchy is created by first
processing our network traces to identify the Top-
Level Domains and Second-Level Domains. Each
zone is then assigned a unique 1024-bit RSA key-
pair, of which the private key is used to sign the
RRsets and the DS record of its child zone.

The caching resolver drives the simulation by re-

Caching Resolver

@rootA foo.com ?

 DNSKEYroot NS ns1.foo.com

SHA1
DS foo.

RSA/SHA1
RRSIG DSfoo

foo.com ?

verify @ns1.foo.com

A foo.com

DNSKEY foo
RRSIG ARR

Remote Server

verify

verify

 DNSKEYfoo

RTT1

RTT2

RRSIG DSfoo

DS foo

SHA1
DNSKEY foo

RSA/SHA1
RRSIG ARR

SHA1
A foo.com

DS foo.

010101010101010101010
010101010101010101010
1010101011010110101010

Trace <Queries>
010101010101010101010
010101010101010101010
1010101011010110101010

Trace <Responses>

1

2
3

4

5
6

7

Figure 6. An example DNSSEC simulation. RTT1 and RTT2
are derived from the actual network trace

playing the queries from the trace. The queries are
forwarded to the remote server where the correct
(signed) response based on the trace is returned.
For each response we also simulate the network
latency for contacting the remote resolver using a
normalized average of the observed RTT from the
network trace. Once the caching resolver receives
a response, it verifies the response and caches the
result for the specified TTL. As in Bindv9, we use
the OpenSSL cryptographic library to perform all
cryptographic operations. We used SHA1 as our
digest function. Subsequent queries within the TTL
period are served directly from cache.

Figure 6 depicts an example interaction between
the caching resolver and remote server compo-
nents of the simulator for resolving a query for
foo.com. The simulator is initialized with only the
public key of the root zone (DNSKEYroot). Step Ê: the
query is “forwarded” to the remote server. Step Ë:
the reply from the server (on behalf of the root)
contains the NS record and also a signed digest
(i.e., a DS record) of the public key (DNSKEY f oo.com)
for the foo.com zone. Step Ì: the DS record is
verified using DNSKEYroot. Step Í: the resolver then
contacts the nameserver for the foo.com zone
and receives from ns1.foo.com, the A record for
foo.com, a signed digest of the A record (i.e., its
RRSIG), and also DNSKEY f oo.com. Step Î: the resolver
verifies the authenticity of DNSKEY f oo.com by compar-
ing the cryptographic hash of DNSKEY f oo.com with the

 35000

 40000

 45000

 50000

 55000

 60000

 65000

 70000

 75000

 0 50 100 150 200 250 300

Th
ro

ug
hp

ut
 (Q

ue
rie

s/
M

in
)

Time (min)

Baseline
DNSSEC w/o Prefetching (1024)

DNSSEC w Prefetching (1024)

Figure 7. Resolver throughput

DS record obtained earlier from the root. Finally in
Steps Ï and Ð: the resolver verifies the A record by
checking the authenticity of the associated RRSIG
using DNSKEY f oo.com, and compares the embedded
cryptographic hashes in the signed digest to the
hash of the returned A record.

A. Results
In what follows, we use a 4 hour period during

peak load in the Fall dataset as input to our trace-
driven simulations. The trace contains 23.6 million
records. The overheads are computed relative to a
baseline where DNSSEC capability was disabled.

Obviously, as verification of responses requires
additional CPU cycles, it has a direct effect on the
throughput of the resolver. Figure 7 shows the
throughput achieved by the cache simulator for
fully resolving DNS queries. The average through-
put of 62,345 queries per min (qpm) decreases by
24.7% (to 46, 964 qpm) when verification is enabled.
However, when prefetched records are excluded,
the drop in throughput relative to the baseline is
about 16.1% (to 52, 307 qpm).

The drop in throughput causes a significant in-
crease in response times as observed by the clients.
Here, response times reflect both the simulated
RTT (to fetch the response) as well as the verifica-
tion time at the resolver itself. Figure 8 shows the
response time for the same experiment. Notice that
over 80% of clients get a response within 100ms
in the baseline. With verification on, but with
pre-resolutions excluded, over 70% of the clients
still get answers within 100ms. However, when
responses for extraneous requests must also be
verified, only 48% of the clients receive an answer

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100 1000 10000

C
D

F

Response Time (ms)

Baseline
DNSSEC w/o Prefetching (1024)

DNSSEC w Prefetching (1024)

Figure 8. Observed response times for validating DNS answers

within 100ms. This result is particularly worrying
since prefetching was introduced as optimization
to reduce client response times, but when DNSSEC
is turned on, even valid requests see a considerable
increase in response time.

Finally, notice that for clients that witnessed
response times over 300 ms, all three scenarios
show similar performance. This is because the high
RTT (from the trace) observed by these clients
masks the cost of verifying responses. We now turn
our attention to the privacy implications of this
practice of pre-resolving domain names.

VI. Privacy Implications
As mentioned earlier, we believe DNS prefetch-

ing offers Internet providers yet another avenue
to infringe on a user’s privacy, to the extent that
the context of their searching activity may no
longer be private. Indeed, very detailed informa-
tion can be harvested from these requests without
ones knowledge. The threat model we consider
here assumes access to DNS logs (e.g., as a DNS
provider would have), which we argue is a realistic
threat since many DNS providers have already
acknowledged their interests to “aggregate non-
personally-identifying information about the be-
havior of visitors to its websites and customers of
its DNS services” [21].

We examine the potential for abuse under this
threat model by describing an inference attack
that allows an attacker to reconstruct users search
queries by simply observing their DNS queries.
The key observation here is that domain names
often contain identifiable words as to the nature of
a website, and so if an adversary can observe the

Event2

time

oatesrealty.com

coldwellbankerkasey.com

preferredchoicemortgage.com

real-estate-longandfoster.com

mortgages.longandfoster.com

preferredchoicemortgage.com

Event3

homes.com

realestate.yahoo.com

nc-hendersonville.com

hendersonvillehomepro.com

buythemountain.com

preferredrealestatecenter.com

Event1

owners.com

neighborhoodlink.com

citytowninfo.com

neighborhoods.com

neighborhoodscout.com

hendersoncountychamber.org

(a) Example browser events

finance

coldwell mortgage real-
estate

Event3

time

finance places

hendersonreal-estate

Event2

places

neighbor-
hood henderson

Event1

(b) Groups with topical labels

Figure 9. Clients browsing activity and reconstructed search terms due to prefetching

domain names that were contained in, for example,
a search results page, then she would be able to
reliably reconstruct the client’s search term. Since
prefetching creates identifiable clusters of DNS
queries, we propose a technique for reconstructing
the search terms by first identifying prefetching
events, and then applying algorithms similar to
the auto-completion techniques used by search
engines to provide suggestions to users. In doing
so, we are able to make intelligent guesses as to the
client’s likely search terms. The overall approach
we take is as follows:

Step Ê Grouping related entries: For pedagog-
ical purposes, we remind the reader how users
typically find information on the Web. Loosely
speaking, they input a set of keywords into a
search engine, and then explore the ranked set
of returned links. Figure 9(a) shows an example
browsing session with three distinct groupings of
search based prefetching events from real data.
These groupings were identified using the heuris-
tic described in Figure 2. Obviously, while one
could manually sift through the data and find rela-
tionships across groups, with thousands of clients
and hundreds of queries per second, this would be
impractical. We provide an automated technique
for achieving our goals with high accuracy.

Step Ë Keyword extraction: Once events have
been grouped, the next task is to extract mean-
ingful keywords from the domains names in each
group. To do so, each domain name is tokenized
into keywords using a sliding window algorithm.
We generate template words for each window
by using a n-recommend algorithm [22], which
provides word suggestions given a prefix. The
process is initialized by using first m-characters
(m = 4) of a domain name as the prefix. The
longest word template match on the domain name

is selected as an identified keyword, the window
slides over to the end of the match and the entire
process is repeated until the entire domain name
is broken down into a set of recognizable words.
The result is a list of keywords, ordered from left
to right, for each domain name. If a domain name
cannot be broken down into constituent words, we
categorize it using a content classification engine
(e.g. Google Insights) that labels the domain with
a broad topical classification. In this case, only the
domain names (i.e., no client specific information)
is sent to the topical classification engine. At this
stage, a sample output for Event1 in Figure 9(a)
would be 〈neighborhood, scout, city, town, henderson,
county, chamber, owner〉.

Step Ì Query Reconstruction: After the key-
words are tokenized and ranked, we locate groups
containing a search engine domain name (e.g.,
google, bing) and then attempt to recreate the ac-
tual search query within each group. In order
to reconstruct the search query, we again take
advantage of an n-recommender systems, and pro-
vide as input all the first order words associated
with each grouping. This yields a list of suggested
queries. Each suggestion is compared with our list
of ordered words, and we output (as our inferred
query) the suggestion with the maximum number
of matches. For the running example, the output
for Event1is now: 〈Henderson Neighborhood〉.

As an optimization, we take advantage of the
observation that a user’s browsing history, or her
interactions on social networks, can be used to find
identifying patterns in her access behavior [23].
Specifically, we augment our query reconstruction
scheme to utilize related tokens across multiple
browsing events. Revisiting the earlier example,
the events in Figure 9(a) shows that the search
for 〈Henderson Neighborhood〉 (Event1) was followed

(a) Snapshot of popular searches (July) (b) Aggregate of individual Queries (July)

Figure 10. A tag cloud depicting several automatically reconstructed searches

by a search for 〈real-estate henderson〉 (Event2) and
〈mortgage real-estate〉 (Event3). This additional con-
textual information can be used to link the recon-
structed queries of each event, thereby allowing
for a more specific picture of the user’s interests:
buying a house in henderson.

To automate this process, we apply an instance-
based learning method to relate individual brows-
ing events and recreate a user’s browsing profile.
In order to find similar browsing events, we first
use a topical classifier to label each event un-
der a broad-category. For example, real-estate and
mortgage can be broadly classified as related to
Finance. The resulting data has each group labeled
with a set of possible topics as shown in Fig-
ure 9(b). Once all the elements have been labeled
with a topic, we then apply a pattern matching
algorithm to find related terms by checking if a
event contains topics in its groupings that match
to an already scanned event. If a match is found,
we consider the two groupings as being related.
For example, we would consider all three events
as related because of the linkage made by the
elements finance and places→henderson; here,
the symbol “→” denotes a subcategory. A sample
output is now: 〈Real Estate Henderson Neighbor-
hood〉,〈Mortgage Henderson Neighborhood〉.

A. Evaluation
For illustrative purposes, Figure 10(a) presents

a tag cloud of the most popular reconstructed
browsing activity during the first week of July.
Part (b) presents a similar illustration, but for a
4 hour period for 10 randomly picked client IPs.
For privacy reasons, we display the results as a
group, as doing otherwise would leak very specific
information about the browsing behavior of some
clients. While these results aptly demonstrate the
scope of the privacy breaches, evaluating the accu-

racy of our approach calls for ground truth.
To allow us to perform such an analysis, we

make use of our data generation framework and
use it to generate queries from 10 machines sim-
ulating clients that run a combination of browsers
(Chrome, Safari, Firefox, Internet Explorer, and
Opera). The searches made by these clients were
randomly chosen from a list of 1,000 topics derived
from Google Trends (from January to June 2010),
controversial topics from Wikipedia, and Alexa
Hot Topics (from February to May 2010). The list
is labeled by topic, with each topic having a set of
associated domain names.

During a week long period, we performed
two non-overlapping experiments: one where each
client selects a term with uniform probability, and
the other where the selection is biased by assigning
higher probabilities to domains and queries in
related topical areas (e.g., if the topic picked is
health-care, there is a high probability that sub-
sequent queries by that client will be related to
health-care). Once a client picks a topic, it ran-
domly performs either a search query, click on a
link on the returned search results, or use the loca-
tion bar to navigate to a domain name associated
with the topic. The client does so for no more than
20 minutes, with uniformly random chosen “think
times” of 1-5 minutes. At the end of the browsing
session, the client chooses a new search topic. No
two clients are allowed to choose the same topic.
All the activity is timestamped and logged.

Next, using all the recorded data spanning that
time period (recall queries from real clients are also
occurring simultaneously) we attempted to recon-
struct the searches. Our results are then compared
with the data logged at the generation framework
in order to compute our true positive and false
positive rates. Let the set of words in the original

(a) Using single events
Prefetching On Prefetching Off

Source TP% FP% TP% FP%
Hot Trends 91.2 8.8 7.9 42.6

Google Insights 87.9 6.5 6.8 48.9
Wikipedia 86.5 4.5 4.3 47.1

Alexa 88.2 4.1 8.2 46.1

(b) Instance-based learning

Source
Uniform Non-Uniform

TP% FP% TP% FP%
Google Insights 85.1 6.5 89.0 4.5

Wikipedia 87.3 7.1 93.4 5.2
Alexa 87.4 6.2 94.1 4.1

Table II
Accuracy of reconstruction techniques using both single events (a) and instance-based learning (b).

logged query be defined as Qw, and the set of
words in the result be Rw. Then, the true positive
and false positive rates for Rw are computed as:

TP =

|Rw∩Qw |

|Qw |
if Rw (Qw

1.0 if Rw = Qw
0.0 if Qw (Rw

FP =

|Rw\Qw |

|Qw |
if Qw (Rw

1.0 if Rw , Qw
0.0 if Rw (Qw

The results of our experiments are shown in
Table II, broken down by each source for which
we recreated a search query. Table II(a) shows the
accuracy when the reconstruction is restricted to
using data from a single prefetching event. In this
case, our accuracy is dependent on the number of
identifiable keywords we are able to recreate from
the domains in a prefetching event. An interesting
observation here is the high true positive rate for
recreating “Hot Trends”. This is a result of there
being far more entries in prefetching events for hot
search terms, especially in the case where Google’s
results page includes dynamically updated refer-
ences for that search. These additional requests
lead to the extraction of more keywords, thereby
improving our ability to reconstruct these searches.
At the same time, however, the false positive
rate is higher than the other target cases because
many of the domains are shared among searches
of hot trends happening around the same time.
Notice, however, that our reconstruction accuracy
is abysmal when prefetching is turned off.

Table II(b) depicts our results for each client,
where we only consider events in 15 minute in-
tervals. As expected, the non-uniform case—which
better reflects how people search in practice—
outperforms the case where the selection is not bi-
ased, and achieves true positive rates of over 92%,
with false negatives under 5%, on average. In lieu
of our earlier observation regarding the poor re-
construction accuracy when prefetching is turned
off, we omit results for the instance-based learning

case as performance there is highly dependent on
accurately reconstructing single events.

VII. Conclusion

Our main objective in this work is to highlight
the fact that if left unchecked, rapid enhancements
in when and how DNS prefetching is performed
can have significant performance implications, and
can also lead to new security and privacy issues.
To date, prefetching is rapidly being deployed
within modern browsers, and has already been
activated in browsers of mobile devices (e.g., Safari
on the iPhone and Chrome on Android)—some
of which offer no straightforward way to disable
this feature. Lately, it appears that some browser
architects have begun experimenting with alterna-
tive prefetching strategies along the lines of those
suggested in our earlier work (e.g., only prefetch-
ing when the mouse hovers over a link) [16]. We
applaud those changes, but believe much more
should, and could, be done. We believe that it
is prudent to stop and rethink the need for pre-
resolution, as the adverse effects on name server
load that comes with the expanded use of DNS
prefetching is clear. Moreover, this practice paints
a grim outlook for the adoption of DNSSEC. Lastly,
our ability to reconstruct search queries when
prefetching is enabled underscores the thin line we
walk between increased performance and privacy.

VIII. Acknowledgements

We express our gratitude to Joni Keller, Jim
Gogan, Danny Shue, Sid Stafford, Hiawatha
Demby, Stan Waddell, Alex Everett (all from the
Information Technology Service Office), Murray
Anderegg and Bil Hayes (our local networking gu-
rus) for their tremendous efforts in deploying the
infrastructure for this study. The researchers and
the University’s Technology Service Office have
a longstanding memorandum of understanding
(MoU) in place to collect anonymized network
traffic on campus. The MoU covers specific uses
and types of networking data, as well as conditions

for securing and accessing such data. We also
thank Michael Bailey, Kevin Jeffay, Don Smith,
Teryl Taylor and the anonymous reviewers for
helpful suggestions. This work is supported by
NSF grant CNS-0831245.

References
[1] J. Valentino-Devries, “What They Know About

You,” Wall Street Journal, July 2010.
[2] N. Carr, “Tracking is an Assault on Liberty, With

Real Dangers,” Wall Street Journal, August 2010.
[3] E. Osterweil, M. Ryan, D. Massey, and L. Zhang,

“Quantifying the Operational Status of the
DNSSEC Deployment,” in ACM IMC, 2008, pp.
231–242.

[4] S. Son and V. Shmatikov, “The Hitchhiker’s Guide
to DNS Cache Poisoning,” Intl. Conf. on Security and
Privacy in Communication Networks, Sept. 2010.

[5] D. Wessels and M. Fomenkov, “Wow, That’s a Lot
of Packets,” in Passive and Active Measurement Work-
shop, April 2003.

[6] R. Liston, S. Srinivasan, and E. Zegura, “Diver-
sity in DNS Performance Measures,” in ACM SIG-
COMM Workshop on Internet measurment, 2002, pp.
19–31.

[7] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS
Performance and the Effectiveness of Caching,”
IEEE/ACM Trans. on Networking, vol. 10, no. 5, pp.
589–603, 2002.

[8] J. Jung, A. W. Berger, and H. Balakrishnan, “Mod-
eling TTL-based Internet Caches,” in Infocom, 2003.

[9] B. Ager, H. Dreger, and A. Feldmann, “Predicting
the DNSSEC Overhead Using DNS Traces,” in In-
formation Sciences & Systems, 2006, pp. 1484–1489.

[10] W. Wijngaards and B. Overeinder, “Securing DNS:
Extending DNS Servers with a DNSSEC Validator,”
Security & Privacy, vol. 7, no. 5, pp. 36–43, 2009.

[11] L. Grangeia, “DNS Cache Snooping or Snooping
the Cache for Fun and Profit,” SideStep Seguranca
Digital, Tech. Rep., Feb. 2004.

[12] C. E. Wills, M. Mikhailov, and H. Shang, “Inferring
Relative Popularity of Internet Applications by Ac-
tively Querying DNS Caches,” in ACM IMC, 2003,
pp. 78–90.

[13] M. A. Rajab, J. Zarfoss, F. Monrose, and A. Terzis,
“A Multifaceted Approach to Understanding the
Botnet Phenomenon,” in ACM IMC, Oct., 2006, pp.
41–52.

[14] E. Cohen and H. Kaplan, “Proactive Caching of
DNS Records: Addressing a Performance Bottle-
neck,” in Symp. on Apps. and the Internet, 2001, pp.
85–94.

[15] H. Shang and C. E. Wills, “Piggybacking Related
Domain Names to Improve DNS Performance,”
Computing Networking, vol. 50, no. 11, pp. 1733–
1748, 2006.

[16] S. Krishnan and F. Monrose, “DNS Prefetching
and its Privacy Implications: When good things go
bad,” in USENIX Workshop on Large-scale Exploits
and Emergent Threats, April 2010.

[17] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C.

Claffy, “The CoralReef Software Suite as a Tool for
System and Network Administrators,” in USENIX
Conf. on System Admin., 2001, pp. 133–144.

[18] J. Fan, J. Xu, M. Ammar, and S. Moon,
“Prefix-preserving IP Address Anonymization:
Measurement-based Security Evaluation and a
New Cryptography-based Scheme,” Computer
Networks, vol. 46, no. 2, pp. 263–272, October 2004.

[19] A.-J. Su, D. R. Choffnes, A. Kuzmanovic, and
F. E. Bustamante, “Drafting Behind Akamai,” SIG-
COMM Computing Comm. Review, vol. 36, no. 4, pp.
435–446, 2006.

[20] R. Arends, R. Austein, M. Larson, D. Massey, and
S. Rose, “DNS Security Introduction and Require-
ments (RFC 4033),” 2005.

[21] OpenDNS, “Privacy Policy,” See http://www.
opendns.com/privacy/, July 2007.

[22] M. Deshpande and G. Karypis, “Item-based Top-
N Recommendation Algorithms,” ACM Transactions
on Info. Sys., vol. 22, no. 1, pp. 143–177, 2004.

[23] F. Benevenuto, T. Rodrigues, M. Cha, and
V. Almeida, “Characterizing User Behavior in
Online Social Networks,” in ACM IMC, 2009, pp.
49–62.

Appendix
For Chrome (version 10), DNS prefetching can

be disabled by unmarking the check box “use DNS
prefetching to improve page load performance”
via the Tools → Options → Under the Hood
sub-menu (this is true even on Android smart-
phones). For Firefox (version 4), disabling this
feature is less obvious. Users can do so by
setting the network.dns.disablePrefetch pref-
erence to true via the about:config method. For
some versions of Firefox, it appears that the
network.dns.disablePrefetchFromHTTPS prefer-
ence should also be set to true in order to fully dis-
able DNS prefetching. Similarly, for other Mozilla
Necko-based apps (like Thunderbird), these pref-
erences can be set by editing the user.js file in
the user’s profile folder.

Under MacOS X prefetching for
Safari (version 5) can be turned off by
typing defaults write com.apple.safari

WebKitDNSPrefetchingEnabled -boolean false

within the Terminal. Unfortunately we are not
aware of any easy way to disable prefetching
under iOS for mobile devices.

