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Abstract—The domain name system plays a vital role in
the dependability and security of modern network. Unfortu-
nately, it has also been widely misused for nefarious activities.
Recently, attackers have turned their attention to the use of
algorithmically generated domain names (AGDs) in an effort to
circumvent network defenses. However, because such domain
names are increasingly being used in benign applications,
this transition has significant implications for techniques that
classify AGDs based solely on the format of a domain name. To
highlight the challenges they face, we examine contemporary
approaches and demonstrate their limitations. We address
these shortcomings by proposing an online form of sequential
hypothesis testing that classifies clients based solely on the
non-existent (NX) responses they elicit. Our evaluations on
real-world data show that we outperform existing approaches,
and for the vast majority of cases, we detect malware before
they are able to successfully rendezvous with their command
and control centers.

I. INTRODUCTION

Most administrators of enterprise networks would not
be surprised by the discovery of yet another compromise
on their networks. Indeed, attacks on computer networks
are now an all too familiar event, and so operators are
left with little choice but to deploy a myriad of network
monitoring devices, and traffic engineering solutions, to
ensure dependable and stable service of the networks they
operate. However, as networks grow bigger and faster,
staying ahead of this constant deluge of attack traffic is
becoming increasing difficult. A case in point are the attacks
on enterprise name servers that interact with the Domain
Name System (DNS). These name servers are a critical cog,
translating human readable domain names to IP addresses.
As a result, any misuse of this service can have a significant
impact on a network’s operational health. While some of the
attacks attempt to exploit flaws in the resolution process
(e.g., cache poisoning attacks [17, 22]), others are more
subtle and leverage an enterprise’s DNS infrastructure to
facilitate their nefarious activities. In this paper, we focus
on the latter problem, highlighting a growing abuse of enter-
prise name servers whereby infected clients use automated
domain-name generation algorithms to bypass defenses.

As the name suggests, domain-name generation algo-
rithms are designed to generate names that refer to resources
within the DNS namespace while minimizing potential
collisions. Examples of malware that exhibit such behavior

are botnets such as conficker and kraken and web-
based malware and trojans such as RunForestRun [25].
Conficker is a sophisticated computer worm that propa-
gates while forming a botnet. Since its discovery in 2008,
it has remained surprisingly difficult to counter because
of its combined use of advance malware techniques. To
date, it has infected millions of computers worldwide. The
early variants would reach out to 250 pseudo-randomly
generated domain per day from eight Top Level Domains
(TLDs) in an attempt to update itself with new code or
instructions. In an unprecedented act of coordination, the
cybersecurity community organized to block the infected
computers from reaching the domains. Once the malware
was reverse engineered, the defenders were able to leverage
its domain generation algorithm to pre-register domains with
the cooperation of the appropriate registries and authorities.
The so-called Conficker Working Group sought to register
and otherwise block domains before the Conficker op-
erators, thereby preventing them from updating the botnet.
Unfortunately, the Conficker operators responded to the
defensive pre-registration practices by increasing the number
of domains contacted by the infected computers—from 250
to 500 (of 50,000 possibilities) across 116 different TLDs.

Even more problematic for defenders, algorithmically
generated domain names (AGD) are now also used for legit-
imate purposes. For instance, content distribution networks
(CDNs) use such techniques to provide identifiers for short-
lived objects within their networks, or to perform latency
experiments [6]. Additionally, services like Spamhaus and
Senderbase regularly use algorithmically generated domain
names to query DNS blacklist information. Unfortunately,
the security community has largely dismissed the prevalence
of these legitimate uses of such domain names, and in doing
so, overlooked their effect on the ability to detect malfea-
sance based solely on information gleaned from a domain
name. Given that most methods to detect malicious algorith-
mically generated domain names leverage techniques that
compare distributions of domain name features extracted
from benign and malicious domains, algorithmically gen-
erated domain names used in benign applications can have
a large impact on the accuracy of these techniques.

We explore techniques for identifying infected clients on
an enterprise network and focus on their operational impact
in terms of accuracy, timeliness of detection, and scalability



to large networks. First, we explore the efficacy of existing
botnet detection techniques that rely solely on the structure
of the domain name as a distinguishing feature in malware
identification. More specifically, we implement techniques
suggested in recently proposed detection mechanisms (e.g.,
[31, 32]) and evaluate these techniques on traces collected
at a large campus network. We also examine the impact that
the rise of benign applications (e.g., for performance testing
in Web browsers and for location-based services prevalent
in CDNs) has on these detection techniques. We show
that the application of state-of-the-art detection techniques
lead to high false positive rates, even when classifiers are
enhanced with a combination of smoothing and whitelisting
strategies. Moreover, successful classification only occurs
after extended observation periods—which directly impacts
the practical utility of these approaches.

To address these shortcomings, we propose an approach
that exploits the fact that botnets tend to generate DNS
queries that elicit non-existent (NX) responses. In particular,
we leverage the fact that a noticeable side-effect of a bot’s
attempts to evade blacklisting is its tendency to have a wider
dispersion of NX responses across DNS zones (compared
to benign hosts). Our technique is based on sequential
hypothesis testing (popularized by Jung et al. [15]) to
classify internal client machines as benign or infected. In
doing so, we address some key challenges, including the
need to differentiate between benign and malicious DNS
queries originating from the same client, and the ability to
scale to high traffic loads. We show that our approach meets
both of these challenges. Furthermore, one of the unique
characteristics of our approach is that by focusing solely on
NX traffic (and using novel filtering and domain collapsing
techniques), we can achieve high accuracy on a fraction of
the overall DNS traffic (e.g., 4%) which allows us to scale
to larger networks. By contrast, existing approaches use all
DNS traffic during analysis. Lastly, in an effort to reduce the
cognitive load on a security analyst (performing a forensic
analysis on the hosts flagged as suspicious), we provide an
approach to cluster the output of our detector.

The rest of the paper is organized as follows. First, in
§II, we explore the background of algorithmically generated
domain names and discuss pertinent related work. §III
covers our data collection infrastructure and summarizes
the data used in our evaluation. In §IV we provide a
detailed evaluation of existing techniques using domain
name features and their shortcomings. We then introduce
our technique in §V, followed by a detailed evaluation on
archived data in §VI. To reduce the cognitive load on a
security analysts, we also provide a technique for visualizing
clients flagged by our technique. We provide operational
insights on the deployment of our technique on our campus
network in §VII, and conclude in §VIII.

II. BACKGROUND AND RELATED WORK

Unfortunately, the term algorithmically generated do-
main has been used in differing contexts in the existing
literature. Antonakakis et al. [3], for example, describe an
AGD as an “automatically generated pseudo-random domain
name” created by a botnet using a domain generation algo-
rithm (DGA), whereas other authors [4, 5, 24, 32] simply

refer to the process of generating domains as “domain flux-
ing.” In this paper, we consider an algorithmically generated
domain as a domain that is generated by an automated
process with the key objective of minimizing collisions
within the DNS namespace. Consequently, algorithmically
generated domains tend to be relatively long pseudo-random
strings derived from some global seed. Google Chrome’s
domain generator, for example, creates three alpha-character
strings (each of length ten) upon startup, and these strings
are used to test whether the configured DNS server hijacks
non-existent (NX) responses. If so, Chrome does not per-
form prefetching [13] of search terms that are entered into
its location bar.

A recent method for identifying malicious traffic is to
take advantage of historical information about the domain
name being requested. As DNS-based reputation systems
have been more widely deployed, attackers have turned to
algorithmically generated domains (with short lifetimes) to
circumvent these blacklists. As this cat and mouse game
has continued, more timely blacklist and reputation-based
systems have emerged (e.g., [1, 2, 4, 9]). Most of these
proposals use features that are time-based, answer-based, or
TTL-based to detect and model domains involved in mali-
cious activity. Additionally, network-, zone-, and evidence-
based features of DNS data are also used. For instance, both
Antonakakis et al. [2] and Yadav et al. [32] take advantage
of the fact that for high availability, botnets tend to map
several domains to an IP address (or vice-versa). Defenders
can therefore use the web of domains and IPs to uncover
the underlying network infrastructure used by the botnet.

Other auxiliary information can also be used. Hao et al.
[11], for example, use the fact that domains are registered
“just in time” before an attack. More recent work [3, 14,
27, 31, 32] focuses on the fact that bots tend to generate
lookups to hundreds or thousands of random domain names
when locating their command and control server. Yadav and
Reddy [31] rely on the burstiness of NX responses as well
as the entropy of domain name character distributions to
classify bot clients. By contrast, Antonakakis et al. [3] use a
five-step clustering approach that clusters NX domains based
on client-level structural information, and then incorporates
network-level information to better classify AGDs. Jiang
et al. [14] cluster failed DNS queries and attempt to identify
subclusters with specific, presumably malicious, patterns.

Unlike the aforementioned works, we do not rely on
domain structure or clustering techniques to identify bots.
Rather, we focus entirely on the NX traffic patterns of
individual hosts. As a result, our approach is lightweight,
and can accurately identify bots upon seeing far fewer
unique domain names than prior work. Furthermore, we
utilize NX traffic exclusively, thereby enabling realtime
analysis by using only a fraction of all DNS traffic observed.

The application of sequential hypothesis tests [28] in
security context is by no means new. Jung et al. [15],
for example, proposed a threshold random walk (TRW)
algorithm to detect bots on a network. The insight behind
their approach is that external scanners are more likely to
contact inactive IP addresses than benign hosts, and so a
sequential hypothesis test can be used to observe success
and failure events in such an environment. Each success or



failure event moves a score towards one of two thresholds:
one confirming the null hypothesis and another confirming
the alternative hypothesis. After a number of events that are
largely dictated by the TRW parameters, the score usually
crosses a threshold, confirming one of the hypotheses.
Similar ideas have been used to detect the propagation of
worms [16, 20, 29], to identify opaque traffic [30], and to
find node replication attacks in wireless networks [12].

III. COLLECTION INFRASTRUCTURE

To aid in our pursuit of understanding AGD-based bot
communication and develop an algorithm to detect bots,
we collected and analyzed DNS traffic from several name
servers at our campus for a week in March 2012. The
monitored name servers served as the primary name servers
for the entire wireless network as well as student residences
and several academic departments around campus. The
servers serve approximately 76,000 internal clients on a
weekday and 50,000 clients on the weekends.
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Fig. 1: DNS Monitoring Infrastructure

A. Data Summary

Our collection infrastructure (see Figure 1) consists of
a DNS trace collector and dissector. The DNS servers we
monitored sits behind a load balancer, and all wireless
clients using the campus network are assigned to one of
these name servers during their DHCP registration. DHCP
leases on this network are bound to the client’s MAC
address, and remain in effect for at least a few weeks. The
DNS traffic from these servers is processed using a custom
DNS engine. The packets in the trace are anonymized and
encrypted while resident on disk.

We chose three consecutive days (March 18-20) for
analysis. Table I summarizes some of the key statistics. The
increase in traffic on March 19th corresponds to the start of
the work week. Table I also shows that approximately 3%
of all DNS queries result in non-existent or NX responses.
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Fig. 2: CDF of domain name lengths for benign domains

A DNS server sends an NX response to a client when an
entry for the domain queried by the client does not appear
in the global DNS database. A mistyped domain name,
for example, will lead to an NX response. Algorithmically
generated domains comprise a surprisingly small amount of
overall NX traffic, but they can have a large impact on the
overall health of an enterprise network.

Apart from the DNS data we collected on campus, we
compiled a list of 2,500 known botnet AGDs from publicly
available blacklists. In particular, we targeted bots that are
known to use DGAs for communication. Table II provides
a summary of the bot families and their distribution within
our blacklist. Besides the five well-known bot families rep-
resented in Table II, we also supplemented our blacklist with
a set of newly discovered domains. The discovered domains
were found by grouping DNS responses that originated from
name servers that were used by the five well-known bot
families. The domains in our list are used to study features
used by existing techniques to detect DGAs, as well as
compare the effectiveness of these techniques to ours.

TABLE I: DNS traffic stats for three days in March 2012.

March 18 March 19 March 20
# of DNS Clients 49.7K 75.4K 77.1K
# of DNS Queries 37.3M 61.2M 60.3M
# of NX response 1.3M 1.8M 1.7M
# of distinct domains 1.5M 1.8M 1.8M
# of distinct zones 373.4K 528.2K 566.4K
# of distinct NX domains 190.4K 216.2K 220.4K
# of distinct NX zones 15.3K 22.1K 24.2K

IV. CLASSIFICATION BASED ON FEATURES OF A
DOMAIN NAME

Existing techniques focus on properties of the name
in order to identify and cluster algorithmically generated
domain names. For instance, Antonakakis et al. [3] and
Yadav et al. [32] used the length of a domain name as
a feature to distinguish malicious domains from benign
domains. Figures 2 and 3 show the distribution of the lengths
of domain names for a set of benign and malicious domains.



TABLE II: Summary of bot samples used in our blacklist.

Bot Family # Samples Sample of generated domain name
Bobax 1079 nghhezqyrfy.dynserv.com
Conficker 728 rxldjmqogsw.info
Cridex 389 frevyb-ikav.ru
Zeus 300 pzpuisexhqc69g33mzpwlyauirdqg43mvdt.biz
Flashback 100 fhnqskxxwloxl.info
Discovered 314 brmyxjyju.org

The benign domains shown in Figure 2 include do-
mains for known CDNs and other benign domains from
alexa.com. Notice that domain names from alexa.com
exhibit uniformly distributed lengths between 5 and 20
characters, while CDNs exhibits longer lengths clustered
around a few discrete points. Similarly, the lengths of
domain names used by botnet (in Figure 3) also cluster
around a few discrete points; likely as a result of the
generation processes they use. This similarity between the
lengths of botnet domain names and benign CDN domain
names suggests that the length of a domain name might not
be a strong distinguishing feature.
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Fig. 3: CDF of lengths for botnet-related domains

Other proposals incorporate the use of similarity metrics
for detecting malicious AGDs. In what follows, we revisit
three similarity metrics used in current proposals, namely
Kullback-Leibler (KL) divergence, Jaccard Index (JI), and
Levenshtein distance. We discuss each in turn.

KL Divergence: One approach for detecting algo-
rithmically generated domain names is to use the Kullback-
Liebler (KL) divergence to compare character frequency
distributions. Kullback-Liebler divergence [18] measures
the relative entropy between two probability distributions.
Yadav et al. [32], for example, use a maximum-likelihood
classifier [19]—with KL as its distance metric—for detect-
ing malicious AGDs. The intuition is that malicious algorith-
mically generated domain names have character and n-gram
frequency distributions that are significantly different from
character distributions derived from benign domains.

Jaccard Index: The Jaccard Index is a similarity
metric that counts the bigram occurrences in two strings
and measures the amount of overlap between them. The idea

is that randomized strings (or supposedly-malicious domain
names) should have a set of bigrams that is different than
bigrams in a normal (non-malicious) English-based string.

Levenshtein Distance: Edit distance is a measure
between two strings, which counts the number of insertions,
deletions, and substitutions to transform one string to an-
other [19]. In the case of algorithmically generated domains,
the assumption is that because a group of malicious domain
names are randomly generated, their average edit distance
should be higher than a group of non-malicious names.

Each of the similarity metrics operate on a group of
domain names in order to achieve detection accuracy. Yadav
et al. [31, 32], for example, recommend 200 to 500 domain
names for best results. To create the necessary clusters
for evaluation, we apply the method suggested in [32]
wherein clusters are created by mapping domain names to
their corresponding server IP addresses over a specific time
window. This is done because botmasters tend to register
multiple domains to the same server IP address.

We evaluated 42,870 domain name clusters from March
19, 2012 which contained 13 sink-holed instances (or clus-
ters) of the conficker bot. A sinkhole is a name server
that redirects malicious traffic to some address under control
of the defender, in order to contain the malware. We manu-
ally inspected each cluster to ensure no other bot instances
were found and supplemented the ground truth with four
clusters (each containing 300 entries) of AGDs sampled
from our list of known botnets (see §III-A). Additionally,
since the Kullback-Liebler and Jaccard Index based classi-
fiers require both benign and malicious training models, we
built the benign training model using the top 10,000 domains
from alexa.com and the malicious training model using
the list of 2,500 domains from our blacklist.

Findings: Table III shows the results of using a
Kullback-Leibler-based classifier, which achieved the high-
est accuracy in our evaluation. The classifier is able to
identify the presence of all of the malicious samples, but
even then, it has an exceedingly high false positive rate
of 28%. A large fraction of CDN traffic is incorrectly
classified as malicious, which is one factor contributing to
the high false positive rate. A natural way to improve the
performance of the classifier would be to whitelist popular
CDNs [31]. Figure 4 shows the result of using the different
classifiers with varying domain cluster sizes and whitelisted
CDNs. We find that, even with filtering, the KL classifier
achieves a 12.5% false positive rate with a cluster size of at
least 200 domain names. As we show later in Section IV-A,
such large cluster sizes have implication on detection rates,
processing speeds, and accuracy.

The classifier using Jaccard’s Index achieved the sec-
ond highest accuracy amongst the techniques evaluated.



TABLE III: Results of the KL classifier for Mar.19, 2012.

Domain Source Daily
True Positives False Positives

Bot Traffic 1.0 0.28
Facebook (CDN) 0.65 0.35
Cloudfront (CDN) 0.36 0.64
Amazon (CDN) 0.72 0.28
Google IPv6 (CDN) 0.18 0.82

However, as Figure 4 suggests, the accuracy came at a
high cost—a true positive rate of 92% with corresponding
false positive rate of 14%. Furthermore, the Jaccard-based
classifier is the slowest of all techniques tested, which limits
its ability to be used in an online fashion.

Figure 4 also shows the classification results using an
edit distance approach. The plot shows the true and false
positive rates when varying the edit distance threshold. In
that evaluation, we generated the edit distance values for
groups of botnet and benign domain names within our
training sets and used that to determine a threshold value
that would separate normal traffic from malicious AGDs. We
found that 70% of the benign groups had an average edit
distance score of eight or below. Of the malicious groups,
conficker averaged a score of eight, while bobax and
cridex score between nine and eleven. Zeus was a
consistent outlier with scores above 35.
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Fig. 4: ROC Curves for Jaccard Index, Edit Distance and
KL Divergence using the daily dataset and CDN filtering.

A. Shortcomings of Existing Methods

Overall, the application of a KL-based classifier per-
formed reasonably well, providing classification decisions
for all the domain clusters within a few minutes. The
problem, however, is that it required on the order of a few
hundred domain names in each cluster to provide accurate
results. To see why this is problematic, we note that it
may take several hours before a cluster meets the minimum
threshold required to achieve the classification results given
in Table III; in particular, during a one week period we

observed eight conficker instances, one cridex and
one spambot. Two of the conficker instances queried
less than 200 randomly generated domain names, while
the other six instances took almost three hours to query
100 domain names, and 3.5 days to query 500 domain
names. The cridex and spambot instances generated
less than 10 domain name lookups during 3.5 days. This
rate of activity requires many days of monitoring before
classification can occur, rendering the technique unusable
for detecting and blocking malicious activity from these
sources.

From an operational perspective, the Jaccard Index ap-
proach is appealing because of its ease of implementation
and reasonable performance. The simplicity, however, comes
at the cost of computation time: it took several hours to
classify all the domain clusters in just one day’s worth
of DNS traffic. Another disadvantage is the fact that the
approach is highly sensitive to the training dataset and the
number of domain names in the cluster being evaluated.

Methods based on edit distance, on the other hand, have
the advantage of not requiring training data and can operate
on small clusters of names. That said, we found the edit
distance approach to be the least effective of the techniques
we evaluated. Its high false positive rates are tightly coupled
with the difficulty of selecting an appropriate threshold
value. For real-world deployments, the need to constantly
monitor and fine tune these thresholds significantly dimin-
ishes its practical utility. This technique was also extremely
slow, taking several hours to process the dataset.

Taken as a whole, our analyses indicate that the exam-
ined approaches are not robust enough to be used in produc-
tion environments. This is particularly true if additional aux-
iliary information (e.g., realtime reputation information from
various network vantage points in the DNS hierarchy [3]) is
not being used to help address real-world issues that arise
when dealing with the complexities of network traffic—
where friend or foe can be easily confused. Moreover,
these techniques all make the fallacious assumption that
anomalous behavior equates to malicious activity and so the
use of algorithmically generated names for benign purposes
undermines this assumption.

V. OUR APPROACH

To address the accuracy and performance issues inherent
in the aforementioned approaches, we present a lightweight
algorithm based on sequential hypothesis testing which
examines traffic patterns rather than properties of a domain
name in order to classify clients. The intuition behind our
approach is that a compromised host tends to “scan” the
DNS namespace looking for a valid command and control
server. In doing so, it generates a relatively high number of
unique second-level domains that elicit more NX responses
than a benign host. As a result, the problem lends itself to
using sequential hypothesis testing [28] to classify clients as
bots based on online observations of unique NX responses.

The general idea is illustrated in Figure 5. In Step Ê,
we reduce the amount of data we analyze by over 90%,
retaining only NX response packets. Next, we extract the
client IP address and zone of the domain name from each
packet (Step Ë) and then filter NX responses for well-known



DNS Packets

Hypothesis Test

Update Client Score

15.0

!

Classify Host 

Benign, Bot, 

Pending

Client

Bot

Benign

Pending

"

Extract Client IPs and 

DNS Zones

#
IP DNS 

Zone

NXNX

Capture NX 

Responses

$

NX

NX

Filter Benign NX 

Packets

%

NX

NX

NX
NX

Fig. 5: High-level overview of the our workflow.

(benign) domain names (Step Ì). The zone information of
the remaining domain names are used to adjust the client’s
score. The score is adjusted up or down based on whether
the client has seen the zone before (Step Í). Finally, the
new score is compared to both a benign threshold and a bot
threshold. If either threshold is crossed, then the client is
classified; otherwise, the client remains in the pending state
waiting for another NX response (Step Î).

Our goal is to accurately classify a host as a bot or
benign while observing as few outcomes as possible. To
that end, we approach the problem by considering two
competing hypotheses, defined as follows:

Null hypothesis H0 = the local client l is benign.
Alternative hypothesis H1 = the local client l is a bot.

A sequential hypothesis test observes success and failure
outcomes (Yi, i = 1, ...n) in sequence and updates a test
score after each outcome. A success pushes the score for
client l towards a benign threshold while a failure pushes
the score towards a bot threshold. In our context, we define
a success and failure outcome as follows:

Success Yi = 1 Client l receives an NX response for a DNS
zone it has already seen.

Failure Yi = 0 Client l receives an NX response for a
unique DNS zone.

For simplicity, we consider a DNS zone as a portion of the
DNS namespace that is administered by a single entity (e.g.,
the google.com zone is administered by Google).

The size of the step taken towards the thresholds is
decided by the values θ0 and θ1. The value of θ0 is defined
as the probability that a benign host generates a successful
event while θ1 is the probability that a malicious host
generates a successful event. More formally, θ0 and θ1 are
defined as:

Pr[Yi = 0|H0] = θ0, Pr[Yi = 1|H0] = 1− θ0
Pr[Yi = 0|H1] = θ1, Pr[Yi = 1|H1] = 1− θ1

(1)

Using the distribution of the Bernoulli random variable,
we calculate the sequential hypothesis score (or likelihood
ratio) as follows:

Λ(Y ) =
Pr[Y |H1]

Pr[Y |H0]
=

n∏
i=1

Pr[Yi|H1]

Pr[Yi|H0]
(2)

where Y is the vector of events observed and Pr[Y |Hi]
represents the probability mass function of event stream Y
given Hi is true. The score is then compared to an upper
threshold (η1) and a lower threshold, (η0). If Λ(Y ) ≤ η0
then we accept H0 (i.e., the host is benign) , and if
Λ(Y ) ≥ η1 we accept H1 (i.e., the host is malicious). If
η0 < Λ(Y ) < η1 then we are in the pending state and must
wait for another observation.

The thresholds are calculated based on user selected
values α and β which represent the desired false positive and
true positive rates respectively. The parameters are typically
set to α = 0.01 and β = 0.99. The upper bound threshold
is calculated as:

η1 =
β

α
(3)

while the lower bound is computed as:

η0 =
1− β
1− α

(4)

A key challenge in our setting is that because we monitor
internal hosts, we see all client-side DNS traffic, including
the benign queries (e.g., from web browsing sessions) as
well as the malicious queries of the bot. However, since the
benign activities mostly result in successful DNS responses,
we can safely filter such traffic and focus on NX responses
(where the bot has more of an impact). This strategy has the
side effect of discarding the vast majority of DNS packets,
thereby allowing us to operate at higher network speeds. We
further filter the traffic by only processing second level DNS
zones, rather than fully qualified domain names (FQDNs).
We focus on second-level domains since most bots generate
randomized second-level domains in order make it more
difficult to blacklist them and to hamper take-down efforts.

We also take advantage of the fact that NX traffic
access patterns for benign hosts follows a Zipf’s distribution.



Indeed, over 90% of NX responses in our data are to 100
unique zones. The bot DNS queries lie in the tail of the
Zipf curve, hidden by the vast amounts of benign traffic.
To quickly sift through this mountain of data, we apply a
Zipf filter comprising the most popular zones1 and remove
matches using a perfect hash. Finally, each time a client is
declared benign its state is reset, forcing it to continuously
re-prove itself.

Limitations: A straightforward evasive strategy is for
a bot to spread its DNS queries across a large time window,
essentially implementing a low and slow approach. While
this is a viable strategy, we believe that doing so drastically
slows a bot’s ability to communicate with its command-
and-control server — resulting in a clear win for defenders.
Another strategy is to attempt to increase our state tracking
overhead by making DNS requests from spoofed IPs. That
said, in modern networks practical IP spoofing is readily
detectable, especially when media access control (MAC)
address registration is enforced. Alternatively, if IP spoofing
is a significant concern, one could enforce DNS over TCP
for local hosts connecting to internal resolvers.

VI. EVALUATION

Unlike the approaches [3, 31, 32] discussed earlier, we
classify client IPs based on NX traffic patterns. As such,
ground truth in our case is a list of clients exhibiting
botnet-like behavior. To attain ground truth for the analyses
that follow, we excluded any hosts that did not receive
NX responses, and then discarded any connections that
received NX responses from white-listed NX zones (e.g.,
senderbase.org). The white-list was created by manually
inspecting the top 100 zones of domain names that elicit
NX responses2. We then cross-referenced the domain names
from the remaining clients against well-known blacklists.
While this approach was helpful in identifying known bots,
it clearly is of little help in identifying new bots that were
yet discovered in the wild on the date of our analysis. To
address this possibility, we applied two techniques. First, we
performed lookups on domains that received NX responses
in March to see if any of those domains were now sink-
holed. And second, we hand-labeled the remaining clients
on whether they had similar name structure as existing
AGDs, generated a sequence of at least two or more domains
names that followed a similar structural convention (e.g.,
character set and length of the domain name), and received
NX responses. In the end, we found a total 255 clients: 66
clients on March 18th, 101 on the 19th and 88 on the 20th.

On Parameter Selection: Both θ0 (the probability
that a benign host sees a success event) and θ1 (the probabil-
ity that a malicious host sees a success event) are parameters
that must be set appropriately in any real-world deployment.
Therefore, they must be calculated for each deployment of
our sequential hypothesis framework. Fortunately, we show
that these parameters can be robustly computed from a
relatively small amount of traffic. Recall that in §V, we
defined a successful outcome as one where a host receives
NX responses for a zone it has already contacted at least

1In our empirical evaluations, we use the top 100 zones
2We confirmed the stability of the white-list using historical NX traffic

from within our network spanning several months.

100 101 102 103 104 105

NX Record Count

0.0

0.2

0.4

0.6

0.8

1.0

CD
F 

(%
 c

lie
nt

s)

Benign (All NX)
Benign (Unique NX)
Malicious (All NX)
Malicious (Unique NX)

Fig. 6: NX zone counts for benign and malicious clients.

once in the past, and a failure outcome every time a NX
response is generated for a zone not seen previously. To
estimate these parameters, we simply track NX responses
on a per-client basis for a set window of time, counting
successes and failures.

From our empirical analyses, we find that the majority of
DNS traffic is in fact benign, and the AGD traffic comprises
less than 2% of the overall traffic. We expect this to be true
within most enterprise networks, allowing us to estimate θ0
by simply computing the percent of successful connections
for all NX traffic observed in that window of time.

Estimating θ1, on the other hand, is more difficult. If
an operator is fortunate enough to have an oracle by which
she could separate benign from malicious hosts and build
ground truth for her network, then she could infer θ1 by
computing the percent of successes generated by malicious
hosts. However, in the real world, access to such an oracle
is difficult, if not impossible; hence, θ1 must be estimated
by other means. In our work, we have found that by
discarding all clients that generate less than δ failure events,
we can achieve a reasonable approximation of θ1 from the
remaining traffic. This is based on the fact that bots tend to
generate far more failure events than benign hosts.

Figure 6 offers insight into why the application of
sequential hypothesis testing makes sense in our setting.
Notice that ninety-five percent of benign hosts receive NX
responses for four or less unique zones, while 98% of
bots receive NX responses for four or more hosts over a
day. Hence, by monitoring only NX traffic, we see a clear
delineation between benign and infected hosts. Based on
this observation, we set δ = 4 for the approximation of θ1
within our network.

A. Offline Analysis

In order to evaluate the accuracy of our classifier, we
used a k-fold cross-validation. Cross-validation is a method
typically used to assess the performance of a classifier by
partitioning data into k-subsets. One subset is used for
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Fig. 7: Box-and-whisker plot of the error estimation for k-
fold cross-validation for varying training window sizes

training, while the others are used for testing. This process
is repeated k−1 times until each of the k subsets has served
as a training set. In the results that follow, we estimated θ0
and θ1 based on the designated training set, then fixed these
values on the testing data.

We performed a set of experiments to estimate an
appropriate training window size. We chose ∆ = 6, 12, and
24-hour intervals as window-size candidates, dividing the
dataset by each. We then split the ground-truth data based on
the clients observed within those time windows. Similarly,
θ0 and θ1 were estimated for each of the time windows
using the technique discussed earlier. We ran a k-fold cross-
validation for each of the intervals (where k = 10, 5, 3) and
compared the prediction errors between them.

Figure 7 shows the results of each experiment. The
prediction errors are computed as the root mean square error
over two repeated runs and plotted as a Box-and-Whisker
plot to show the mean and variance within each experiment.
Our experiments indicate that a training window of ∆ = 24
hours yields the best results with an average root mean
square error of 0.034. The accuracy of the classifier is given
in Table IV.

TABLE IV: Accuracy for k-fold cross validation experi-
ments for varying training window sizes (∆).

k-fold validation Window Size (∆) TP FP
k = 3 24 hours .94 .002
k = 5 12 hours .86 .031
k = 10 6 hours .81 .048

Intuitively, a window size of 24 hours provides the
best results, because it takes into consideration the diurnal
patterns in network traffic. Therefore, the remainder of our
experiments use 3-fold cross-validation.

On Classification Speed: One of the major draw-
backs of existing approaches is the amount of time that
elapses before a host can be classified (see §IV). Although
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Fig. 8: Classification time after first unique NX response.

we do not have definitive information on exactly when a
client is infected, we approximate infection time as the
moment of the first unique NX response for a particular
client. We found that, on average, our technique detects bots
within three to four unique NX responses (with a maximum
of nine).

Figure 8 shows the time (in seconds) taken to classify a
client as a bot. The majority of bots are correctly classified
within only a few seconds of seeing the first unique NX
response—primarily because they perform tens of queries at
once. Some bots, however, take a more delayed approach,
making singular queries at uniform time intervals. In this
case, it can take several hours to detect them.

That said, since bots must receive instructions from a
command-and-control server, a more appropriate measure
might be to compute the time elapsed before the bot
successfully connects with its command center. We term this
connection the “rendezvous point.” Obviously, we desire the
ability to detect the bot before it makes that connection.

To perform such analyses, we choose a random sample
of 20 prominent bots from each of the three days and
located their rendezvous point by hand. Figure 9 shows the
difference between the rendezvous time and classification
time. In 10 [of 60] cases, the rendezvous takes place before
the bot is detected.In 16 cases, we detected the bot at the
same time as the rendezvous point, while in the remaining
cases, we declared the host as a bot seconds before the actual
contact with the command-and-control server was made.
Overall, in 83% of the cases, we detect bots either shortly
before or during the liaison with their command-and-control
servers. The differences in detection time from the 19th to
the 20th are due to a large AGD-based compromise that
occurred on campus on the 20th. The event was detected by
our approach and the results were shared with our campus
network operators.

On Hosts Pending Classification: Next, we consider
what fraction of clients remain in the pending state at the end
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Fig. 9: Time between classification and rendezvous.

of a given time window. We found that at the end of each
day (i.e., k = 3), 10% of the hosts were in the pending state.
Of those clients, 70% had a response from one (unique) NX
zone, 90% two or less, and 99% four or less. All but one
of the 18 bots (from the ground truth) that had not been
classified by the sequential hypothesis test (6 [of 66] on the
18th, 10 [of 101] on the 19th, and 2 [of 88] on the 20th),
were in the pending state. These 18 clients had generated,
on average, two or less unique NX responses in the allocated
time window.

Upon closer inspection we find that 95% of the pending
hosts were in that state for at least 2 1/2 hours and some
for almost the entire 24-hour period. This implies that as the
pending hosts age, strategies are required for removing these
hosts from the pending list in order to reduce our memory
footprint. One strategy is to use an approach similar to our
Zipf Filter, and generate a filter based on the top n unique
zones in the pending host list. With a cursory analysis using
the top 100 pending zones, we removed 30% of the hosts
in the pending state. Another option is to randomly prune a
certain percentage of the pending hosts based on their age or
their unique NX response count. We leave such extensions
as future work.

Comparison to Existing Work:: Lastly, to perform a
direct comparison to approaches that make use of NX traffic,
we implemented an approximation of the time binning
algorithm of Yadav and Reddy [31]. The work extends the
Edit-Distance technique (see §IV) to individual clients by
exploiting the fact that bots tend to make queries in bursts.
Their assumption is that by incorporating NX responses, do-
main samples can be gathered quicker than with successful
DNS queries alone.

We created the prerequisite clusters by collecting all
queries that elicited an NX response within 64 seconds
(before and after) of a successful rendezvous query for each
client [31]. The edit distance measure is then applied to
the clusters, and the average edit distance value for each
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Fig. 10: ROC curve for edit distance using NX responses.

cluster is compared with a threshold to determine whether
the cluster is malicious or not. We then built clusters for
each potential rendezvous point in the March 19th dataset.
Clusters that contacted well-known white-listed domains
(e.g., facebook.com) were filtered using the 100,000
most popular domain names (41,758 zones) from the March
dataset. This left 455,500 domain name clusters spanning
10,758 unique client IP addresses.

Figure 10 shows the true and false positive rates when
adjusting the edit distance threshold value. As with the
other edit distance approaches (see §IV), this extension also
resulted in a high false positive rate (of over 14%). Even
with the extra domains collected from the NX traffic, we
were only able to gather at most 80 AGDs per cluster—far
below the 200 domain names required for accuracy [31]. In
fact, only 17 of the clients had clusters with more than 50
domain names. An additional limitation is that Yadav and
Reddy [31]’s approach requires storage of both successful
and NX domain names, which adversely affects its runtime
performance. By contrast, we store only the DNS zones for
each client, and only require updating a hypothesis test score
for each observed event.

B. Visualizing AGD Traffic

In an enterprise setting, a security analyst usually must
investigate the list of hosts declared as bots by any of
the aforementioned techniques. After the detection process
has completed, and to help reduce the cognitive load on
the analyst, we provide a technique for grouping clients
based on their AGD traffic. Our technique capitalizes on
observations we made while investigating the output of
our algorithm, namely that (1) multiple clients tend to be
infected with the same type of bot, and (2) the infected hosts
generate the same domain lookups because of the use of a
global seed.

These observations lend themselves to a natural grouping
procedure for a set S, where S denotes the clients declared
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as bots during some time window:

• ∀i ∈ S, let Si be the tuple 〈l, n0, n1...nm〉 where l
is the client’s IP, and n0, ...nm the list of NX zones
queried.
• Let G = ∪ n0, . . . nN ∈ S.
• For each client l, let bl be a bitmap of length N

representing the zones in G and set the bits to 1 for
the domains that the client has queried.
• Let the distance between two clients l1 and l2 be
distance(l1, l2) = 1

Bl1,l2
, where Bl1,l2 is the sum of

the number of bits set of the resulting ANDed bitmaps.
• Set S is clustered using hierarchical clustering [8].

Using this approach, we clustered the data for March
20th. The 747 clients were grouped creating 23 clusters of
two or more clients. Of those clusters, four contain 59 of
the 88 bots found in the ground truth. Figure 11 shows
a sampling of the AGDs generated by the clients in each
cluster. AGDs in the largest fonts are ones that appear in
all clients in the cluster. The smaller the font, the less
appearances the domain made.

To attain more information about the botnet families for
these clusters, we searched publicly available blacklists and
anti-virus websites for information on the domains. We then
performed lookups on the domains (e.g., using dig) to see
if they were sink-holed. Three of the four clusters were
sink-holed, and the fourth had known cridex AGDs (e.g.,
aecgrgbjgaofrilwyg.ru).

The remaining 29 bots (in the ground truth) did not clus-
ter. 18 of those hosts generated similarly structured domains,
but no two hosts generated the exact domains (see Table
V). Little information was found on the origins of these
domains. Another 3 clients contain multiple domains that
are sink-holed to an address linked to the TDSS botnet [10].

TABLE V: AGDs that clustered by domain length.

IPs Example AGDs
IP 1 kt2syggf436dtag458.com
IP 2 kt2syggf436dtag182.com
IP 1 jhbvyvuyvuyvuvujvuvrf6r66.com
IP 2 bbgyujh6uh7i5y67567y5b7.com
IP 3 csfsdfvdbdbbfbnmcnq8858.com
IP 1 27613082671222563732.com
IP 2 79735931367645588627.com
IP 3 13348318318656728693.com
IP 1 e7722746d7c642c2a6793cb8935c45da.com
IP 2 80b8024c08484f029d1c229f5030c741.com
IP 3 c62fb768db0c4d179bfb200fcc415c9f.com

VII. ANALYSIS OF LIVE TRAFFIC

To further demonstrate the utility of our technique, we
implemented an online version and deployed it on our
campus network. For the live test, we used an Endace 9.2X2
Data Acquisition and Generation (DAG) card connected to a
host machine. This setup was used to monitor DNS traffic at
the border of our campus network. The DAG captures DNS
packets at line rates and places them in a shared memory
buffer without relying on the host. As a result, we can take
full advantage of the host (a 2.53 Ghz Intel Xeon core
processor with 16GB memory) for packet inspection. As
DNS packets are placed into the shared memory buffer by
the DAG card, they are assigned to an available core to
perform the initial dissection. If the packet requires further
processing, it is passed from core to core in a pipeline, where
each core is assigned a specific task. This design allows us
to easily scale by dynamically assigning packets and tasks
across multiple cores.

As Sommer et al. [21] note, utilizing multi-core archi-
tectures to provide parallelism is important in order to be
able to provide online network analysis at line speeds. To
that end, our network capture and analysis engine supports



multi-threaded processing and uses two basic thread models:
a staged pipeline to stitch together processing stages (dissec-
tion, signature matching, statistics etc), and a pool model to
parallelize processing within each stage. Each stage is run on
a different core and we implement lock-free ring buffers [26]
to ensure high throughput across the pipeline buffer and en-
sure data synchronization. The lock-free data structure was
built using Compare-and-Swap (CAS) primitives provided
by the underlying x86 architecture. The packet dissection is
performed by protocol specific finite state machines (FSMs).
Layers within a network packet are modelled as states and
transitions between states are modelled as events. Using
FSMs allows us to add and remove protocol dissectors
easily and provides us with the ability to dynamically assign
“processing depth” for an individual packet. For example,
our DNS FSM allows the programmer to decide how far
into the packet to dissect.

Our online evaluation spans a period of 24 hours in
November, 2012. The traffic reflects well-known diurnal
patterns, with a large mid-day peak of approximately 80,000
DNS connections per minute. However, NX traffic accounts
for less than 10% of the overall traffic, which highlights
one of the benefits of using such data for botnet detection.
Our throughput analysis shows that we can operate on live
traffic with zero packet loss and < 15% CPU utilization.
Note that by using NX traffic, DNS zones (rather than fully
qualified domain names), domain name caching, and Zipf
filters, we are able to store state information on the order
of megabytes versus gigabytes. In larger deployments, one
could use space efficient data structures (e.g., bloom filters)
to keep track of state for several million IP addresses. We
leave this as an exercise for future work.

Analysis of our results show 63 cases of sus-
pected or known malicious traffic. Included in our find-
ings were the TDSS and Z bots, numerous spam-
bots, an OSX.FlashFake trojan and a FakeAV trojan.
We also detected traffic of RunForestRun [25] and
BlackHole [23]. One noteworthy discovery was that of
the so-called Italian typo-squatting trojan [7] that uses
domains that are misspellings of existing domains (e.g.
gbazzetta.it,gazzxetta.it). Interestingly, the do-
main names used by this trojan would have relatively low
edit distance scores making it difficult to detect them using
the similarity-based techniques in §IV.

VIII. CONCLUSION

In this paper, we study currently available techniques
for detecting malicious, algorithmically generated, domain
names. Our treatment centers on high accuracy and timeli-
ness, which are key criteria in operational settings. We show
that while contemporary techniques can detect the presence
of malicious domain names, they incur high false positive
rates, and require long observation periods before classifi-
cation can occur. We address many of the shortcomings of
contemporary approaches by presenting a lightweight tech-
nique based on sequential hypothesis testing. Our approach
takes advantage of the fact that bots generate a relatively
high number of unique NX responses when searching for a
command-and-control server. Our extensive empirical eval-
uations show that we are able to classify hosts in as little
as three to four NX responses, on average. Moreover, the

lightweight nature of our approach makes it well-suited for
real-world deployment.

IX. ACKNOWLEDGEMENTS

We express our gratitude to Stan Waddell and Alex
Everett of the Information Technology Service Office and
our networking staff (especially, Murray Anderegg, Bil
Hayes and Jim Gogan) for their efforts in deploying the
infrastructure for this study. The researchers and the Tech-
nology Service Office have a longstanding memorandum
of understanding in place to collect anonymized network
traffic on campus. The memorandum covers specific uses
and types of networking data, as well as conditions for
securing and accessing such data. We also thank Jay Aikat,
Michael Bailey, Kevin Snow, Andrew White and the anony-
mous reviewers for their insightful comments. This work
is supported in part by the National Science Foundation,
under award numbers 0831245 and 1127361 and the Natural
Sciences and Engineering Research Council of Canada.

REFERENCES

[1] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and
N. Feamster. Building a Dynamic Reputation System
for DNS. In USENIX Security Symposium, 2010.

[2] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou,
and D. Dagon. Detecting Malware Domains at the Up-
per DNS Hierarchy. In USENIX Security Symposium,
2011.

[3] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou,
S. Abu-Nimeh, W. Lee, and D. Dagon. From Throw-
Away Traffic to Bots: Detecting the Rise of DGA-
based Malware. In USENIX Security Symposium, 2012.

[4] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi.
EXPOSURE: Finding Malicious Domains using Pas-
sive DNS Analysis. In Symposium on Network and
Distributed System Security, Feb. 2011.

[5] K. Born and D. Gustafson. Detecting DNS Tunnels
Using Character Frequency Analysis. In Proceedings
of the Annual Computer Security Conference, 2010.

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman,
and B. Weihl. Globally distributed content delivery.
IEEE Internet Computing, 6(5), Sept. 2002.

[7] A. Eckelberry. Massive italian typosquatting ring foists
malware on users. http://goo.gl/4ZzMI, 2007.

[8] B. Everitt, S. Landau, M. Leese, and D. Stahl. Cluster
Analysis. Wiley Series in Probability and Statistics.
Wiley, 2011.

[9] M. Felegyhazi, C. Kreibich, and V. Paxson. On the
potential of proactive domain blacklisting. In USENIX
Conference on Large-Scale Exploits and Emergent
Threats, 2010.

[10] S. Golovanov and I. Soumenkov. TDL4 Top Bot. See
http://goo.gl/23BaA, 2011.

[11] S. Hao, N. Feamster, and R. Pandrangi. Monitoring the
Initial DNS Behavior of Malicious Domains. In ACM
SIGCOMM Internet Measurement Conference, 2011.

[12] J.-W. Ho, M. Wright, and S. Das. Fast detection of
mobile replica node attacks in wireless sensor networks
using sequential hypothesis testing. IEEE Transactions
on Mobile Computing, 10(6):767 –782, June 2011.



[13] ISC. Google Chrome and (weird) DNS Requests. http:
//goo.gl/j48CA, 2011.

[14] N. Jiang, J. Cao, Y. Jin, L. E. Li, and Z.-L. Zhang.
Identifying suspicious activities through dns failure
graph analysis. In International Conference on Net-
work Protocols, pages 144–153, 2010.

[15] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan.
Fast Portscan Detection Using Sequential Hypothesis
Testing. In IEEE Symposium on Security and Privacy,
May 2004.

[16] J. Jung, R. Milito, and V. Paxson. On the adaptive
real-time detection of fast-propagating network worms.
Journal of Computer Virology, 4:197–210, 2008.

[17] D. Kaminsky. Black ops 2008–its the end of the cache
as we know it. Black Hat USA, 2008.

[18] S. Kullback and R. Leibler. On information and
sufficiency. The Annals of Mathematical Statistics, 22
(1):79–86, 1951.

[19] P. H. R.O. Duda and D. Stork. Pattern Classification.
Springer-Verlag New York, Inc., Secaucus, NJ, USA,
Sept. 2007.

[20] S. E. Schechter, J. Jung, and A. W. Berger. Fast
detection of scanning worm infections. In Symposium
on Recent Advances in Intrusion Detection, pages 59–
81, 2004.

[21] R. Sommer, V. Paxson, and N. Weaver. An architec-
ture for exploiting multi-core processors to parallelize
network intrusion prevention. Concurrency and Com-
putation: Practice & Experience, 21(10):1255–1279,
July 2009.

[22] S. Son and V. Shmatikov. The Hitchhiker’s Guide to
DNS Cache Poisoning. In International Conference
on Security and Privacy in Communication Networks,
Sept. 2010.

[23] Sophos Inc. Exploring the blackhole exploit kit. http:
//goo.gl/ZhLvp, 2012.

[24] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert,
M. Szydlowski, R. Kemmerer, C. Kruegel, and G. Vi-
gna. Your botnet is my botnet: Analysis of a botnet
takeover. In ACM Conference on Computer and
Communications Security, pages 635–647, 2009.

[25] Unmask Parasites. Runforestrun and pseudo random
domains. http://goo.gl/xRWtw, 2012.

[26] J. Valois. Implementing lock-free queues. In In-
ternational Conference on Parallel and Distributed
Computing Systems, pages 64–69, 1994.

[27] R. Villamarn-Salomn and J. Brustoloni. Identifying
botnets using anomaly detection techniques applied to
dns traffic. In IEEE Consumer Communications &
Networking Conference (CCNC), 2008.

[28] A. Wald. Sequential Analysis. John Wiley and Sons,
Inc., 1947.

[29] N. Weaver, S. Staniford, and V. paxson. Very fast
containment of scanning worms, revisited. In Malware
Detection, pages 113–145. 2007.

[30] A. White, S. Krishnan, M. Bailey, F. Monrose, and
P. Parros. Clear and Present Data: Opaque Traffic and
its Security Implications for the Future. In Symposium
on Network and Distributed System Security, Feb.
2013.

[31] S. Yadav and A. N. Reddy. Winning with DNS
Failures: Strategies for Faster Botnet Detection. In
International Conference on Security and Privacy in
Communication Networks, 2011.

[32] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan.
Detecting algorithmically generated malicious domain
names. In ACM Internet Measurement Conference,
pages 48–61, 2010.


