
Evaluating the Security of Handwriting Biometrics

Lucas Ballard Daniel Lopresti Fabian Monrose

Johns Hopkins University
Baltimore, MD, USA

lucas@cs.jhu.edu

Lehigh University
Bethlehem, PA, USA

lopresti@cse.lehigh.edu

Johns Hopkins University
Baltimore, MD, USA

fabian@cs.jhu.edu

Abstract

Ongoing interest in biometric security has resulted in
much work on systems that exploit the individuality of hu-
man behavior. In this paper, we study the use of hand-
written passphrases in the context of authentication or
cryptographic key generation. We demonstrate that ac-
curate generative models for a targeted user’s handwrit-
ing can be developed based only on captured static (of-
fline) samples combined with pen-stroke dynamics learned
from general population statistics. Our work suggests that
such automated attacks are nearly as effective as skilled
human forgers and hence deserve serious consideration
when evaluating the security of systems that use handwrit-
ing as a biometric.

Keywords: biometric security, online handwriting, per-
formance evaluation, forgery threat models.

1. Introduction

Ongoing interest in biometric security and related top-
ics has resulted in much work on systems that exploit the
individuality of human behavior. Signature verification,
for example, has had a long, rich history, with hundreds
of papers written on the subject (see, e.g., [9, 16]).

The use of signatures has some well known advan-
tages: they are a natural and familiar way of confirming
identity, have already achieved acceptance for legal pur-
poses, and their capture is less invasive than most other
biometric schemes [5]. Still, each individual has only one
true signature — a severe limitation when it comes to cer-
tain security applications. As a result, researchers have
recently begun to examine using arbitrary handwritten
phrases, recasting the problem as one of computing cryp-
tographic keys or biometric hashes (e.g., [6, 10, 19, 20]).

In our work, we adopt such a paradigm to support the
study of threat models we believe have received insuffi-
cient attention in the literature. While some of the at-
tacks we envision are more realistic than others, all are
designed to “stress” handwriting biometrics in a variety
of new ways, with our ultimate goal being to build confi-
dence in the inherent security of a given measure (or, con-
versely, to demonstrate that the measure suffers from flaws
that should be addressed before it is put into practice).
Our earlier research ([1, 13, 14]) shows that such assess-

ments can shed new light on the effectiveness of certain
biometrics, particularly when considered as an authenti-
cation mechanism [17], or for cryptographic key genera-
tion [6, 10, 19, 20].

In addition to studying the abilities of human forg-
ers when presented with varying degrees of knowledge
regarding the targeted writing, we ask whether an adver-
sary can be successful in developing an accurategenera-
tive modelfor the user in question when given only limited
information. In particular, as we shall demonstrate, such
a model, trained only on captured static (offline) samples
combined with pen-stroke dynamics learned from general
population statistics, is nearly as effective as the best hu-
man forgers we have encountered, and substantially better
than our “average” forger. This surprising result suggests
that automated attacks should receive serious attention in
the evaluation of security systems that use handwriting as
a biometric.

2 Evaluating Handwriting Biometrics

In this section, we begin by describing the prior work
that is most closely related to our own. We then pro-
vide a broad overview of our approach to data collection,
followed by the evaluation of a specific set of handwrit-
ing biometrics under more stringent adversarial conditions
than are typically assumed in the biometric literature.

2.1 Related Work

Particularly relevant to the research we are pursuing
are a series of recent papers that use online handwriting
for the computation of cryptographic keys. Feng and Wah,
for example, describe a scheme for generating keys from
handwritten signatures using an initial filtering based on
dynamic time warping followed by the extraction of 43
features yielding an average key length of40 bits [6]. The
authors claim an Equal Error Rate (EER) of 8%, and men-
tion that their test database contains forgeries, but unfor-
tunately provide no details on how these were produced or
their quality.

Kuan, et al. present a method to generate crypto-
graphic keys from online signatures [10]. Their approach
was evaluated on the SVC dataset [22] and achieved EERs
of between 6% and 14% given access to a stolen token.

Vielhauer,et al.present a biometric hash based on 24



integer-valued features extracted from an online handwrit-
ing signal [20]. Fourteen of the features are global, while
the remaining ten features are derived from segmented
portions of the input obtained by partitioning the bound-
ing box surrounding the ink into five equal-sized regions
in the x- and y-dimensions. Forgeries based on an offline
image of the target signature were collected. The authors
report achieving a False Accept Rate (FAR) of0% at a
False Reject Rate (FRR) of7% in their studies, but only
10 subjects were used in the testing. A later paper dis-
cusses feature correlation and stability for a much larger
number of features; however, the same number of test sub-
jects is used [19]. This follow-on work differs in that the
new system is more robust to natural variation, but the au-
thors do not report a FAR.

As can be seen, performance figures (i.e., EER) are
difficult to compare directly as the sample sizes are of-
ten small and test conditions quite dissimilar [4]. Fur-
thermore, even when forgers are employed in such exper-
iments, there is usually no indication of their proficiency.

We note that the production of “skilled” forgeries
for the SVC dataset [22] resembles the methodology we
have used in our own studies, although the definition of
“skilled” in that work is closer to “knowledgeable” than it
is to “talented.” For the competition, a database incorpo-
rating 100 sets of signatures was created, with 20 genuine
signatures and 20 forgeries penned by at least four sub-
jects comprising each set. In the case of attempted forg-
eries, users could replay the dynamic sequence of the tar-
geted handwriting on the screen of a software viewer be-
fore attempting to forge it. However, there was no attempt
to distinguish effective vs. ineffective forgers (or hard-to-
forge vs. easy-to-forge writers), or to measure the perfor-
mance of forgeries based only on static (offline) data.

The first serious attempt we are aware of to provide
a tool for training forgers to explore the limits of their
abilities is the work by Z̈obisch and Vielhauer [21]. In
a small preliminary study involving four users, they found
that showing an image of the target signature increased
false accepts, and showing a dynamic replay doubled the
susceptibility to forgeries yet again. However, since the
verification algorithm used was simplistic and they do not
report false reject rates, it is difficult to draw more general
conclusions.

Lopresti and Raim reported the results of a simple
concatenative-style attack in a small-scale study involv-
ing two test subjects writing four passwords 20 or more
times each [13]. A parallel corpus of unrelated writing
was also collected and labeled at the unigram level. This
was then used to attempt to break the original biometric
hash proposed by Vielhauer,et al. [20]. After a feature-
space search of at most one minute on a Pentium-class PC,
the attack was found to be successful 49% of the time.

More recently, the authors of the present paper con-
ducted a detailed analysis which examined the skill lev-
els of human forgers along with their ability to improve
via training [1]. This earlier work also included a more
comprehensive study involving a particular kind of con-

catenative attack based on the rather strong assumption
that the adversary has access to online samples of the tar-
geted user’s handwriting. At that time, we found that
our most successful forgers were able to achieve signifi-
cantly higher success rates than the average “random” test
subject and, furthermore, they were able to increase their
chances of breaking the biometric hash with a reasonable
amount of practice. We also noted that the generative at-
tack was even more successful than the human forgers.
Our conclusion, then, was that such worst-case scenarios
deserve much more attention than they have been receiv-
ing in the evaluation of biometric systems.

The current paper builds on our earlier work in [1] by
relaxing a key assumption: here we only allow the at-
tacker access to offline samples of the user’s handwriting,
as might be obtained through discarded correspondence or
scraps of paper, for example. The temporal characteristics
needed to recreate the writing accurately enough to defeat
the biometric system are computed from general popula-
tion statistics.

Other researchers have also attempted to infer dynam-
ics from a static image of handwriting, or to synthesize
realistic-looking writing using a model. The former prob-
lem arises in offline instances of handwriting recogni-
tion and signature verification, where one promising ap-
proach has been to try to extract both offline and on-
line features from a scanned image of the writing (e.g.,
[2, 3, 11, 12]), although largely this work has focused
on recovering stroke-order and not velocities or acceler-
ations.

From the broadest perspective, our research relates to
the topic of generative models for handwriting, which has
received much attention over the years (e.g., [7, 15]). This
work is often oriented toward automating the production
of training data to improve recognition algorithms, but is
clearly relevant to the attack scenarios we have in mind.
Particularly intriguing is recent research that combines
the development of generative models with techniques for
learning the dynamics of handwriting (e.g., [8, 18]). Our
near-term plans are to study the threat posed by such mod-
els in the context of biometric security.

2.2 Experimental Setup

We are interested in comparing and contrasting two
fundamentally different scenarios. In the first, we wish
to understand how well a determined and talented human
forger can perform when working from increasing degrees
of knowledge about the targeted user’s handwriting. In the
second, we want to quantify the security of handwritten
passphrases in the face of automated attacks using genera-
tive models trained on offline samples of the user’s writing
(captured, perhaps, from pages of notes the user has dis-
carded) combined with pen-stroke dynamics learned from
general population statistics.

Our data collection efforts are supported by several
graphical tools we have developed in the Tcl/Tk language.
The handwriting of test subjects is captured using one
version (icapture) that is driven by scripts describing a



given experiment, in most cases specialized to the partic-
ular user. Another, more sophisticated tool (iedit) sup-
ports browsing and editing ink files as well as annotation
of pen-strokes (which are stored as point sequences) at the
n-gram level. Our tools are portable and run under both
Linux and MS Windows operating systems.

To study the forging “talents” of our subjects,icap-
ture supports collecting forgery attempts under a variety
of circumstances. In addition to traditional naı̈ve forg-
eries, in some tests we show the user a static image of
the targeted writing, or a dynamic real-time replay of the
writing as it was originally captured. The former scenario
corresponds to an adversary stealing the user’s passphrase
as written on, say, a piece of paper, while the latter rep-
resents a “shoulder-surfing” type of attack (the adversary
watching the user write her passphrase surreptitiously).

Users were allowed an unlimited number of attempts
to forge the writing before moving on to the next sample.
They were also allowed to view an unlimited number of
replays in the case of the online writing tests. A substan-
tial amount of effort was spent ensuring that the replays
seen by test subjects were high-fidelity, matching the tim-
ing of the original writing. We are particularly interested
in identifying skilled forgers (sometimes called “wolves”
in computer security contexts), as well as hard-to-forge
and easy-to-forge writers (the latter are often known as
“sheep”) [1]. Doing so allows us to explore more com-
pletely the space of potential threats to biometric secu-
rity as well as potential ways of addressing the flaws that
might be uncovered.

In addition to sample passphrases and human-
generated forgery attempts, we also collected a parallel
corpus of unrelated writing from each test subject. This
data is employed in a variety of potentialgenerativeat-
tacks, modeling, for example, the scenario where a tar-
geted user’s PDA or pen computer is captured by an adver-
sary, or offline samples of the user’s writing are scanned
or traced off of hardcopy. We designed this dataset to pro-
vide complete coverage of the passphrases at the unigram
and bigram levels, but, of course, the passphrases them-
selves appear nowhere in this corpus.

Figure 1. Example forgeries created by a skilled hu-
man forger and our algorithm.

2.3 Synthesizing Handwriting

We group users into one of three categories based on
the predominate style of their handwriting: cursive, block,
or mixed. To generate forgeries, we use an algorithm that
we callConcatenative-Synthesis with Temporal-Inference
(CSTI). At a high level, the algorithm proceeds as follows.
When attempting to forge a target writer with passphrase
p, the adversary first computes some general statistics over
the (annotated) parallel corpora of writers with the same
writing style. Such statistics include inter-character spac-
ing and timing, as well as stroke velocity.

Figure 2. Example forgeries created by a skilled hu-
man forger and our algorithm.

The adversary then traces the phrases in the target
user’s parallel corpus to recover the overall shape of the
writing, as well as a “best-guess” estimate of stroke di-
rection and order. The tracer is provided with an offline
image of the writing and allowed unlimited attempts to
replicate the strokes. However, there is no attempt to re-
produce the dynamics of the writing; that information will
be synthesized using a procedure to be described shortly.

A search of the (traced) parallel corpus is then per-
formed to extractn-grams that comprise the passphrasep
and combine thex(t) andy(t) signals of eachn-gram to
form a static rendering ofp (see [1] for a more detailed
discussion of this process). Finally, using the temporal-
inference algorithm discussed below, the elapsed time be-
tween each point in the synthesized passphrase is esti-
mated, reconstructing the dynamics. Figures 1 and 2 show
examples of a forgery generated in this manner.

2.4 Inferring Velocity

To aid in the generation of forgeries, we first attempt to
derive a set of measures that can be used to infer the pen-
tip velocities for a user’s writing. The hope is that these
measures can be used to compute a model at the charac-
ter level that also reflects the subtleties of the underlying
strokes. To do so, we assume access to the online corpus
of handwriting for users with the same writing style as the
target. For each of the annotated samples we apply lin-
ear re-sampling to ensure the Euclidean distance between



each point within a stroke is separated byd units.1

Next, we examine each stroke within each instance of
a given letter in the corpus. For example, suppose that we
are examining thetth stroke of characterc, which itself
was rendered usingT strokes in total. Let us denote this
stroke asS. S consists of a series of pointsp1, . . . , pn.
We now apply a sliding window,w, of lengthℓ along the
stroke to acquire a set of points, withpi being the first
point in w. For an arbitrary collection of adjacent points,
let ∆(·) be the sum of the Euclidean distance between
consecutive points in the collection, and likewise,δ(·) the
Euclidean distance between the first and last point.

For pedagogical purposes, assume we are examin-
ing the jth such window, wj . From the points in
wj we compute four functions to aid in generating ve-
locity profiles, namely straightness (σ), the offset of
the window within the stroke (o), direction (θ) and
the number of extrema within the window (e). In
particular, let: σ(wj) = δ(wj)/∆(wj), o(wj) =

∆({p1, . . . , pi})/∆(S), θ(wj) = atan
(

yi+ℓ−yi

xi+ℓ−xi

)

, and

e(wj) be the number of local extrema in both vertical
and horizontal directions. For a givenc, j, t, T tuple, let
γc,t,T

j = 〈σ(wj), o(wj), θ(wj), e(wj)〉. Next, we take
all instances of the stroke under consideration to create
the setGc,t,T =

⋃

j{γ
c,t,T
j }. To partition this set into

groupings with similar characteristics, we applyk-means
to find representative clusters ({Gc,t,T

1
, . . . , Gc,t,T

K }) with
accompanying velocities{vc,t,T

1
, . . . , vc,t,T

K }. To infer
pen-up time, we apply a similar concept except thatγ is
now only a function of the distance between pen-up and
pen-down points. This process is applied to all characters
in the corpus.

(a, 2, 2)

(original) (resampled)

wj → (γ, v)d

pi

(a, 1, 2)

Figure 3. Applying a per-stroke sliding window to
generate velocity profiles.

2.5 Using Velocity Profiles in Forgeries

After using Concatenative-Synthesis [1, 13] to create
a static rendering of a forgery, the adversary uses the
recorded velocity profiles to infer the elapsed time be-
tween each point in the forgery. Each stroke of each
character in the static rendering of the target passphrase
p is processed in this fashion. For thetth stroke in let-
ter c – again, rendered usingT strokes in total – the ad-

1The one exception is that we preserve the end points of each stroke.

versary slides a window (w′) of lengthℓ over the stroke
and computesγ′ = 〈σ(w′), o(w′), θ(w′), e(w′)〉. Using a
k nearest-neighbors approach, she then determines which
clusterGc,t,T

i the vectorγ′ is most similar to. Once found,
the velocityvc,t,T

i is used as an estimate of the pen speed
for the point at the center ofw′.

3 Data Collection

Our results are based on 11,038 handwriting samples
collected over several weeks from 50 users at our two uni-
versities. We used NEC VersaLite Pad and HP Compaq
TC1100 pen computers as our writing platforms. To moti-
vate our participants, several incentives were awarded dur-
ing each round of data collection.2

First, users were asked to write five passphrases, ten
times each. These passphrases were two-word sayings
that are easy to recall (“perfect misfit,” “solo concert,”
“crisis management,” “least favorite,” and “graphic lan-
guage”). During that same session a second (disjoint) set
of 65 phrases was also collected for our parallel corpus.
Approximately two weeks later, participants re-wrote the
original five passphrases ten times each. Next, users were
asked to forge representative samples (selected based on
writing style, gender, and handedness) collected in the ear-
lier round. The first challenge was to produce forgeries
after seeing only an offline representation of the writing;
later the test was repeated, using real-time renderings of
the target passphrases.

One week later, we singled out nine “skilled” (but un-
trained) forgers; three forgers for each of the three writing
styles. We explained the types of features that are gen-
erally used in online handwriting systems. These forgers
were then asked to forge 15 writing samples, with60% of
the samples coming from the weakest ten targets, and the
other40% chosen at random.

A point worth emphasizing is that our “skilled” forg-
ers exhibited a high degree of self-motivation. In one in-
stance, a forger wrote asinglepassphrase 106 times be-
fore being satisfied that what he had created depicted an
accurate reproduction (the forgers were not provided with
any direct feedback on the effectiveness of their attempts).
Another replayed the target phrase 40 times. On aver-
age, each forger made 14 attempts and redrew the tar-
get five times, taking roughly 1-2 hours to forge the 15
passphrases. Clearly, such dedication plays an important
role when evaluating the security of biometric systems,
but this point has been explored only to a limited degree
in the literature to date. One can expect determined adver-
saries to expend at least as much effort as the forgers in
our study.

Finally, we had four test subjects trace the parallel cor-
pora to recover the overall shape, stroke-order, and di-
rection of the writing. These users were never asked to
trace their own handwriting. Velocity information was
discarded, to be re-synthesized as described earlier.

2E.g., snacks, gift certificates, and special prizes for most consistent
writers, best forgers, etc.



4 Experimental Results

To study the effectiveness of the aforementioned ap-
proach, we empirically evaluate the technique in the con-
text of a biometric handwriting authentication system. In
particular, we adapt the biometric hash of Vielhauer,et
al. [19, 20] and evaluate the accuracy of the forgeries gen-
erated by Concatenative-Synthesis in which temporal in-
formation is inferred. To establish a baseline for compari-
son, we also report the accuracy of the forgeries produced
by adversaries with varying levels of knowledge [1].

To ensure that our results do indeed reflect a meaning-
ful assessment, we devoted some effort to studying the ro-
bustness of the underlying authentication system. In addi-
tion to testing the system as originally proposed in [19] we
also examined several enhancements. First, we performed
an empirical analysis of a wide range of features to find
those that appear to be the most secure [1]. Specifically,
we analyzed 145 state-of-the-art features and measured
the security of each by noting the difference between the
proportion of times legitimate users and forgers fail to re-
produce a given feature. We then chose the features with
the smallest such difference and used the resulting 36 on-
line and offline features to drive the system. Second, we
use smaller tolerance values than those described by Viel-
haueret al. [19]. The approach by Vielhauer,et al. as-
sumes that each value in the biometric hash must be recov-
ered perfectly. We, however, assume that it will be possi-
ble to correct errors in a small number of hash positions,
either through a search process or error-correcting code.
For example, depending on the range of values in the po-
sitions in questions, correcting 5-10 errors is feasible ina
few seconds of computation time on modern PC’s. The
number of positions in which errors have been corrected
provides the x-axis in our performance graphs.
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Figure 4. ROC curves using the 24 features de-
scribed by Vielhauer et al. [20].

We used the 20 renderings of the five passphrases from
the first two rounds of data collection (see Section 3) to
generate a biometric template (i.e., the “interval matrix”
in [19]) for each user and passphrase. After omitting data
from users who failed to enroll, we computed the FRR by
generating templates using 75% of a user’s writing, and at-
tempted to authenticate the remaining 25%. The FAR was
computed using templates generated from the writings of

other users for the passphrase in question. The reported
results are averaged values across 25 random partitions of
the data.

In the subsequent discussion we report results based
on four distinct FARs: theStatic andDynamic cases
are computed using forgeries from a group of non-trained
forgers given access to offline and online renderings of the
target passphrase, respectively. TheSkilled case re-
flects forgeries from our trained forgers. Lastly, we report
the FAR for the concatenative-synthesis approach with in-
ferred temporal information.

Figure 4 gives the results when using the features
described by Vielhauer,et al. [20]. The Static and
Dynamic forgeries exhibit an EER of8.6% and12.8%
at 5 and 4 errors corrected. Not surprisingly, the im-
pact ofSkilled forgeries is dramatic, and results in an
EER of 23.2% at 2 errors corrected. Finally, the EER
for forgeries generated using concatenative-synthesis with
temporal-inference is18.6% at 3 errors corrected on av-
erage. This rate is much higher than bothStatic and
Dynamic forgeries, which is particularly alarming given
that we infer online information from general population
statistics.
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Figure 5. ROC curves using the 36 most secure fea-
tures out of a set of 145.

The performance against the new, stronger, feature set
is shown in Figure 5. TheStatic andDynamic forg-
eries exhibit an EER of6.8% and8.2% at8 and7 errors
corrected, respectively. The EER forSkilled forgeries
is 20.1% at 4 errors corrected. The EER for forgeries
generated using our generative approach is17.2% at5 er-
rors corrected, which is close to the rate of skilled forg-
ers. As expected, the choice of a strengthened feature set
reduced the EERs in each case. Nonetheless, forgeries
generated using this method performed almost as well as
skilled forgers, and were much more successful than forg-
eries generated under traditional assumptions.

These results are of significant practical value as we
assume access to only a limited number of offline samples
of the target’s writings (on average,6.9 samples of length
1.83 characters for each forgery attempt), each written in
a context outside its use for security. Again, recall that the
individual pieces have simply been traced (to infer stroke
order) as a determined adversary would likely do. There-
fore, stroke order, direction, and other user-specific spatial



idiosyncrasies could be incorrectly reproduced. Nonethe-
less, our attack outperforms average forgers even with ac-
cess to real-time representations of the passphrase as it
was originally rendered.

It is interesting to note that the handwriting of several
users was especially susceptible to our attack (e.g., the
target writer in Figure 1), whereas other users produced
writings that were quite resilient to our forgeries (e.g.,
the target writer in Figure 2). This multi-modal behavior
might be explained by the fact that our final velocity pro-
files represent “average” velocity profiles. It seems likely
that those writers who are close to the average are more
susceptible than those with unique writing habits. Never-
theless, in the context of cryptographic key-generation or
authentication, the ability to accurately forge any writer
can have significant ramifications as an adversary often
only needs to compromise the weakest link in the system.

5 Conclusions

In this paper, we have we presented a generative attack
against an online handwriting biometric using only a small
number of offline samples of the user’s writing in concert
with general population statistics. This approach achieves
success rates close to our best human forgers.models. Our
conclusions concerning this threat apply to any attempt to
extract distinguishing features from a user’s normal style
of handwriting. As it stands, however, they do not directly
apply to more stylized writing such as a true signature.
For the SVC competition [22], users were asked to create
a “new” signature and “practice” it. It would be interesting
to know whether such pseudo-signatures might provide a
solution to this problem.

In a broader sense, our work demonstrates that tradi-
tional approaches to evaluating biometric security, which
are most often based on an average-case analysis, are in-
sufficient to characterize the threats posed by determined
adversaries who possess some degree of talent and/or au-
tomated attacks that exploit generative models for human
behavior. Increased confidence will come only through
more careful consideration of such worst-case scenarios.
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