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Abstract—We investigate the implications of the ubiquity of personal
mobile devices and reveal new techniques for compromising the
privacy of users typing on virtual keyboards. Specifically, we show
that so-called compromising reflections (in, for example, a victim’s
sunglasses) of a device’s screen are sufficient to enable automated
reconstruction, from video, of text typed on a virtual keyboard.
Through the use of advanced computer vision and machine learning
techniques, we are able to operate under extremely realistic threat
models, in real-world operating conditions, which are far beyond the
range of more traditional OCR-based attacks. In particular, our sys-
tem does not require expensive and bulky telescopic lenses: rather,
we make use of off-the-shelf, handheld video cameras. In addition,
we make no limiting assumptions about the motion of the phone
or of the camera, nor the typing style of the user, and are able to
reconstruct accurate transcripts of recorded input, even when using
footage captured in challenging environments (e.g., on a moving
bus). To further underscore the extent of this threat, our system is
able to achieve accurate results even at very large distances – up
to 61m for direct surveillance, and 12m for sunglass reflections. We
believe these results highlight the importance of adjusting privacy
expectations in response to emerging technologies.

Index Terms—Privacy, security, side-channel attack, human factors,
compromising emanations, mobile devices.

1 INTRODUCTION

The ability to obtain information without the owner’s
knowledge or consent is one which has been sought after
throughout human history, and which has been used to
great effect in arenas as diverse as war, politics, business
and personal relationships. Accordingly, methods and tech-
niques for compromising – and protecting – communica-
tions and data storage have been studied extensively. How-
ever, the ubiquity of powerful personal computing devices
has changed how we communicate and store information,
providing new possibilities for the surreptitious observation
of private messages and data. In particular, mobile phones
have become omnipresent in today’s society, and are used
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Fig. 1: Example threat scenarios that we investigated. Video was
recorded in both indoor and outdoor environments, using various
consumer video cameras. Top: shoulder surfing, bottom: reflection
surfing. Observe the key pop-out events in the inset images.

on a daily basis by millions of us to send text messages and
emails, check bank balances, search the internet, and even
make purchases. And while some of us may be concerned
with — and take steps to prevent — shoulder-surfing and
direct observation of the text we input into these devices
(see Figure 1), few of us take notice of the person facing
us across the aisle on our morning bus ride nor consider
what our sunglasses might reveal.

In this work, we show that automated reconstruction of
text typed on a mobile device’s virtual keyboard is possible
via compromising reflections, e.g., those of the phone in
the user’s sunglasses. Such compromising reflections have
been exploited in the past for reconstructing text displayed
on a screen [2, 3] using expensive, high-powered telescopic
lenses. Our approach operates on video recorded by inex-
pensive commodity cameras, such as those found in modern
smartphones. The low resolution of these cameras makes
visual analysis difficult, even for humans, and severly limits
the possibility of directly identifying on-screen text. What
makes this threat practical, however, is that most modern
touchscreen smartphones make use of a virtual keyboard,
where users tap keys on-screen. In the absence of tactile
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feedback, visual confirmation is typically provided to the
user via a key pop-out effect, as illustrated in Figure 1. Note
that although the on-screen text is essentially unreadable,
the pop-out event provides a strong visual cue to help
identify the letter that was tapped. The approach we take
in this paper exploits this effect in order to recover the
text typed by the user, and offers much promise in two
real-world threat models, namely: (1) direct surveillance,
wherein we assume the adversary is able to direct the
camera towards the screen of the mobile device (e.g.,
over the victim’s shoulder), and (2) indirect surveillance,
wherein the adversary takes advantage of indirect views of
the virtual keyboard obtained, for example, via “compro-
mising reflections” of the phone in the victim’s sunglasses.
In both cases, we assume only inexpensive, commodity
video cameras, without any telescopic lenses or high-end
equipment. In addition, we make no limiting assumptions
about the capture setup, the motion of the phone or of
the camera, nor the typing style of the user. Thus, the
only input we assume is a video, captured either directly
or indirectly, of a user typing on a virtual keyboard. We
then apply techniques from computer vision to process the
recorded video, identifying, for each frame, potential keys
that were pressed. This visual detection, coupled with a
language model, enables us to achieve surprisingly accurate
retrieval results, even under challenging scenarios.

An earlier version of this work was originally presented
in [1]. For the present article, we demonstrate more exhaus-
tive results on a wider range of threat scenarios. One of the
questions we explore relates to understanding the range of
scenarios under which our attack is practical; for instance,
given a capture device (e.g., a pocket camera), from how far
away can an attacker effectively eavesdrop on a victim? We
investigate this issue by considering a variety of capture de-
vices, ranging from compact pocket cameras to higher-end
digital SLRs. In addition, while our original work focused
mainly on recovering complete typed sentences, we now
explore the issue of recovering passwords. In other words,
we analyze the efficacy of our system without the language
modeling steps, and benchmark its accuracy for this task.
Finally, we also propose and investigate an additional attack
which uses still images processed with Optical Character
Recognition (OCR) techniques. Our experiments show that
while this type of attack is simpler, and viable under certain
operating conditions, it is still far less robust than the video
based approach, which operates over greater distances.

Our ability to reconstruct text typed on virtual keyboards
from compromising reflections underscores the need to
continually reevaluate our preconceptions of privacy — or
the lack thereof — in modern society. Even cryptography
and secure devices are of little use when, across the aisle,
someone who appears to be reading email on their phone is
in fact surreptitiously recording every character we type.

2 RELATED WORK

By now, it is well understood that electronic, electro-
optical and electromechanical devices give off some form of

unintentional electromagnetic signals that can inadvertently
leak sensitive information. The risks from these so-called
“compromising emanations” were noted over half a century
ago, and led to the introduction of emission-security tests
standards to control leakage from digital electronics [4].
Although the nature of these emissions has changed with
technology, side-channel attacks continue to surface [5–10].

More recently, both visual emanations (e.g., from re-
flections on curved surfaces of close-by objects such as
tea pots) and acoustic emanations (e.g., from key presses
on a keyboard or from the sounds made by dot-matrix
printers) [11–13] have been used to undermine the con-
fidentiality of information displayed or entered into com-
modity devices. More closely related is the work of Backes
et al., [2, 3] on “compromising reflections” that presents
eavesdropping techniques for exploiting optical emanations
using telescopic equipment. There, the authors show that
an adversary is able to successfully spy from as far as 30
meters away and, in certain cases, can even read large text
reflected in the eyeball of the victim. In this work, we focus
on a related, but different, problem: namely, exploring the
feasibility of automatic generation of transcripts from low-
resolution, indirect footage captured using inexpensive, and
ubiquitous, consumer electronics.

The work most closely related to ours is that of Maggi et
al., who consider similar automated attacks on touchscreen
devices [14]. However, their work considers only direct
surveillance and lacks any error correction, such as per-
formed in the edit distance and language modeling portions
of our approach. In addition, Maggi et al. conclude that re-
construction when both the device and camera are “jiggled”
is infeasible with their system, whereas our experiments on
a moving bus demonstrate the effectiveness of our approach
even under such adverse conditions.

Also germane to this paper is the work of Balzarotti et
al. [15] that explores the idea of automatically reproducing
text from surveillance video — albeit from a camera
mounted directly above a terminal — that captures a user’s
typing as she inputs data at the keyboard. Similar to
Balzarotti et al., we apply the noisy channel model to
help recover sequences of words from streams of frames
with guessed labels. However, the error model employed by
Balzarotti et al. only accounts for the deletion of identified
characters and the substitution of one character for another.
In contrast, our model allows for insertions, deletions,
and substitutions, with substitutions weighted according to
the distance between the two characters on the keyboard.
Moreover, unlike Balzarotti et al., our frame parsing model
handles spacing, allowing for the insertion and removal of
spaces. An additional challenge in our setting is the need
to overcome significant instability in the captured footage,
as well as operate at a far lower resolution. The instability
comes from the fact that in our case, both the phone and the
camera are free to move and can be positioned arbitrarily
with respect to each other.

A more distantly related problem is that of extracting
captions in broadcast news in order to provide search
metadata for digital archives. In these works, the low
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Fig. 2: Overview of our approach for typed input reconstruction from video.

resolution of characters within the video makes the problem
of segmenting characters quite challenging, so much so
that video OCR typically does not perform well without
significant text enhancement [16].

3 OUR APPROACH

Our approach consists of a number of stages (refer Figure
2), each a difficult problem requiring the application of
advanced computer vision and machine learning techniques.
At a high level, the approach we take can be summarized
via the following steps:

Stage Ê: We first detect and track the phone across
the frames of a video sequence.
Stage Ë: We extract distinctive feature points from
the tracked phone region in each frame, which are
used to compute stabilizing image transformations that
compensate for camera and phone motion.
Stage Ì: The stabilized video frames are also aligned
to a reference image of the phone (obtained, for in-
stance, from the user manual of the device of interest).
Stage Í: Pop-out events for each key are now localized
to specific regions of the keyboard, and we train
classifiers to detect each key pop-out.
Stage Î: To account for missed and spurious detec-
tions, we use a language model to refine the output of
the computer vision modules.

Note that we apply the above steps to both threat models –
i.e., direct surveillance and sunglass reflections. In the latter
case, the images are simply flipped to account for lateral
inversion, and then processed as above. In the following
sections, we discuss each component in more detail.

3.1 Phone detection and tracking (Stage Ê)
Given a surveillance video, one of the most basic challenges
we face is in determining the location of the phone in the
video. It is often the case that the phone occupies only
a small spatial region of the image, with the remaining
portion being unrelated background clutter (e.g., the phone
in Figure 3 only occupies 1.8% of the total image area).
Indeed, the visual features on the background are invariably
“distracting” for subsequent stages of our approach, since

they vastly outnumber the visual features on the phone
itself. Determining the location of the phone in the video
thus enables us to focus specifically on the object of
interest, eliminating all irrelevant background information.

The domains of object detection and object tracking have
received widespread attention in computer vision [17–21].
In certain applications, such as frontal-view face detection,
modern techniques are capable of providing very accurate
results. In general, however, object detection and tracking
are still challenging problems, in part due to the tremendous
variability in the appearance of objects when captured in ar-
bitrary configurations, i.e., from different angles, distances,
and under different lighting conditions.

In this paper, we formulate the tracking problem as one
of binary classification [20–22]. The intuition is to train
binary classifiers to distinguish the appearance of the object
being tracked from that of the background. This training is
either performed offline (using a dedicated training phase
prior to the tracking algorithm), or online (where the
appearance of the object is learned during the tracking
process). In the former case, tracking is typically very fast,
since the classifiers have been pre-trained beforehand. The
latter, while slower, is capable of adapting on-the-fly to
changes in appearance. Since the appearance of the phone
can vary considerably, we elect to perform online training,
learning the appearance of the phone during tracking.

We base our phone tracker on the techniques proposed in
[19, 20], which describe an online AdaBoost [23] feature
selection algorithm for tracking. At a high level, boosting is
a classification scheme that works by combining a number
of weak learners (e.g., a threshold on a feature value)
into a more accurate ensemble classifier. A weak learner
may be thought of as a “rule of thumb” that only has
to perform slightly better than chance – for example, in
a binary classification problem, the error rate must be
less than 50%. The intuition is that a combination of
these “weak” rules will often be more accurate than any
individual rule. Given a set of training images, where each
image is labeled as positive (containing the phone) or
negative (not containing the phone), we obtain a training
set χL = {〈x1, y1〉, ..., 〈x|χL|, y|χL|〉}, where xi is an m-
dimensional feature representing the ith training image, and
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Fig. 3: Phone tracking: (a) User-selected bounding box highlight-
ing our positive example for training. (b) In the next frame, the
classifier is evaluated within a search window, and the position of
the maximum response defines the phone’s new location.

yi ∈ {+1,−1} is the corresponding label. As suggested
by Grabner et al. [19], we use three types of features,
concatenated to form the vector xi: Haar features [18],
orientation histograms [24] and local binary patterns [25].

Initially, each training example is given a uniform weight
p(xi) = 1/|χL|. During the first round of training, we select
a weak learner that has the lowest weighted classification
error, given χL and p(x), and add it to our ensemble. Fol-
lowing this, the weights p(xi) of the misclassified training
examples are increased, while the weights of the correctly
classified samples are decreased. At each subsequent train-
ing iteration, we select a weak learner hi that does well
on the training examples that were hard for the previous
weak learners. The final ensemble classifier is computed as
a linear combination of the selected weak learners, with the
weight of each learner being proportional to its accuracy.

The online boosting variant assumes that one training
example is available (for instance, by drawing a bounding
box in the first video frame). This image region becomes
the positive training sample, and negative examples are
extracted from the surrounding background regions. Given
this data, multiple training iterations of the online boosting
algorithm are performed as above. In the next frame, the
ensemble classifier is evaluated at a number of possible
image locations (e.g., in a search window surrounding the
object’s position in the first frame), with each location being
assigned a confidence value. The target window is then
shifted to the new location of the maxima, and the classifier
is updated using new training examples so as to become
discriminative to variable object/background appearance.
The operation of the tracker is illustrated in Figure 3. The
output of this module is the phone’s location in each frame,
allowing all further processing steps to focus on the phone.

3.2 Phone stabilization (Stage Ë)
Given the location of the phone in each frame, the next step
is to compensate for the effects of phone and camera mo-
tion. As discussed earlier, we do not impose any constraints
on the motion of either the camera or the user. While this
enables us to operate in a wide range of real-world threat
scenarios, it also results in a tremendous degree of variation
in the appearance of the phone within each frame. Explicitly

compensating for this motion would allow us to effectively
reduce one dimension of variability, resulting in a more
“stable” set of images to work with.

Before presenting the details of our stabilization algo-
rithm, we introduce the notion of a homography [26]. In
computer vision parlance, a homography is a 2D projective
transformation that relates two images of the same planar
surface (in our setting, the phone represents a (mostly) rigid,
planar object). The images that we capture – specifically,
the portions of the image that contain the phone – are
thus related to each other via a 2D homography. Note that
in the case of reflections, the image of the phone can be
distorted due to the curvature of the sunglasses. We do not
explicitly model this distortion in the current system, but
rather assume that the sunglasses are approximately locally
planar. Since the phone occupies only a small area of the
sunglasses, this approximation proves to be sufficient.

The 2D homography has a number of important prac-
tical applications, one of which is image stabilization. In
particular, if we were given access to the homography H
between a pair of neighbouring video frames, then we could
warp them into alignment, thus removing the effects of
phone and camera motion. In short, the basic idea is to
compute pairwise homographies between the video frames,
chaining them together to align all phones in the frames
to a common reference frame. The problem now reduces
to that of automatically determining the transformation H,
given two neighboring images It and It+1.

The approach we take involves two key steps. In our
feature extraction and matching step, we extract stable,
repeatable and distinctive feature points in the two images,
with the intuition being that we would like to identify
matching points in the captured images that correspond
to the same 3D point on the phone. For this we use the
Scale Invariant Feature Transform, or SIFT [27]. Each SIFT
feature consists of a 2D image location, scale, orientation
vector, and a 128-dimensional feature descriptor which
represents a histogram of gradient orientations centered
around the extracted feature. The main point is that a pair of
features in two images that correspond to the same point in
3D space will have similar SIFT descriptors. The popularity
of SIFT stems from its ability to tolerate a wide range
of scale and illumination changes, as well some degree of
viewpoint variation. For this task, we use a fast in-house
GPU implementation of SIFT 1, running at ≈ 12 frames
per second on a standard graphics card.

For our robust homography estimation step, we com-
pute the homography H from N “true” feature matches
between the two images using the normalized Direct Lin-
ear Transformation (DLT) algorithm [26]. One limitation
here, however, is that doing so requires a minimum of
N = 4 correct feature matches between the two images.
Additionally, the DLT algorithm is sensitive to outliers, or
mismatched features. To combat this problem, we turn to
the field of robust statistics [28], where the problem of
estimating quantities from data that has been corrupted by

1. Available online: http://cs.unc.edu/~ccwu/siftgpu
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noise and outliers has been well studied. Perhaps the most
popular of these robust estimators is Random Sample Con-
sensus (RANSAC) [29], which is a randomized, data-driven
approach that is capable of tolerating a high level of data
contamination. In our approach, we apply a fast, real-time
variant of RANSAC, called ARRSAC (Adaptive Real-Time
Random Sample Consensus) [30], which simultaneously
estimates the 2D homography, as well as returning the set of
“true” feature correspondences. The resulting homography
can then be used to align the phone images together, thus
nullifying the effects of scene and camera motion.

(a) (b) (c) 

Key “pop-out” 

(d) (e) 

Fig. 4: Automatic phone stabilization. (a) Two video frames, with
extracted SIFT features displayed on the images (b) SIFT features
are matched between the two images, to obtain a set of “tentative”
point correspondences, shown in red (c) ARRSAC-based robust
estimation, which returns a homography, in addition to a set
of “true” correspondences, shown in green (d) The two video
frames are aligned using the computed homography (e) Pixel-
wise difference following image alignment. Note that the main
area of difference is in the vicinity of the key pop-out.

The two steps outlined above are illustrated in Figure
4. Figures 4(a)-(c) denote the process of SIFT feature
extraction, matching, and robust homography estimation,
respectively. Notice that the incorrect feature matches
present in Figure 4(b) are “cleaned up” by ARRSAC, which
selects the set of true correspondences (shown in Figure
4(c)) out of the potential correspondences (Figure 4(b)).
These true correspondences are then used to estimate the
homography between the two frames. Figure 4(d) shows
the two frames aligned with respect to each other, and
Figure 4(e) represents the pixel-wise difference between
the images after alignment. In the difference image, dark
pixels represent areas of low image difference, and lighter
pixels represent areas of high difference. Note that the
difference image consists mainly of dark pixels, which
is an indication that the homography-based alignment has
accurately aligned the images to each other.

3.3 Alignment to reference image (Stage Ì)
In the previous section, we showed how one could compen-
sate for the effects of scene and camera motion by aligning
the video frames using a robust homography estimation
procedure. While this results in a stabilized video, one other
aspect of appearance variation that remains unaccounted for

is the relative positioning between the surveillance camera
and the user. Note that we do not assume that the camera
has a clean, frontal view of the screen of the device;
rather, the surveillance camera can be oriented arbitrarily
with respect to the user. We now reduce the difficulty of
our problem further by aligning the stabilized video to a
reference phone image. This image can be obtained easily,
in a number of ways: for example, by taking a single
frontal-view photograph of the phone or using a photo from
a reference manual.

Given a reference image, the process of aligning the
stabilized video to this reference image can be carried out in
much the same way as before; that is, by detecting features
in the reference image and the video frames, matching
them, and computing a robust homography estimate which
can then be used to warp all the video frames to the
reference. In principle, we actually need to align only
a single video frame to the reference image, since the
frames of the video sequence have already been aligned
to each other by pairwise homographies. More specifically,
let Hj+1,j be the homography that transforms video frame
Ij+1 to frame Ij . Assuming that I1 denotes the first frame,
the transformation between Ij+1 and I1 can be computed
by chaining together all previous pairwise transformations:

Hj+1,1 =

j∏
k=1

Hk+1,k. (1)

In theory, given a single transformation H1,ref , that
aligns frame I1 to the reference image Iref , then by
extension, one can align the entire video to the reference
image. However, since the transformations are chained to-
gether, even a small error in the estimation of homography
Hj+1,j propagates to all subsequent transformations. For
a reasonably long video sequence, this invariably leads to
“drift”, where the alignment progressively deteriorates as
more frames are aligned to the reference image.

To combat this effect, we instead perform a more careful
alignment process, depicted in Figure 5. We begin by
aligning frame I1 to the reference image Iref , via a robust
homography H1,ref , estimated using the techniques intro-
duced in Section 3.2. We then align subsequent frames of
video by chaining together pairwise homography transfor-
mations – the difference being that every M frames (M =
50 in our experiments), we re-initialize our transformation
with respect to the reference image by recomputing the
video-to-reference image homography. We use the newly
estimated homography as the base transformation for the
next window of M frames.2 This process of inter-frame ho-
mography estimation is much more accurate, as well as far
more efficient, than performing alignment to the reference
image. The reason is that the change in appearance of the
phone between two successive video frames is often very
small, while the change in appearance between the phone

2. In particular, we perform a non-linear minimization of the estimation
error [26] with respect to the reference image. Re-initialization is a
common trick often used in practice to prevent drift. In our case, periodic
re-initialization also helps prevent catastrophic failure in the event of failed
alignments during Stage Ë.
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Fig. 5: Iterative procedure to align video frames to the reference
image (Iref ). To prevent long-term drift, the frames are periodi-
cally reinitialized with respect to the reference image.

image in a random video frame (captured under arbitrary
pose and lighting conditions) and the reference image is
much larger.

3.4 Key press detection (Stage Í)
Thus far, we have focused primarily on accounting for
sources of appearance variability: phone and camera mo-
tion and the spatial relationships between the user and
the surveillance system. The net effect of the operations
performed thus far is to convert an arbitrary, free-form
video sequence into one that has been aligned to a stable,
known reference frame. There is a significant advantage
to doing so: by aligning the video to a known coordinate
frame, we know precisely which regions to inspect in order
to find key pop-out events. More specifically, once the video
frames have been aligned to the reference image, we can
isolate the key pop-out event of each key on the virtual
keypad to a specific spatial location (derived, for example,
by overlaying 2D boxes on the reference image).

Although we have greatly simplified the problem, we
are still faced with challenges. For one, because we are
operating at a fairly low resolution, coupled with the fact
that the appearance of the keys is often “blurred out,”
one can not readily apply OCR techniques to recover the
characters in the isolated frames. Moreover, in several cases
the pop-out events are occluded. Yet another complication
is that the 2D boxes constituting the keypad grid are
overlapping – in other words, the key pop-out events for
neighbouring keys have a non-negligible area of overlap.
To address this, we do not make any final decisions at this
stage; rather, for each frame, we inspect each key location
independently and assign a score to each key, which may
be interpreted as the probability of the key having been
pressed in that frame. These scores, along with their key
labels, are then used in the final stage.

Training a key press classifier:
The basic idea we use to identify key press events is to

exploit the fact that we have a known, regular grid, and
train a binary classifier for each key on the keypad. The
classifier for each key focuses on a specific bounding box
on the reference keypad, and aims to distinguish between
a key pop-out event and the “background”. We again make
use of AdaBoost classifiers, introduced in Section 3.1,
to perform this classification. In addition, since we have
explicitly compensated for multiple sources of appearance

variation, we can, at this stage, use an offline training
procedure in order to have a classifier that is capable of
rapid classification when processing each frame of video.
Since we are operating on small sections of images, known
as patches, and some illumination variation remains, we use
dense SIFT descriptors as the features for each patch (i.e.,
a SIFT descriptor is extracted for each pixel in the patch,
and concatenated to form a feature vector).

For each key on the keypad, we train a binary classifier,
by providing positive and negative examples of key pop-
out events. This data is obtained by running a representative
collection of 10 training videos through Stages Ê-Ì, sub-
sequently labeling each aligned frame with the key pressed
for the frame. For example, to detect the tapping of the
letter ‘C’, we extract a positive training patch from the 2D
box corresponding to that letter, and negative patches for all
other letters, at their respective locations. On average, we
obtain 200 positive exemplars and 1000 negative exemplars
for each key. Each classifier is then trained offline using the
acquired samples.

On detecting keyboard layout mode:
While the above discussion focuses primarily on the

alphabet keys, the same principles apply for special char-
acters and numbers. On a smartphone, there is usually a
special key that allows one to toggle between alphabet
and numeric/special character mode. There are a couple
of strategies one could adopt to detect keyboard toggle: (a)
train a classifier that inspects the entire keyboard area to
detect when the keyboard layout has been toggled, and then
use the classifiers for the appropriate keys in each layout
or (b) at each key pop-out location, run the classifiers for
all keys that could potentially pop out at that location, and
select the classifier that yields the highest score. In this
work, we chose to pursue the latter option, and have used
that approach to successfully detect numbers and special
characters interspersed with alphabet characters.

Testing the classifier:
Given a test video, and a pool of trained key press

classifiers, we run the test video through Stages Ê-Ì.
Then, for every frame of video, each classifier inspects its
respective image patch and outputs a classification score
(the probability of that key having been pressed in the
frame). We reject detections that score less than 0.5. Note
that each classifier is run independently, and so there could
potentially be multiple keys that pass this threshold. For
each frame, we store all potential key labels and scores.
Once a key pops-out on the keypad, it typically stays in
this state for a fixed amount of time (e.g., about 0.25s on
the iPhone); this fact can be used to parse the detected
sequence of keys in order to identify character breaks.

The observant reader would have noticed by now that
we have yet to discuss the issue of the “space” bar. On
many popular smartphones we examined (e.g., the iPhone
and NexusOne), there is no pop-out event for the space
bar. However, it is still possible to obtain a reasonable
estimate of the locations of the spaces in typed text, by
performing some straightforward post-hoc analysis. Given
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a sequence of identified key press events, we determine the
median time interval t between successive key presses. If
we now reinspect our key press detections, we can label the
frames lying between two widely separated3 key presses as
potential space events. Additionally, the visual classifier we
use to determine the space key event inspects a larger region
of the keyboard, with the intuition being that when users
press the space, a large portion of the keyboard is visible.
This is by no means foolproof: a few spaces may be missed,
and false spaces may be inserted when the user pauses
between keystrokes. However, coupled with an image-based
classifier, this analysis still provides useful information.

3.5 Parsing and Language Modeling (Stage Î)

Once we have identified key labels for each frame in a
video, along with potential character breaks and spaces,
the issue of identifying typed words still remains. We can
view this task in terms of the noisy channel problem, often
encountered in speech recognition: given a sequence of
observations (labeled frames), find the most likely sequence
of intended words. This process is often referred to as
maximum-likelihood decoding [31].

The noisy channel problem is often formulated in a
Bayesian framework. Let P (w|o) represent the probability
of a word sequence w given an observation sequence o. The
decoding problem is that of finding ŵ = argmaxw P (w|o).
Using Bayes’ rule, this can be reformulated as

ŵ = argmax
w

P (o|w)P (w)
P (o)

= argmax
w

P (o|w)P (w)

where P (o|w) represents the probability of observing a
sequence o given that the sequence w was intended. The
prior P (w) represents the probability of observing word
sequence w in the language of interest. The denominator
can be safely omitted as it does not depend on w.

To solve the noisy channel decoding problem, speech
recognition systems have long employed cascades of com-
ponent models, where each model represents one concep-
tual stage in the task of transcribing speech. For instance,
one such cascade might consist of three models: 1) an
acoustic model which transforms an acoustic signal into
component sounds, 2) a pronunciation model which con-
verts sequences of sounds to individual words, and 3) a
language model, which governs the combination of words
into phrases and sentences. In this case, P (w) represents
the language model. The likelihood P (o|w) can be further
decomposed into sub-models, such as the acoustic and pro-
nunciation models, representing intermediate stages. Com-
monly, these sub-models are assumed to be independent.

We draw on a large body of work on speech recognition
cascades that has proven to be very useful in our context.
However, in traditional speech recognition systems, the
interaction between components often cannot be modeled
explicitly, i.e., each step is performed independently. Pereira
and Riley [32] proposed an elegant solution to this problem,

3. A threshold of 1.5t appears to be effective in practice.

representing each model and submodel as a weighted finite-
state transducer (WFST), thereby allowing for decoding
to range over the entire cascade simultaneously. A finite-
state transducer is a finite-state machine with both an input
and an output tape and thus represents a mapping between
sequences from two alphabets; applying weights to each arc
then allows for scoring each path through the transducer. A
finite-state acceptor can be viewed as the special case where
the input and output tapes are identical. Many of the tra-
ditional components of speech recognition systems can be
represented as weighted finite-state transducers, including
n-gram language models, pronunciation dictionaries, and
Hidden Markov models (HMMs). HMMs are themselves
one method of approximating solutions to the noisy-channel
decoding problem; however, the WFST framework can not
only duplicate the functionality of an HMM-based approach
but also streamlines the construction of a recognition cas-
cade by allowing for different component models with
a uniform representation. By representing system compo-
nents uniformly as WFSTs, we take advantage of the fact
that multiple finite-state automata can be combined in var-
ious ways: for example, a speech recognition cascade can
be represented as the composition of individual transducers
for each stage. The resulting cascade can then be composed
with an acceptor representing an input sequence, which
transforms the decoding problem into that of finding the
shortest path through the weighted finite-state transducer.

In what follows, we apply weighted finite-state trans-
ducers to solve the noisy channel decoding problem in
a manner similar to that of speech recognition cascades.
That is, we utilize a language model and define a number
of component models which, when combined, provide
a probabilistic mapping from frame label sequences to
word sequences. More specifically, we first apply a frame
parsing model, F , which maps sequences of frame labels
to character strings. We then apply an edit distance model,
E , which maps each character string to a (weighted) set
of similar character strings and helps account for errors
made by the typist, the recognition algorithm, and the frame
parser. Next, a dictionary model D is applied, discarding
those paths resulting in invalid words. Finally, the language
model L is applied, accounting for unlikely words and
sequences of words in English.

Each component model is represented as a weighted
finite-state machine, and the application of each is per-
formed by composition. The resulting cascade WFST is
then composed with the input sequence, represented as
acceptor I, resulting in a weighted transducer which maps
from the input sequence to word sequences. We then search
this transducer for the shortest path, which corresponds to
the most likely sequence of words given the input sequence.
We use the OpenFST library4 to construct, combine, opti-
mize and search our model cascade.

The frame parsing WFST (Figure 6) allows for character
break and space insertion as well as frame, break, and space
deletion and is parametrized by weights on each of these

4. http://www.openfst.org



8

0startA B

A (initial match) B (initial match)

space delete
end of character end of character

A (match)

B (delete) B (match)

A (delete)

Fig. 6: Simplified frame parsing WFST, with only two characters,
that maps a sequence of labeled frames to characters.

actions. Each path starts at the zero state, representing the
beginning of the frame label sequence. Upon encountering
a frame labeled with a character, a transition is made
to a character-dependent state (A or B, in this example)
and that character is output. Subsequent frames with the
same label are ignored freely, while those with a different
character label are dropped with a penalty. In a typical
path, once a character break appears in the frame stream,
the transition back to the start state is made, from which
the string can end or a new character can begin. Thus an
input stream ‘AA|BB’ would be output as ‘A|B’ in a typical
path. Other paths are possible, however, which insert or
drop characters breaks and spaces with certain penalties;
the same input would also generate, amongst other outputs,
‘A’ and ‘A|A|B’, albeit with a lower probability.

Our edit distance is based on the distance between keys
on the keyboard and is intended to correct any misclassifica-
tions by the recognition algorithm. It can also automatically
correct typing mistakes. The distance between two charac-
ters is straightforward. If both keys are in the same row,
then the distance is the number of keys between them. If the
keys are not in the same row, we calculate the distance as
though they were in the same row (with rows aligned on the
left-hand edge) and apply a multiplicative penalty for each
row the two keys are apart. This distance is then normalized
to be between zero and one; we take the additive inverse
to obtain a probability estimate, which is weighted with
a parameter. Similarly, the insertion and deletion costs are
represented as probabilities and weighted with parameters,
which allow for tuning the effects of the edit distance on
the overall cascade. For efficiency, we limit the number of
contiguous edits to two.

0start

1

2

edit operation
match

match, end of word

edit operation

match, end of word

Fig. 7: Simplified edit distance WFST mapping sequences of
characters to similar sequences.

A simplified view of the edit distance WFST appears in
Figure 7. For the edit distance WFST, the most likely path
is a loop in the start state, in which case the output string is
identical to the input string. However, an edit (substitution,
insertion, or deletion) can be made, with a penalty, at any
position in a word, resulting in a path which transitions to
state 1; a second edit can then be made, transitioning to
state 2. From either of these states, a match – or the end

of a word – is required to return to the zero state, which
limits to 2 the number of edits which can be made in a
row.

The dictionary used is based on the medium-sized word
list from the Spell Checker Oriented Word Lists (SCOWL)5,
from which we removed roman numerals and the more
obscure abbreviations and proper nouns. Finally, the lan-
guage model used is a unigram model, i.e., simple word
frequencies, trained on the well-known Brown corpus [33].

4 EVALUATION

4.1 Evaluating Output Quality
We now turn our attention to how we measure the quality of
the reconstructions produced by our system. The problem
we face here is similar to that found in both the automated
speech recognition and machine translation (MT) commu-
nities. One common metric used in these domains is the
word error rate (WER). The WER of a transcription is
based on the normalized Levenshtein edit distance between
the hypothesis and the reference, where the basic unit
of comparison is the word. While WER has been used
historically for many tasks, it has several failings [34] that
make it ill-suited for our goals. Consider four hypotheses
for the phrase “the art of war”: (1) the art war (2) the art of
painting (3) the art of of war (4) art of war. Each of these
hypotheses has exactly the same WER (1/4), even though
they are quite different in quality, particularly as it relates
to human understanding: notice that the last two sentences
convey the appropriate meaning, while the first two do not.

For more appropriate metrics, we turn to the machine
translation community, which has addressed many of the
challenges associated with scoring the output of such sys-
tems [35, 36]. While humans are the target audience for MT
systems (and thus the ultimate arbiters of output quality),
evaluations using human judges pose several obstacles: for
example, using experts can be prohibitively expensive and
time-consuming; conversely, hiring non-experts leads to
issues with reliability and inconsistency. Automated evalu-
ation, on the other hand, allows system designers to quickly
test new ideas while providing a consistent basis for com-
paring multiple approaches. Ideally, such automated evalu-
ations would produce results similar to human experts, who
typically assess the adequacy, or how well the appropriate
meaning is conveyed, and fluency of a translation. Similarly,
state-of-the-art automated MT evaluation techniques score
a hypothesis (i.e., the machine translation) by comparing
it with one or more reference (i.e., expert) translations.
The performance of these automated techniques is judged
according to how well the assigned scores correlate with
those assigned by experts.

Scoring our inferences:
Before proceeding further, we note that automated MT

evaluation remains an area of active research, with en-
tire conferences dedicated to the topic. Nevertheless, one
widely adopted metric for producing scores at the segment

5. http://wordlist.sourceforge.net
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level is the Metric for Evaluation of Translation with
Explicit ORdering (METEOR) [37]. METEOR accounts
for position-independent matching of words (i.e., to model
adequacy) and differences in word order (i.e., to model
fluency). More specifically, the METEOR metric is the
combination of a weighted f -score and a fragmentation
penalty. The f -score is defined as the harmonic mean of
unigram precision p and recall r. In this context, precision
is the ratio of the number of (non-unique) words which
occur in both the reference and the hypothesis to the total
number of (non-unique) words in the hypothesis. Recall is
the ratio of the number of words present in both hypothesis
and reference to the number of words in the reference.

Denkowski and Lavie [38] have extensively explored the
space of tunable parameters, and have identified different
sets of values that correlate well with human evaluations
on different tasks; we use the Human-Targeted Edit Rate
parameter set with synonym matching disabled. As a guide-
line for METEOR scores, Lavie [39] suggests that scores of
0.5 and higher indicate understandable hypotheses, while
scores of 0.7 and higher indicate good or fluent hypotheses.

4.2 Results

4.2.1 Experiment #1: Full System Analysis
Recall that our primary goal is to explore the feasibility
of exploiting compromising reflections using low cost con-
sumer devices, and to impose very few contraints on the
capture environment. Towards this end, our first experiment
uses capture devices ranging from low cost, hand-held
devices (Kodak PlayTouch and Sanyo VPC-CG20, costing
$90 and $140, respectively) to mid-range consumer grade
cameras (a Canon VIXIA HG21 Camcorder, retailing for
about $1000). Note that these devices have small form fac-
tors (see Figure 9), thus allowing for unobtrusive capture in
real-world settings. Our capture settings for this experiment
cover both static and dynamic camera positioning, ranging
from cameras mounted near the ceiling of an indoor office
environment, to hand-held capture performed outdoors –
for example, we recorded video footage at a bus stop as
well as on a moving bus. In the indoor setup, the distance
between the user and the camera was approximately 4.5
meters, while the outdoor capture was done at distances
ranging from 1.2-2.2 meters (for instance, looking over a
person’s shoulder while sitting on a bus). At these distances,
the pixel dimensions of the phone in the captured video
ranged from about 49×75 to 114×149 (width×height).
While low resolution is in itself often problematic for
computer vision systems, these datasets present numerous
other challenges: unstable video, motion blur, reflections
from other objects, etc6. In total, we collected 18 videos
(containing 39 sentences) from ten different users typing
on the iPhone. Our experiments covered a number of
practical use-cases designed to elicit a variety of typing
styles (and speeds), and includes scenarios where subjects
(a) typed short passages of text from The Art of War and

6. See http://cs.unc.edu/ispy for some examples.

David Kahn’s The Codebreakers (b) simply typed whatever
came to mind and (c) typed responses to text messages (e.g.,
‘What time shall we meet?’) sent to the phone. In each case,
subjects were instructed to use the phone as they normally
would. All subjects routinely use smartphones.

We evaluate our system at two levels: the sentence
(or segment) level, and the system level. In the former
case, we are interested in the ability of our system to
reconstruct appropriate transcripts of individual sentences.
This is particularly important as it allows an attacker to
have confidence in the output of the system for individual
sentences. The latter case provides a characterization of
our system’s performance as a whole.

Sentence-Level Accuracy: A boxplot of the METEOR
scores for our reconstructions of the sentences typed in our
collected videos is provided in Figure 8(a). Notice that in
both the direct and indirect cases, more than 35% (8/23
and 6/16, respectively) of our hypotheses achieve perfect
scores, and none score below the 0.5 threshold representing
“understandable” translations. We provide a few examples
of our hypothesized transcripts in Table 1, where we also
list the input as actually typed by the user and the reference
text used for scoring.

(a) (b)

Fig. 8: (a) METEOR scores for direct surveillance and sunglass
reflections, with the number of sentences listed in parentheses. (b)
Plot of input area (i.e., image resolution) vs. METEOR scores.

System-Level Analysis: Interestingly, while the basic unit
for comparison is the segment or sentence, it is also
instructive to consider evaluations at the level of entire
corpora of documents, i.e., the system level. System-level
analysis offers a different perspective and, in particular,
smooths the dependency of the scoring on the length
of the sentence. For instance, even a single mistake in
a short sentence can lead to a relatively low METEOR
score, as in Table 1 (Sentence 3). System-level analysis
does not depend as strongly on the length of invididual
sentences and can therefore alleviate this issue to some
extent. The formulae are the same as at the sentence-level,
but instead, (i) the system-level precision is calculated
as the ratio of the sum of the counts of matched words
over all sentences to the total number of words over all
hypothesis sentences, and (ii) the fragmentation penalty
is calculated based on the total number of contiguous
subsequences and unigram matches over all sentences. To
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Sentence Scenario METEOR Score
Typed: to be prepared beforehand for any contingency is the greatest of virtues Sunglasses

1 Reference: to be prepared beforehand for any contingency is the greatest of virtues Canon camcorder 0.92
Hypothesis: to be prepared beforehand for any contingency __ the greatest of virtues 66x104
Typed: i freaked out by the possibilitu of someone else reafing this Direct, on-bus

2 Reference: i freaked out by the possibility of someone else reading this Kodak 0.65
Hypothesis: i created out by the possibility of committee else reading the 114x149
Typed: i can levitate birds Sunglasses

3 Reference: i can levitate birds Sanyo 0.54
Hypothesis: i can hesitate birds 92x107

TABLE 1: Example hypotheses from our reconstruction process. Under ‘Scenario’ is given the details of the capture scenario for each
hypothesis, including camera type and phone image resolution. Note that Sentence 2 was captured on a bus.

Fig. 9: Operating ranges for five different capture devices. Top: Direct surveillance. Middle: Sunglass reflections. Bottom: Cameras
used, along with their approximate price (as of June 2012). For each device, we determine the maximum distance at which we can
capture video that would then be successfully processed by our system (where “successful” is defined by a METEOR score > 0.5)

better judge how well the system-level scores generalize,
we also provide confidence intervals based on bootstrap
resampling, a common statistical technique for estimating
the distribution of a quantity, which consists of sampling
(with replacement) from the set used to derive a statistic
and calculating a bootstrap statistic based on the new
sample. This process is repeated many times, resulting in
an empirical distribution over the statistic of interest. For
direct surveillance, we achieve a system-level METEOR
score of 0.89, with a bootstrapped 95% confidence interval
of [0.84, 0.93]. In the indirect surveillance case, we
achieve a lower, yet still respectable, system score of 0.77,
with a bootstrapped 95% confidence interval of [0.70, 0.86].

Impact of Input Resolution: To gain a deeper
understanding of the influence of the various input
resolutions (of the phone’s screen) on our ability to
reconstruct the typed text, we plot the area (in pixels)
of each input, against the ultimate METEOR score
(Figure 8(b)). The figure shows no correlation, as
evidenced by a correlation coefficient (Pearsons’s r-value)

of 0.07. This indicates that our system performs robustly
over a wide range of input resolutions.

Operating range: Finally, one of our goals in this work is
to gain an understanding of the range of scenarios under
which this kind of attack is practical. For instance, should
you be concerned about someone sitting across the aisle
from you on a bus, equipped with a low-cost hand held
camera? What about an attacker standing on the second
floor of a building, recording people through a window?
Stated differently: how sophisticated (or expensive) does a
capture device need to be, in order to operate under realistic
threat models, in real-world operating conditions?

To answer these questions, we “stress-tested” our system
on a range of devices: a pocket camera (Kodak PlayTouch),
mini camcorder (Sanyo Xacti), point-and-shoot (Nikon
Coolpix s9100), HD camcorder (Canon Vixia HG21) and
a mid-range digital SLR with a zoom lens (Canon EOS
60D with a 100-400mm lens) (see Figure 9 (bottom)).
These devices were selected to cover a range of form-
factors, prices, and levels of optical zoom. For each device,
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we estimated the maximum distance at which we could
capture video and still be able to accurately reconstruct the
typed text; more specifically, we determine, for each device,
the distance at which the METEOR score of our system
drops below the 0.5 threshold of being “understandable”.
The results for this experiment are illustrated in Figure 9,
which shows the case of direct surveillance (top) as well
as sunglass reflections (middle).

The main takeaway from these figures is that for both
direct and indirect threat models, very low cost, small
form-factor capture devices are sufficient to enable accurate
reconstruction of typed text under realistic settings. For
the direct case, for instance, note that even simple pocket
cameras are capable of operating at approximately 3 meters,
which is a very realistic setting for a shoulder-surfing
attack. The corresponding range for the case of sunglass
reflections is lower, since the size of the phone in a
reflection is much smaller. Thus, for this case, while the
lowest class of device (i.e., a pocket camera) is relatively
impractical, a simple point-and-shoot camera can be used
from about 2.5 meters away – a distance that may not be
noticed by an unobservant victim.

Of course, an attacker with a larger budget can use higher
end devices – such as an SLR camera with a zoom lens –
which enables eavesdropping at much larger distances. For
the direct case, we were able to achieve accurate results
at distances of ≈61 meters, which could now represent
a hypothetical attacker standing on an upper floor of a
building and recording people through a window (as in
Figure 1). The range for sunglass reflections is again lower,
but still very realistic; when using an SLR camera, we
achieved a maximum distance of ≈12 meters.

4.2.2 Experiment #2: Isolated Word-Unit Matching
Next, we consider a more specific scenario, where an adver-
sary might not wish to apply the dictionary matching and
language modeling stages. One such example is the case
of recovering passwords, which are often non-dictionary
strings, with numbers and special characters. In this context,
it would thus be informative to analyze the raw accuracy
of our system without the language modeling steps.

For this experiment, we provided users with randomly
sampled passwords from the Sony BMG Netherlands
database7, and used the Canon VIXIA HG21 video camera
to capture a total of 10 surveillance videos, including both
direct and indirect threat models, using the same capture
settings as in Experiment 1 (Section 4.2.1). We ran each
recorded video stream through our system, but did not
apply the edit distance, dictionary matching and language
modeling stages. In other words, the WFST in Stage Î of
our system now consists of only the frame parser module.

For this experiment, the passwords we used consisted of a
combination of letters, numbers, and special characters (for
instance, “des8gn@H”). Most on-screen keyboards have an
option to toggle the keyboard layout between alphabets and
numbers/special characters. As noted in Section 3.4, there

7. See WIRED’s “Sony Hit Yet Again; Consumer Passwords Exposed”.

are various ways in which this scenario can be addressed in
our system. We choose a simple strategy in this work: we
simply train classifiers for each key on each keyboard mode
as before, and when running the classifiers on a test frame,
we output the key (across all keyboard modes), which
gathered the strongest response. In other words, this simple
approach relies on the hypothesis that often, for a specific
pop-out location on the keyboard, the keys in the various
keyboard modes are sufficiently different in appearance in
order for the classifier to tell them apart.

In terms of evaluation, note that for this experiment, the
METEOR score is not well-suited to evaluating accuracy,
since we are interested in the ability to reconstruct isolated
word units, i.e., sequences of contiguous non-space char-
acters, rather than phrases. For this reason, we record pre-
cision and recall scores, based on the number of password
characters which match between what was actually typed,
and our reconstructed text. For the 10 passwords tested in
this experiment, we achieved an average precision of 0.97,
with an average recall of 0.92. In the context of recovering
passwords, these high precision/recall scores imply that the
search space for any subsequent algorithm is significantly
reduced [40], thus making it much easier for an attacker to
accurately recover passwords.

As an additional experiment, we can also perform the
same word-unit based analysis on the datasets captured
for Experiment #1. In other words, we can process the
same sets of sentences as in Experiment #1, but without
the application of edit distance, dictionary, or language
models. In this analysis, we achieve precision and recall,
respectively, of 0.75 and 0.78 for direct surveillance and
0.64 and 0.65 for indirect surveillance – in all cases, the
accuracy is high enough to recover more than half of any
typed words. In addition, our single-character precision
and recall scores are 94% and 98%, respectively, in the
direct case, and 92% and 97% in the indirect case –
again demonstrating that our system is certainly accurate
enough for password guessing, particularly given that we
have a reasonable prior distribution over characters to drive
password space exploration.

4.2.3 Experiment #3: Optical Character Recognition
While our main focus in this work has been to exploit
the “pop-out” characteristics of on-screen keyboards via a
video stream of the typing activity, it is worth comparing
our video-based attack against an alternate, and perhaps
more obvious, attack: using Optical Character Recognition
(OCR) techniques to directly read the text displayed on the
screen of the devices. This alternate attack has some notable
advantages: (a) it does not require the capture of video
sequences; rather, a single still image of the screen would be
sufficient to reconstruct the displayed text and (b) capturing
a still image typically yields a higher resolution image than
a video recording; thus, for example, it might be possible
to use digital SLR cameras coupled with zoom lenses,
to capture the screen of the device from a much larger
distance. Note that Backes et al., [2, 3] exploit essentially
this kind of attack, using high-end telescopic lenses to
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OCR Method Image Resolution
450×300 300× 200 225× 150 180× 120 129× 86

OnlineOCR 1.0 0.0 0.0 0.0 0.0
Google Docs 0.30 0.30 0.0 0.0 0.0

FreeOCR 0.51 0.0 0.0 0.0 0.0
Tesseract OCR 1.0 0.0 0.0 0.0 0.0

ABBYY FineReader 1.0 0.55 0.21 0.0 0.0
OmniPage 0.48 0.0 0.0 0.0 0.0

TABLE 2: Synthetic results: METEOR scores for each OCR engine at varying image resolutions.

capture reflections of computer monitors. However, while
their work focuses more on the acquisition of these images,
we are more interested in whether these images can be
automatically interpreted using OCR-based techniques.

As a simple “synthetic” experiment, we first capture a
screenshot of passage of text displayed on the screen of
the device, and downsample the resulting image to mimic
the effect of decreasing resolution (see Table2 which lists
the resolutions used). Note that this provides the best
possible input to the OCR system – i.e., images with no
camera imaging noise, occlusion, illumination variation, or
perspective distortion. In other words, running an OCR
engine on these synthetic images should provide a baseline
for their accuracy for this task, under the most favourable
operating conditions.

We compare the performance of six OCR engines that
are freely available on the web: OnlineOCR, Google Docs,
FreeOCR, Tesseract OCR, ABBYY FineReader, and Om-
niPage. These engines were selected to be a representative
sample of the current state-of-the-art in OCR. Each of these
engines was run on the synthetic images at a range of
resolutions (see Table 2). Note that the accuracy of even
the best OCR engine drops dramatically for a moderate
reduction in pixel resolution. This suggests that in a prac-
tical capture scenario, the accuracy of the OCR attack will
depend significantly on the size of the phone in the captured
images. Note that the video-based attack does not display
this stong correlation; as shown in Figure 8(b), our attack
operates robustly over a wide range of input resolutions.

To further evaluate the applicability of OCR techniques
under realistic capture conditions, we now capture still
images of the screen of the phone, from a clear, fronto-
parallel viewpoint. It is worth noting that we could also
capture images from an oblique viewpoint and run them
through Stage Ì of our system (alignment to reference
image) to obtain a fronto-parallel image. However, since
our main focus in this experiment is to test the accuracy of
OCR, we opt to directly capture a frontal view. While our
synthetic experiments involved artifically downsampling the
images, in this case, we now alter the distance between
the phone and the camera to capture this effect. For this
experiment, we used a Canon EOS 60D camera, with the
focal length of the lenses used varying between 70mm
to 400mm. This thus represents a recording device which
provides very high-resolution (5, 184× 3, 456) images. For
this experiment, we use the best performing OCR engine
from the synthetic experiments (ABBYY FineReader). A
representative selection of the results are shown in Table 3.

The main take-home message from these results is that

while the OCR attack is indeed simpler, it is viable only
up to a point, beyond which it quickly becomes far too
inaccurate. For the case of direct surveillance, for instance,
using an OCR-based attack, an attacker with a digital SLR
camera and 400mm zoom lens can be up to 8m away from
the user and be able to accurately (i.e., with a METEOR
score > 0.5) reconstruct the on-screen text. These results
are far weaker than with our proposed approach, where
we achieve a corresponding maximum distance for direct
surveillance, using exactly the same equipment, of 61m –
almost 8 times farther than the OCR attack.

Fig. 10: Low resolution images of some characters from the
iPhone keypad. Can you recognize these characters? Note that at
these low resolutions, it is an exceedingly difficult task for humans
– let alone OCR engines – to recognize the character correspond-
ing to each image. In the absence of additional information, this is
the main reason OCR systems often fail completely when applied
to this task. (Answer: reading left to right, C D G O Q).

Fig. 11: Left: Aligned iPhone keypad, with the “popped-out” letter
C highlighted. Right: Extracted patches, corresponding to positive
and negative training samples for our key-press classifier for the
letter C. Note that this two-class classification problem is much
easier to solve than the problem illustrated in Figure 10.

The main reason for the relative inaccuracy of OCR is
due to the fact that, particularly at low resolutions, it is
often hard to distinguish between different letters. Some
examples are shown in Figure 10; these letters were cropped
from one of the videos we recorded for the experiments in
Section 4.2.1. Note that it is diffcult, even for humans, to
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Focal length (mm) Distance (m) Reconstructed sentence METEOR score
70 3.0 the multiple human needs and desires that demand privacy among two or more people 1.0

in the midst of social life must inevitably lead to cryptology wherever men thrive and
wherever they write

70 4.0 the multiple human needs and desires that demand privacy among two or more people 0.51
m the midst of social irfe must mevitabty lead to cryptology wherever men thrive
and wherever they wnte

70 5.0 - 0.0
400 8.0 the multiple human needs and desires that demand privacy among two or more people 0.49

in the midst of social life must inevitably lead to r.ryptrjloqy wherever men thrivn
and whmnvi’i fhoy wrlln

400 9.0 the multiple human nee<ls and desires that demand pnvacy among rwo or moce people 0.33
m the midst of sooa Âğ*e must inevitably lead to cryptology men thrive and wherever
th#?v *rite

400 10.0 - 0.0

TABLE 3: OCR results for direct surveillance using a digital SLR camera with zoom lens.

identify these letters, making it an impossibly hard task for
an OCR engine. The reason our system is able to handle
this case is due to the fact that we do not attempt to
recognize these letters in isolation; rather, we take spatial
context into account. More specifically, since we align
each frame of video, and train a different classifier for
each keyboard location, our system does not ever need to
distinguish between characters. Each trained classifier in
Stage Í only needs to distinguish between a popped-out
letter and its background, which is a much simpler problem,
as shown in Figure 11. Stated differently, we transform a
26-class classification problem (considering letters a-z) in
the case of OCR, into a 2-class classification problem (that
of distinguishing between a letter and its background). In
this sense, our system can actually be viewed as a highly
specialized OCR system that is able to leverage spatial
information, via the location of the keys on the keyboard,
in order to recognize key presses. This fact enables us to
operate effectively over a much wider range of distances
compared to the OCR attack.

5 SUMMARY & LIMITATIONS
We explore the feasibility of automatically reconstructing
typed input in low resolution video, of, e.g., compromising
reflections, captured in realistic scenarios. While our results
are certainly disconcerting, it is prudent to note that there
are some important issues that remain open. Low pixel
resolution of the phone image is one of the key problems
we encountered. It can be caused by a variety of factors,
including camera aperture, wide angle lenses, and large
effective capture distance. While capturing data on the bus,
we sometimes encountered motion blur artifacts, caused by
excessive camera jitter. All of these make the phone’s ap-
pearance so blurry that no reliable features can be extracted,
and so our phone stabilization (Stage Ë) and alignment
(Stage Ì) methods fail in certain cases. We believe this
could be addressed by using more sophisticated (and ex-
pensive) capture techniques, as in [3], which addresses the
allied problem of capturing clear images from reflections.

Finally, there are potential defenses against the attacks
proposed in this work. One, in the indirect case, is the ap-
plication of an anti-reflective coating, such as is common on
modern eyeglasses, on the reflection surface. Reducing the

brightness of the screen would also have a detrimental effect
on any reconstruction. Finally, one might disable the visual
key press confirmation mechanism which we leverage in
this work. Obviously, our approach is not applicable to
situations where there is no visual key press confirmation.
Hence, devices that lack this effect – for instance, tablets, or
devices that use drag-based input mechanisms (e.g., Swype)
– are not vulnerable to our attack. How to effectively handle
these kinds of devices is an interesting direction to explore.
Lastly, as suggested by Backes et al. [3], one could use
secondary reflections in the environment when direct line-
of-sight to the target is infeasible.

Nevertheless, the fact that we can achieve such high ac-
curacy underscores the practicality of our attack, and aptly
demonstrates the threats posed by emerging technologies.
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