
1

Trail of Bytes: New Techniques for Supporting
Data Provenance and Limiting Privacy Breaches

Srinivas Krishnan, Member, IEEE, Kevin Z. Snow, and Fabian Monrose

Abstract—Forensic analysis of computer systems requires that
one first identify suspicious objects or events, and then examine
them in enough detail to form a hypothesis as to their cause
and effect. Sadly, while our ability to gather vast amounts of
data has improved significantly over the past two decades, it
is all too often the case that we lack detailed information just
when we need it the most. In this paper, we attempt to improve
on the state of the art by providing a forensic platform that
transparently monitors and records data access events within
a virtualized environment using only the abstractions exposed
by the hypervisor. Our approach monitors accesses to objects
on disk and follows the causal chain of these accesses across
processes, even after the objects are copied into memory. Our
forensic layer records these transactions in a tamper evident
version-based audit log that allows for faithful, and efficient,
reconstruction of the recorded events and the changes they
induced. To demonstrate the utility of our approach, we provide
an extensive empirical evaluation, including a real-world case
study demonstrating how our platform can be used to reconstruct
valuable information about the what, when, and how, after a
compromised has been detected. We also extend our earlier
work by providing a tracking mechanism that can monitor data
exfiltration attempts across multiple disks and also block attempts
to copy data over the network.

I. INTRODUCTION

Today, postmortem intrusion analysis is an all too familiar
problem. Our devices are repeatedly compromised while per-
forming seemingly benign activities like browsing the Web [1],
interacting on social-networking websites, or by malicious
actors that use botnets as platforms for various nefarious
activities [2]. Sometimes, threats can also arise from the
inside (e.g., corporate espionage), and often lead to substantial
financial losses. Underscoring each of these security breaches
is the need to reconstruct past events to know what happened
and to better understand how a particular compromise may
have occurred. Sadly, although there has been significant
improvements in computer systems over the last few decades,
data forensics remains a very tedious process; partly because
the detailed information we require to reliably reconstruct
events is simply not there when we need it the most [3].

Loosely speaking, recent efforts in data forensic research
have focused on tracking changes to file system objects by
using monitoring code resident in kernel space, or by making
changes to the application binary interface. However, without
proper isolation these approaches are subject to tampering
and therefore can not provide strong guarantees with respect
to the integrity of recorded events. Malicious users can, for
instance, inject code into either kernel or user space, thereby

The authors are with the Department. of Computer Science at the University
of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA. email:
(krishnan,kzsnow,fabian)@cs.unc.edu

undermining the integrity of logs maintained by the tracking
mechanism. Virtualization [4] provides a potential avenue
for enabling the prerequisite isolation criteria by providing
a sandbox for operating system code and applications. For
example, a hypervisor can mediate disk accesses at the block
level by presenting a virtual disk to the virtual machine (VM).
One disadvantage, however, is that this abstraction suffers from
a “semantic gap” problem [5], in which the mapping between
file-system objects and disk blocks are lost, thereby making it
difficult to track objects beyond the disk layer.

In this paper, we propose an approach for monitoring
accesses to data in a virtualized environment while bridging
the semantic gap issue. Specifically, we provide an approach
for monitoring accesses to data that originated from disk,
and capture subsequent accesses to that data in memory—
even across different processes. Our approach achieves this
goal without any monitoring code resident in the virtual
machine, and operates purely on the abstractions provided
by the hypervisor. Operating at this layer mandates that we
access the disk at the block layer, memory at the physical
frame layer and system calls at the instruction layer—all
of which offer substantial engineering challenges of their
own. In that regard, our contributions are in the design and
implementation of an accurate monitoring and reconstruction
mechanism that collates and stores events collected at different
levels of abstraction. We also provide a query interface for
mining the captured information, and in doing so, provide
forensic analysts with far more detailed information to aide
in understanding what transpired after a compromise (be it a
suspicious transfer of data or modification of files) has been
detected. We also provide an extensive empirical analysis of
our platform, including a real world case study.

The remainder of the paper is organized as follows. We
first present some background and related work in Section II.
Sections III and IV describe our design and architecture, in-
cluding the various monitoring subsystems and the respective
challenges with combining data from the various levels of
abstraction. We discuss several threat models our framework
helps protect against in Section V. Section VI describes how
the framework may be used to protect data from inadvertent or
intentional disclosures. In Section VII, we present a detailed
empirical evaluation of the runtime overheads and accuracy
of our logging and reconstruction techniques. To highlight
the strength of our approach even further, we present a case
study in Section VIII showing how the framework was used to
uncover interesting forensic evidence from a laptop that had
been connected to a public network for 2 weeks. We discuss
attacks on, and limitations of, our current design in Section IX
and conclude in Section X.

2

II. BACKGROUND AND RELATED WORK

Generally speaking, computer forensics attempts to answer
the question of who, what and how after a security breach has
occurred [6]. The fidelity of the recorded information used in
such analyses is highly dependent on how the data was col-
lected in the first place. Keeping this in mind, the approaches
explored in the literature to date can be broadly classified as
either client-based approaches (that use application or kernel-
based logging) or virtualization-based approaches (that use
hypervisor based logging). While client-based approaches can
provide semantic-rich information to a security analyst, their
fidelity can be easily undermined as the logging framework is
usually resident within the same system that its monitoring.
Hypervisor-based approaches, on the other hand, are generally
thought to lack the semantic detail of client-based approaches,
but can achieve greater resistance to tampering, as the logging
mechanisms reside in privileged sandboxes.

a) Client-based Approaches: File-system integrity and
verification has a long history, with some early notable exam-
ples being the work of Spafford et al. on Tripwire [7] and Vin-
cenzetti et al. on ATP [8]; both of which use integrity checks to
verify system binaries (e.g., /sbin/login). Extending this
idea further, Taser [9] detects unauthorized changes to the file-
system and reverts to a known good state once malfeasance
is detected. Solitude [10] extends this concept even further
by using a copy-on-write solution to selectively rollback files,
thereby limiting the amount of user data that would be lost
by completely reverting to the last known good state. These
systems do not record evidence on how an attack occurred
or the data that was compromised. Instead they are geared
primarily at efficient restoration back to a known good state.

More germane to our goals are systems such as PASS [11]
and derivatives thereof (e.g., [12]) that provide data prove-
nance by maintaining meta-data in the guest via modifications
to the file-system. However, their approaches require extensive
guest modifications and share the same problems of client-
based systems.

b) Virtualization-Based Approaches: In order for
virtualization-based approaches to work in a data forensic
framework, they need to first overcome the disconnect
in semantic views at different layers in an operating
system [5, 13]. In particular, Chen et al. [5] provides
excellent insight into advantages and disadvantages of
implementing secure systems at the hypervisor layer. The
challenges are generally related to performance and the
difference in abstractions between the hypervisor layer and
the guest virtual machine. While the issue of performance
has been addressed as hypervisor technologies mature, the
“semantic gap” still remains. Antfarm [14], Geiger [15] and
VMWatcher [16] have bridged this gap for a given layer
of abstraction, but no single work has tackled the problem
of bridging the gap for a set of interconnected layers of
abstraction (i.e., spanning disk, memory and processes) while
preserving the causal chain of data movement.

Closely related in goals is the approach of King et al. [17]
which provides an event reconstruction approach for relating
processes and files. BackTracker reconstructs events over time

by using a modified Linux kernel to log system calls and
relate those calls based on OS-level objects [18]. The semantic
gap issue is bridged by parsing the memory contents of
the virtual machine during introspection time using an event
logger compiled with the virtual machine’s kernel headers.
This approach is fragile, as any changes to the guest kernel will
undermine their approach [18] [17]. Similarly, in their VM-
based approach, it is not possible to monitor operating systems
that are closed-source. While BackTracker made significant
strides in this area, we find that relying solely on system
calls to glean OS state has several drawbacks. For one, since
it does not monitor memory events, data movements (such
as a process sending a file over a network socket) can only
be inferred as “potential” causal relationships; neither can it
detect the exact object that was sent over the network. To be
fair, these were not part of its stated goals. By contrast, the
causal relationships we build attempts to capture access chains
across processes, all-the-while storing the exact content that
was accessed and/or modified.

Also relevant are the techniques used by Patagonix [19]
and XenAccess [20] that employ forms of memory inspection.
Patagonix’s goal is to detect changes between binaries on disk
and their image in memory. XenAccess is positioned as an ex-
tensible platform for VM monitoring. Our goals and approach
are different in that we use signals from different layers of
the VM (i.e., the system-call, memory and storage layers) to
correlate accesses to a monitored object. Lastly, this paper
significantly extends our earlier work [21] to include new
techniques for dynamic provisioning and selective blocking.

III. DATA TRACKING

Our primary goal in this paper is to enable fast and efficient
recording of events involving monitored data (e.g., a set of
files on disk), at a granularity that allows a security analyst
to quickly reconstruct detailed information about accesses
to objects at that location. Conceptually, our approach is
composed of two parts, namely an efficient monitoring and
logging framework, and a rich query system for supporting
operations on the recorded data. To support our goals, we
monitor events to a collection of locations L (i.e., memory,
disk or network) and record read or write operations on L. We
denote these operations as O. Any additional operations (e.g.,
create or delete) can be modeled as a combination of these base
operations. We tie these accesses to the corresponding causal
entity that made them to ensure that a forensic analyst has
meaningful semantic information for their exploration [22].

The approach we take to capture these causal relationships
is based on an event-based model, where events are defined
as accesses, O, on a location L caused by a some entity, i.e.,
Ei(O,L) → ID. Loosely speaking, an entity is modeled as
the set of code pages resident in a process’ address space
during an event. The distinct set of code pages belonging to
that process is then mapped to a unique identifier. This event-
based model also allows us to automatically record events that
are causally related to each other, and to chain the sequences of
events as

⋃n
i Ei. Intuitively, events are causally related based

on the same data being accessed from multiple locations; i.e.,

3

we consider E0(O,L) to be causally related to E1(O
′, L′) if

the same data object resides in L and L′. The event model
also facilitates the implementation of protection mechanisms
based on realtime tracking of causally related events. We show
one such example of data protection in this paper by blocking
exfiltration attempts over the network.

Since the hypervisor views the internals of a VM as a
black box, a key challenge is in realizing this model with
minimal loss of semantic information. This challenge stems
from the fact that the monitoring subsystem gets disjoint views
of operational semantics at different levels of abstraction. For
example, a read system call operates with parameters in virtual
memory and the guest file system layer, which then spawns
kernel threads that translate the file system parameters into
blocks, after which the request is finally placed on the I/O
queue. Without any code in the guest, the challenge is in
translating these requests and chaining them together.

As we show later, one contribution of this work lies in our
ability to link together the various events captured within the
hypervisor. In what follows, we present our architecture and
the design choices we made in building a platform that realizes
the aforementioned model.

A. Architecture

The monitoring framework is built on top of Xen [23]
with hardware-virtualization [24]. At a high level, the Xen
hypervisor is composed of a privileged domain and a virtual
machine monitor (VMM). The privileged domain is used to
provide device support to the unprivileged guests via emulated
devices. The VMM, on the other hand, manages the physical
CPU and memory while providing the guest with a virtualized
view of system resources. This allows our framework to
monitor—from the hypervisor—specific events that occur in
the virtual machine. In order to support the framework we
added ∼5KLOC to the Xen hypervisor.

The framework is composed of three modules that monitor
storage, memory, and system calls (see Figure 1). The modules
are fully contained within the hypervisor with no code resident
in the virtual machine. The system is initiated by monitoring
accesses to a specific set of virtual machine disk blocks. The
storage module monitors all direct accesses to these blocks
and their corresponding objects, while subsequent accesses
to these objects are tracked via the memory and system call
modules. Specifically, the memory module in conjunction with
the system call module allows the framework to monitor
accesses to the object after it has been paged-in to memory,
and also builds causal relationships between accesses. The
memory module is also responsible for implementing the
mapping function that lets us tie events to specific processes.

As a result of our design, each of these modules have to
bridge the “semantic gap” prevalent at that layer of abstraction;
i.e., blocks to files, machine physical addresses to guest virtual
addresses, and instructions to system calls. Since the frame-
work is built to log events happening in the guest, a single
guest event might trigger multiple hypervisor events crossing
various abstraction boundaries, e.g., consecutive writes to a
file by a text editor will require disk objects to be mapped

Xen Hypervisor (modified)

Audit Log

Guest OS (unmodified)

User
Apps

User Space

Kernel Space

open(), read(),
write(), mmap(), etc.

Storage
Subsystem

Memory
Subsystem

System Call
Subsystem

Trampoline Modified
Memory

OS Task
Switching

Forensic Query Interface

Event
Hooks

Modified
CR3

Disk I/O

Shared
I/O

Ring

SYSENTER

System Call Handler

Fig. 1: Overall architecture of the forensic platform, depicting the
memory, storage and system call layers

back to the file, writes to the page in the guest’s memory
have to be mapped to the actual page in physical memory,
etc. To effectively observe these linkages, our modules work
in tandem using a novel set of heuristics to link events
together. These events are stored in a version-based audit log,
which contains timestamped sequences of reads and writes,
along with the corresponding code pages that induced these
changes. The log integrity is ensured using forward integrity
hash chaining. We now turn our attention to the specific
functionality of each of the monitoring modules.

1) Storage Subsystem: The storage module is the initializa-
tion point for the entire monitoring framework. That is, virtual
machine disk blocks are monitored via a watchlist maintained
by this module. Any accesses to the blocks on the watchlist
triggers an update to the storage module. Accessing a block on
the watchlist also notifies the memory module to monitor the
physical page where the block is paged-in. In what follows,
we first discuss how we monitor access at the block layer.

Figure 2 describes the Xen storage model and the enhance-
ments we made to monitor disk I/O. In Xen, block devices are
supported via the Virtual Block Device layer. Guests running
on top of Xen see a virtual disk and therefore cannot directly
modify physical disk blocks. Specifically, all accesses are
mediated through the Xen storage layer, which exposes an
emulated virtual disk. All I/O requests from the guest are
written to an I/O ring, and are consumed by the storage layer.

The storage module monitors physical blocks on this virtual

4

Driver

Physical Disk

Monitored
Blocks

Virtual
Disk

Storage
Monitoring

Module

VMExit
Shared

I/O
Ring

I/O Completion
Notification

Timestamp,
Operation

Linux AIO

Read/Write
Time & Location

Xen Hypervisor (modified)

Memory Monitoring Module

Event
Hooks

Guest OS (unmodified)

I/O Request
Xen Storage Layer

Fig. 2: The storage monitoring module, including our hooks for
monitoring disk I/O at the Xen Storage and Linux AIO layers

disk and automatically adds them to watchlist it maintains.
As guests place their I/O requests onto the shared ring, our
monitoring code is notified via a callback mechanism of
any accesses to blocks on the watchlist. This allows us to
timestamp a request as soon as it hits the I/O ring—which is
critical in matching the disk access with the system call that
made the request, enabling the memory module to link a disk
access with a specific process. Finally, the storage module
waits for all reads/writes to be completed from disk before
committing an entry in our logging data-structure.

a) Dynamic Provisioning: The aforementioned approach
involving disk-level monitoring is not ideal, as tracking copies
to unmonitored disks (the system disk, for example) would
lead to tracking the entire destination disk as well. Since
access to any block on a monitored disk triggers the storage
module, each additional disk that requires monitoring could
substantially increase the number of notifications that the
storage module needs to process. Furthermore, it is usually
the case that a given disk only has a limited set of files that
require monitoring, whereas the disk level granularity does
not allow us to exclude any given set of files on disk from
being monitored. Therefore, in order to improve performance
and precision, we extend the disk-level approach in [21] to
explicitly disabled tracking accesses across unmonitored disks.

Instead, we introduce a new mechanism for tracking events
system-wide, which we call dynamic provisioning. Rather
than monitoring an entire virtual disk, we instead initialize
the system with a set of file hashes that require monitoring.
The blocks corresponding to the file hashes are added to the
watchlist, and accesses to them trigger the storage module.

As derivations of the monitored data are created by user
operations across different disks we dynamically provision the
corresponding blocks onto our watchlist and monitor them as
well. To do so efficiently, we leverage Xen’s storage model,
which presents a consistent block-level device by abstracting
away hardware level details. We also implement callbacks
within Xen’s storage layer to receive notifications of data
accesses across all the block devices available to the VM. The
relevant blocks are then identified by querying the memory
and system call module, a process that is described in the
subsequent sections.

As we shall see later, the monitoring platform uses a special
data structure to log all accesses. The amount of information
we store in these logs is directly related to the number of
blocks we monitor. By only tracking at the block level and not
the entire disk, we are able to substantially reduce the number
of blocks we monitor by allowing administrators to exclude
files they deem non-essential, (e.g., static system files). Hence
our technique of monitoring blocks on access and dynamically
provisioning them has an added advantage of lowering the rate
of growth of the logs.

As alluded by the discussion above, accesses to disk blocks
typically happen as the result of a system call. In order to tie
these two events together, it is imperative that we also monitor
events at the system call layer. Next, we examine how we
achieve this particular goal.

2) System Call Monitoring Subsystem: The system call
module is responsible for determining when the guest makes
system calls to locations of interest (L = disk, memory or
network), parsing the calls and inferring semantic linkage
between related calls. We first describe how the module
monitors the system calls and then discuss how they are
used to infer semantic linkages with the memory monitoring
module.

Monitoring System Calls: The use of hardware virtualiza-
tion makes the efficient tracking of system calls in the guest
an interesting challenge. To see why, notice that system calls
on the x86 platform can be made by issuing either a soft
interrupt 0x80 or by using fast syscalls (i.e., SYSENTER).
Modern operating systems use the latter as it is more efficient.
This optimized case introduces an interesting challenge: a
traditional 0x80 would force a VMEXIT (thereby allowing
one to trap the call), but fast syscalls on modern hardware
virtualized platforms do not induce a VMEXIT. However,
syscalls must still retrieve the target entry point (in the VM’s
kernel) by examining a well-known machine specific register
(MSR)1. Similar approaches for notification on system call
events at the hypervisor layer have also been used recently
in platforms like Ether [25].

Since the hypervisor sets up the MSR locations, it can
monitor accesses to them. Our solution involves modifying the
hypervisor to load a trampoline function (instead of the kernel
target entry) on access to the MSR for syscalls. The trampoline
consists of about 8 lines of assembly code that simply reads
the value in eax and checks if we are interested in monitoring

1The SYSENTER call on the Intel platform uses the MSR SYSENTER_EIP
to find the target instruction. This MSR is always located on Intel machines
at address 176h, even when setup by the hypervisor.

5

that particular system call before jumping into the kernel target
point2. If we are, then the memory module (Section III-A3)
is triggered to check the parameters of the call to see if they
are accessing objects on the memory module’s watchlist. The
trampoline code runs inline with virtual machine’s execution
and does not require a trap to the hypervisor, avoiding the
costly VMEXIT.

Capturing the Semantic Linkage: The system call module
in conjunction with the memory module is responsible for
inferring the semantic linkage between a set of related calls,
for example, a read() call on a file whose blocks we monitor
and a subsequent socket open(),write() of the bytes to
a network socket. In this paper, we selectively monitor types
of syscalls that could yield operations in our event model.

Specifically, we monitor syscalls that can be broadly clas-
sified as involving (1) file system objects, e.g., file open,
read, write (2) memory resident objects, e.g., mmap operations
(3) shared memory objects, e.g., ipc, pipes and (4) network
objects, e.g., socket open and writes. As described earlier
the system call module will monitor these calls and parse
the parameters. The approach we take to create linkages
between such calls is straightforward: we simply examine the
source and destination parameters to infer data movement.
In the aforementioned example, the system call monitor will
be triggered on each of the file read(), network socket
open() and write() calls. Since the source parameter of
the read() references a monitored page, the memory module
notifies the system call module of the offending access, and
also adds the corresponding page of the destination parameter
(e.g., the buffer) to its watchlist. When the memory module is
later triggered because of the write on a network socket, that
access will also be returned as an “offending” access since
it references a page that is now on the memory module’s
watchlist. As a result, the system call module will connect
the two calls and infer the semantic linkage. Unlike other
approaches that attempt to infer causal linkages based on data
movements, our platform is able to accurately and definitively
link events that are causally related. We now discuss the
specifics of how the memory module decides if a particular
event is accessing a monitored object.

3) Memory Monitoring Subsystem: The key function of this
module is to track accesses to monitored objects once they are
resident in memory. Recall that the initial access to L on disk
causes the storage module to notify the memory module of
potential data movement. This access causes a page fault, as
the object has not yet been paged into memory. Since Xen
manages the physical memory and hardware page tables, the
fault is handled by the hypervisor. Our memory monitoring
module is notified of this fault via the callback placed in Xen’s
shadow page table mechanism, and updates its watchlist with
the machine physical page of the newly paged-in monitored
object. For brevity, we omit system level details and provide
only the essential details. Before we proceed, we simply note
that Xen provides the VM with a virtualized view of the
physical memory by performing the actual translation from
guest physical pages to actual machine physical pages [23].

2System call numbers are pushed into eax.

Guest OS (unmodified)

(write protected)

Page Directory Memory I/O

Guest Page TableGuest Page Table

(write protected)

Current Page Table

Modified
CR3

Current
CR3

Modified
Memory

Event
Hooks

OS Task Switch

Shadow Page
Directory

Guest Page TableGuest Page TableShadow Page Table

Virtual
CR3

Inspect CR3

kernel/user
code

Physical Memory

data

Application
Signature

Xen Hypervisor (modified)

Monitoring codeHidden Page Entry

< timestamp, Pi, Pi+1, ... >
Hidden Page

Offending CR3 List
CR31 CR32 CR3i

Version
Tree (V2)

Version
Tree (V1)

Version
Tree (Vi)

Append event to V[CR3,signature]

Event

Fig. 3: Overview of the memory monitoring module, showing the
hooks needed for tracking of monitored objects in memory and for
logging the offending processes.

Tracking objects: The memory module uses its watchlist to
track all subsequent accesses to monitored objects in memory.
Recall that the system call module consults the memory
module to determine if an access is to a protected object.
To make this determination, the memory module consults its
watchlist, and returns the result to the system call module3.

Notice that the memory monitoring module is in no way
restricted to tracking only events triggered via system calls.
Since it monitors objects in physical memory, any direct
accesses to the object will be tracked. For instance, accesses
to objects in the operating systems buffer cache will always
trigger a check of the memory module’s watchlist.

Our approach extends the coverage of events even to ac-
cesses that might occur on monitored objects that are copied
over to other memory locations. Since the memory monitoring
module is triggered from the initial page-in event of the
monitored data block from disk into memory, this paged-in
machine physical page is automatically added to the watchlist.
Hence, any subsequent events on this page such as a memcpy()
will result in the target memory location of the copy operation
to be also added to the watchlist4. This is done to prevent
evasion techniques that might copy the data into a buffer and
then send the data over a network socket. Hence, any indirect
data exfiltration attempts will also be recorded as an access to
the original monitored block.

This is a key difference between the type of taint track-

3Recall the memory module must translate the guest virtual address to its
physical address in a machine physical page.

4The destination machine physical page in memcpy.

6

Version Tree
V[ID2], H2

tim
e

Timestamp
E1(read, disk)

Blocks

Timestamp
E3(write, mem:pipe)

(Ptr to V[ID3])

Version Tree
V[ID1], H1

Version Tree
V[ID3], H3

time

Audit
Log

Causal
LinkageTimestamp

E2(write, mem:diff)

Timestamp
E3(write, disk:diff)

Timestamp
E1(read, disk)

Timestamp
E2(write, mem:diff)

Timestamp
E1(read, disk)

Timestamp
E2(write, mem:diff)

Timestamp
E3(write, net)

ID1 = 48C73 ID2 = 1E653 ID3 = BA12E

Fig. 4: The version tree stores different versions of blocks and the corresponding codepages that accessed these blocks over time. To support
efficient processing of the audit log, we also store pointers to other version-trees of causally related processes.

ing [26, 27] commonly used to track objects in memory
and the physical page monitoring we propose. Although
taint tracking of that type affords for monitoring accesses
to memory locations at a very fine granularity (e.g. pointer
tracking), it does incur high overhead [28]. The memory
tracking we implemented tracks accesses to the initial physical
page frame where the data from monitored storage was paged
in and subsequent physical memory locations the data was
copied to. Our low overhead is achieved via a copy-on-write
mechanism that tracks subsequent changes and accesses to
the monitored objects. This implementation affords a coarser
mechanism compared to taint tracking for memory monitoring,
but achieves our goals at a much lower cost.

Once the decision is made that an access is to a monitored
object, the memory module notes this event by timestamping
the access5. The module also stores a “signature” of the
code pages of the offending process. Recall that the CR3
register on the x86 platform points to the page directory of
the currently executing process within the VM. Hence, to keep
our overheads low, we do the signature creation lazily and add
the address of the CR3 register (page-table register) to a queue
of offending addresses that must be extracted later.

The signature is created as follows. For each item on this
queue, we examine its page frames to inspect those codepages
that are unique to the process being inspected. Because a CR3
could potentially point to different processes over time, we
log the accesses in a modified B+–tree [29] where the root
node is indexed by the tuple 〈CR3, set of codepages〉. In this
way, we avert appending a new process’ events to an old
process’ log. We call this structure a version-tree. The keys
to the version-tree are the block numbers corresponding to
the monitored object on disk, and the leaves are append-only
entries of recorded operations on location L. The version-tree
is built as follows:

1) If no version-tree exists for the process we are examining
i.e. no tree has a root node that equals the current CR3
and code page hash, then let the set of known codepages
be S = ∅, and skip to step (3).

5Specifically, a hidden page is appended in the shadow page table of the
process with the timestamp and objects accessed.

2) Compare the hash of the codepages in the page table to
the stored value in the tree. If the hashes are the same,
there are no new codepages to record, and we only need
to update the accesses made by this process; therefore,
proceed to step (4).

3) To determine what new codepages have been loaded into
memory, compute the cryptographic hash of the contents
of the individual pages, ci. Next, for each h(ci) 6∈ S,
determine whether it is a kernel or user page (e.g.,
based on the U/S bit), and label the page accordingly. If
h(ci) is found in page tables of more than one process,
then label that page as shared.

4) Let S′ be the set containing the hashes of user pages.
Insert the access patterns (i.e., E0(O,L), . . ., E1(O,L))
into the version-tree with root node 〈CR3, S〉. That is,
store the access time, location L, and “diffs” of the
changed blocks for write operations, into the version-
tree for that process. Update the root node to be the
tuple 〈CR3, S ∪ S′〉.

These version-trees are periodically written to disk and
stored as an audit log where each record in the log is itself a
version-tree (see Figure 4). Whenever the system call module
notes a casual relationship between entities accessing the same
monitored objects—e.g, Ei(O,L) by entity p1 and Ej(O

′, L′)
by p2—we add a pointer in the version tree of p1 to p2. These
pointers help with efficient processing of the audit log.

Since logging is performed by a trusted entity in our
framework – the hypervisor, our goal is to simply provide a
mechanism that can detect data corruption. To that end the log-
ging framework includes a check for testing individual entries
for corruption. This is achieved by a hash-chain mechanism,
whereby each log entry contains a hash element that verifies
all other previous entries. Since every hash entry depends on
previous entries detecting a corrupted entry is simply a matter
of scanning all the hash chain entries within the log.

Having recorded the accesses to objects in L, we now
discuss how the logs can be mined to reconstruct detailed
information to aide in forensic discovery.

7

IV. MINING THE AUDIT LOG

To enable efficient processing of the data during forensic
analysis, we support several built-in operations in our current
prototype. These operators form our base operations, but can
be combined to further explore the audit log. For the analyses
we show later, the operations below were sufficient to recover
detailed information after a system compromise.
• report(w,B): searches all the version trees and returns

a list of IDs and corresponding accesses to any block
b ∈ B during time window w.

• report(w, ID): returns all blocks accessed by ID
during time window w.

• report(w, access, B | ID): returns all operations of
type access on any block b ∈ B, or by ID, during time
window w.

• report(w, causal, B | ID): returns a sequence of
events that are causally related based on either access to
blocks b ∈ B, or by ID, during time window w.

A. Mapping blocks to files

Obviously, individual blocks by themselves do not provide
much value unless they are grouped together based on a
semantic view. The challenge of course is that since we
monitor changes at the block layer, file-system level objects
are not visible to us. Hence, we must recreate the relationships
between blocks in lieu of file-level information. Fortunately,
all hope is not lost as file-systems use various mechanisms to
describe data layout on disk. This layout includes how files,
directories and other system objects are mapped to blocks on
disk. In addition, these structures are kept at set locations
on disk and have a predefined binary format. As our main
deployment scenario is the enterprise model, like Payne et
al. [20] we assume that the file-system (e.g., ext3, ntfs, etc.)
in use by the guest VM is known.

Armed with that knowledge, the storage module periodically
scans the disk to find the inodes and superblocks6 so that
this meta-data can be used during forensic recovery. That
is, for any set of blocks returned by a report() operator,
we use the stored file-system metadata to map a cluster of
blocks to files. For ease of use, we also provide a facility
that allows an analyst to provide a list of hashes of files and
their corresponding filenames. The report() operators use
that information (if available) to compare the hashes in the
list to those of the recreated files, and tags them with the
appropriate filename.

V. THREAT MODEL

We have thus far described a forensic platform that trans-
parently monitors and records data access events, follows
the causal chain of these accesses, and supplies a tamper
evident version-based audit log that allows for reconstruction
of the recorded events. The platform may be used to thwart
or analyze a couple of different threats, (a) good-intentioned
users, and (b) malicious programs.

6Similarly, the Master File Table and Master File Records under NTFS.

Good-intentioned users with full administrative privileges
within the the guest OS running under a trusted hypervisor
that may inadvertently leak sensitive information during their
analyses of private data. The private data may, for example, be
contained in a set of files in the user’s home directory. Sadly,
such breaches of privacy occur all to often, as exemplified
by the recent release of over 20,000 patient records from a
Stanford Hospital. In that case, a spreadsheet with information
including names, diagnosis codes, and billing charges, was
attached to a question posted to a how-to forum, where the
researcher was asking for assistance with data analytics7.
Section VI discusses one way our introspection platform may
be used to safeguard against this threat, while Section VII
provides an empirical evaluation of how these safeguards
may impact the user’s performance and the efficiency of our
platform’s logging.

Malicious programs may also be inadvertantly installed on a
users system, typically through an exploit or trojan program. In
this model, we assume the malicious program runs within the
guest OS, while the hypervisor remains protected and trusted.
These programs encompass a variety of behaviors, and may
attempt to escalate privilege and install themselves directly
into the running kernel (as with rootkits) or automatically
collect and exfiltrate the user’s protected data. Section VIII
exemplifies how the detailed audit logs generated by the
introspection platform may be used for forensic analysis of this
threat with several real-world examples. While the audit logs
provide sufficient forensic information for many of today’s
malicious programs, a clever adversary may be able to obscure
their actions. Section IX discusses the potential attacks a clever
adversary may use given knowledge of our platform and our
overall limitations.

VI. DATA PROTECTION

While the discussion thus far has presented our introspection
mechanisms as a technique for merely tracking and logging
data accesses, the extensible design of our platform makes it
relatively straightforward to extend its capabilities to thwart a
good-intentioned user from inadvertantly disclosing sensitive
information. The desire to not only monitor, but to also block
attempts to transmit data originating from a restricted datastore
is very natural in security-sensitive scenarios.

To help minimize the risk of data exfiltration, we introduce
a selective blocking mechanism. Selective blocking limits data
exfiltration over the network by blocking the packets con-
taining protected data and then notifying users of potentially
accidental data exfiltration; it does so in real-time as the user
performs the operation triggering the data exfiltration. We
anticipate that the ability to selectively block connections con-
taining sensitive data (i.e., in this case, data origining from a
monitored store) would be of tremendous value to secure cloud
computing environments for sensitive medical data. Indeed,
our own university has engaged in an effort to provide medical
researchers at the North Carolina Translational and Clinical
Science Institute access to medical records hosted in private

7See, for example, the NYTimes article entitled “Patient Data Posted
Online in Major Breach of Privacy”, September 8, 2011.

8

Buffer
qdisc

Guest OS (unmodified)

Kernel Space

open(), connect(),
read()

System Call
Subsystem

Trampoline

SYSENTER

System Call Handler

Network
Subsystem

Guest Page TableGuest Page TableIP Table
<DIP, SPort, DPort>

Exfiltration
Detected

Notification Driver

Xen Hypervisor (modified)

IP Table Match

No Match

Fig. 5: Overview of the selective blocking mechanism, showing the
blocking of packets using a custom queuing disc and the notification
mechanism to the user

clouds, and it is this need that motivated the development of
our selective blocking capability8.

Figure 5 describes the process to block packets that contain
monitored data. Recall that the system call module traps
specific system calls made by applications inside a virtual
machine, parses the argument list and determines whether
the call references a monitored memory location by consult-
ing the watch list. We leverage this mechanism to identify
potential exfiltration attempts by extracting the destination
IP address and ports from network specific system calls
(e.g. connect(),sendto() in Linux) if they reference
a protected location in memory. The IP addresses and ports
are then hashed and stored in an internal IP table within the
hypervisor. The hash is used to identify network connectiotns
that reference data in protected memory and tag the packets
by simply looking at the packet IP headers.

To block the packets, we implemented a network module
that routes all packets from the virtual network interface of the
VM to a custom queuing disc within the hypervisor. Linux
supports implementation of custom network schedulers that
can be registered for processing ingress and egress packets
using what are known as queuing disciplines or qdiscs. The
qdisc that we implemented inspects all egress packets and
filters packets based on the rules in the internal IP table. The
filtered packets are then stored within a buffer (per connection)
within the hypervisor, the audit log is queried to find the
offending process’s PID, and a notification is sent to the VM.

To interact with the user, an interrupt is injected into the

8See UNC’s Secure Cloud for Clinical Data at http://www.genomeweb.com

virtual machine by the network monitoring module when
data is buffered. Within the virtual machine, a Windows
notification driver handles the interrupt from the network
monitoring module. This driver presents the user with a pop-
up notification message containing information about the file
name of the protected data being leaked along with the name
of the offending application.

Our implementation of selective blocking incurs a fairly low
overhead compared to data leak protection (DLP) systems that
employ deep packet inspection (DPI) by performing fuzzy
hashing on a packet’s payload. Unlike such heavy weight
and error-prone approaches, packets are buffered by simply
peeking at the IP header of each packet. Furthermore, DPI
based solutions would be incapable of blocking connections
that contain encrypted payloads (e.g. HTTPS connections), but
we are not subject to this limitation as our solution works
purely on the IP headers. We present an evaluation on this
extension in Section VII-A

VII. EMPIRICAL EVALUATION

While having the ability to record fine-grained data accesses
is a useful feature, any such system is impractical if the
approach causes a high overhead. In what follows, we provide
an analysis of our accuracy and overhead. Experiments were
conducted on a 2.53GHz Intel Core2 Dual Core machine with
2GB of memory and Intel-VT hardware virtualization support
enabled. Our modified version of Xen 3.4 with HVM support
served as the hypervisor, and the guest virtual machines were
either Windows XP (SP2) or Debian Linux (kernel 2.6.26).
The virtual machines were allocated with 512MB memory,
1 virtual CPU, and with the hypervisor and virtual machine
pinned to two different physical cores. We do so in order to
reflect accurate measurements of CPU overheads. We mounted
five disks – a 20GB system disk, two 20 GB data disks,
a 10GB USB disk, and a 10GB network mapped disk. All
disks contained both protected and extraneous files, and all
experiments were run using dynamic provisioning mode (see
Section III-A), unless otherwise stated.

First, the overhead associated with our approach was calcu-
lated under a stress test using a Workload Generator and
a workload modeled for Enterprise users. Specifically,
we subjected our design to a series of tests (using IOMeter)
to study resource utilization under heavy usage, and used a
scripting framework for Windows (called AutoIt) to automate
concurrent use of a variety of applications. The application set
we chose was Microsoft Office, plus several tools to create,
delete, and modify files created by the Office applications.
The parameters for the workload generator (e.g., the number
of concurrent applications, average typing speed, frequency
of micro-operations including spell-check in Word and cell
calculations in Excel, etc.) were set based on empirical studies.
The Workload Generator tests were conducted on an
empty NTFS partition on one of the data disks, while the
Enterprise Workloadwas tested with pre-seeded data
comprising a set of Microsoft Office files along with additional
binaries. These binaries performed various memory mapped,
network and shared memory operations. The binaries were

9

(a) Varying block sizes and access (b) Different Test Scenarios (wd = Whole Disk, dy = Dy-
namic Provisioning)

Fig. 6: Runtime overhead

added to increase the pool of applications loaded during the
tests, and hence add greater diversity in the resulting code
pages loaded into memory.

Runtime Overhead: Our runtime overhead is shown in
Figure 6(a). The block sizes were chosen to reflect normal
I/O request patterns, and for each block size, we performed
random read, random write, sequential read and sequential
write access patterns. The reported result is the average and
variance of 10 runs. Each run was performed under a fresh
boot of the guest VM to eliminate any disk cache effects. The
IOMeter experiments were run on the same data disk with and
without the monitoring code, and the overhead was calculated
as the percent change in CPU utilization. The CPU utilization
was monitored on both cores using performance counters. The
reported utilization is the normalized sum of both cores.

Not surprisingly, writes have a lower overhead due to
the increased time for completion from the underlying disk.
Conversely, sequential access consumes more CPU as the disk
subsystem responds faster in this case, and hence the I/O
ring is quickly emptied by the hypervisor. Even under this
stress test, the overhead is approximately 18%. This moderate
overhead can be attributed to several factors in our design,
including the scheduling of lazy writes of our data structures,
the lightweight nature of our system-call monitoring, and the
efficiency of the algorithms we use to extract the code pages.

Figure 6(b) shows a breakdown of CPU overhead across
different test scenarios when using either dynamic provision-
ing or whole disk monitoring modes. As expected, dynamic
provisioning significantly out-performs whole disk monitoring
in all test scenarios. Notice that the majority of the overhead
for the 16KB stress test scenario is attributed to the storage
subsystem, as many of the accesses induced in this workload
are for blocks that are only accessed once. We remind the
reader that the expected use case for our platform is under the
Enterprise Workloadmodel, and the overall overhead

when using dynamic provisioning in this case is below 5%,
with no single module incurring overhead above 1%. Also
shown are the averaged overheads induced when monitoring
and logging the activities of several real-world malware. In all
cases, the overload is below 6%, which is arguably efficient-
enough for real-world deployment. We return to a more
detailed discussion of how we reconstructed the behavioral
profiles of these malware using our forensic platform in
Section VIII.

Another important dimension to consider is the growth of
the log compared to the amount of actual data written by the
guest VM. Recall that the audit log stores an initial copy of
a block at the first time of access, and thenceforth only stores
the changes to that block. Furthermore, at every snapshot,
merging is performed and the data is stored on disk in an
optimized binary format. We examined the log file growth by
monitoring the audit log size at every purge of the version-
trees to disk (10 mins in our current implementation). In
the case of the Enterprise Workload, the experiment
lasted for 1 hour, with a minimum of 4 applications running
at any point in time. During the experiment, control scripts
cause the overall volume of files to increase at a rate of
at least 10%. The file sizes of the new files were chosen
from a zipf distribution, allowing for a mix of small and
large files [30]. We also included operations such as make
to emulate creation and deletion of files. The overhead (i.e.,
additional disk space used to store logs and metadata compared
to the monitored disk blocks) was on average ≈ 2%. Since
the Enterprise Workloadis meant to reflect day-to-day
usage patterns, the low overhead indicates that this platform
is practical and deployable.

Accuracy of Reconstruction: To examine the accuracy
of our logging infrastructure, we explore our ability to detect
accesses to the monitored data store by “unauthorized” appli-
cations. Again, the Enterprise Workloadwas used for

10

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

82
0

84
0

86
0

88
0

90
0

92
0

94
0

96
0

98
0

10
00

Block Clusters

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Ti
m
e

Disk-1 Disk-2

(a) Tracking entire disks

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

56
0

58
0

60
0

62
0

64
0

66
0

68
0

70
0

72
0

74
0

76
0

78
0

80
0

82
0

84
0

86
0

88
0

90
0

92
0

94
0

96
0

98
0

10
00

Block Clusters

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Ti
m
e

Disk-1 Disk-2

(b) Dynamic Tracking of blocks

Fig. 7: Heatmap of block tracked over two days, darker shades indicate blocks that are tracked for multiple hours

Conn/min VMEXITS (µs) Insertion (µs) Blocked %
10 1.2 0.5 100%
100 1.8 1.1 100%
1000 2.5 2.0 100%
10000 3.8 6.5 98.9%

TABLE I: Breakdown of time taken to insert a 5-tuple into the IP
table and the accuracy of our blocking mechanism

these experiments, but with a varying concurrency parameter.
Specifically, each run now includes a set of authorized ap-
plications and a varying percentage of other applications that
also perform I/O operations on monitored blocks. The ratio
of unauthorized applications for a given run was increased in
steps of 5%, until all applications running were unauthorized.
We also selected a set of files and provide their hashes to the
selective blocking module to evaluate the effectiveness of the
platform in preventing exfiltration of data. The task at hand
is to reconstruct all illicit accesses to the disk. These illicit
accesses include copying a file into memory, copying a file to
the USB disk, sending a file over a network connection, and
shared memory or IPC operations on monitored objects. To
reconstruct the illicit accesses, the audit log was queried for the
time-window spanning the entire duration of the experiment
to identify both the unauthorized applications and the illicit
access to blocks. We achieved a true positive rate of 95% for
identification of the illicit applications and a 97% true positive
rate in identifying the blocks accessed by these applications.

A. Dynamic Provisioning

To evaluate the performance benefits of tracking targetted
blocks over an entire disk, we set up multiple disks on our
network honeypot and tracked the movement of protected files
over these disks. The set of files we placed for this experiment
were chosen specifically to bait malware (e.g. W32.Tapin
and W32.Pilleuz) that copy themselves over network and
external drives and other infostealers.

Figure 7 shows blocks being tracked over the two data
disks over two days, the darker shades indicate blocks that
are tracked over multiple hours, whereas the lighter colored
regions are blocks not being tracked. Under whole disk mon-
itoring mode, as malware copies itself over to the secondary
disk or attempts to copy files, all the blocks contained on the
disk are automatically considered to be protected and hence
tracked. This is evident from Figure 7(a) where we see dark
regions on both disks, even though the secondary disk only
contains a few protected files. However, when we employ
dynamic provisioning, only blocks corresponding to protected
files are constantly monitored. Figure 7(b) illustrates this with
the presence of only a few dark (tracked) regions on the right
side of the heatmap. Since we are only tracking specific disk
regions, we see a major improvement in CPU performance as
the number of VMEXITs decrease significantly under dynamic
provisioning mode.

Selective Blocking: Selective Blocking requires a fast
insertion of the network 5-tuple into the internal IP table in
order to effectively block exfiltration attempts. To test the
peformance of the module under varying network load, we
wrote a simple file transfer utility that creates a specified num-
ber of network connections and attempts to transfer protected
files to an external machine. Iperf [31] was used to generate
background traffic during the experiments.

Table I shows the breakdown of the average time taken to
insert a 5-tuple into the internal IP table we maintain. During
the experiment we gradually increase the number of unique
connections that the utility generates from 10 to 10,000. As
noted earlier, every insertion requires parsing of the arguments
for specific systems calls and then extracting the 5-tuple. The
information is then passed to the selective blocking module
(see Section VI) via a VMEXIT. As we can see from the
table, VMEXIT times are less than 4 microseconds, even
in the worst case. The insertion into the internal IP table
involves acquiring locks, hence the spike in insertion time

11

as we increase the number of connections. Since selective
blocking mode prevents file transfers, the client application
should ideally receive no packets. This is reflected in our
blocking accuracy, where all packets are blocked except for
a few in the 10,000 connection test. In this case, we were
unable to block a few TCP SYNs due to queuing of insertion
operations at the network module. However, we remind the
reader that 10,000 unique connections/minute is extremely
high.

VIII. REAL-WORLD CASE STUDY

To further showcase the benefits of our platform, we report
on our experience with deploying our framework in an open-
access environment that arguably reflects the common case
of corporate laptops being used in public WiFi environments.
Specifically, we deployed our approach on a laptop supporting
hardware virtualization, on top of which we ran a Windows
XP guest with unfettered access to the network. The enterprise
workload was configured to run on the guest system to
simulate a corporate user. Similar to the earlier experiment,
we had 5 disks attached to the machine – a system disk, two
data disks, a network share and a USB disk. All the drives were
seeded with files described earlier in Section VII-A and we
also chose a subset of these files to provide to the selective
blocking module. While there was no host or network-level
intrusion prevention system in place on the guest system, we
also deployed Snort and captured network traffic on a separate
machine. This allowed us to later confirm findings derived
from our audit mechanism. The laptop was left connected to
the network for one week, and its outbound traffic was rate-
limited in an attempt to minimize the risk of infecting other
network citizens.

Syscall Phalanx2 Mebroot
% Manual Forensic Manual Forensic

Storage 72% 68% 91% 95%
Memory 26% 30% 8% 5%

Other 2% 2% 1% 0%

TABLE III: Comparison of the profiles created by manual analysis
vs reconstruction using our platform

To automate the forensic recovery process, we make use
of a proof-of-concept tool that mines the audit logs looking
for suspicious activity. Similar to Patagonix [19], we assume
the existence of a trusted external database, D, (e.g., [32])
that contains cryptographic hashes of applications the system
administrator trusts. The code pages for these authorized
applications were created using a userland application that
runs inside a pristine VM and executes an automated script to
launch applications. The userland application communicates
with the memory monitoring module, and tags the pages
collected for the current application. The pages are extracted
as described in Section III-A3, and are stored along with the
application tags. Notice that these mappings only need be
created once by the system administrator.

We then mined the log for each day using report(24hr, B)
to build a set of identifiers (p ∈ P), where B ={blocks for the
temp, system, system32 directories and the master boot

record}. Next, we extracted all causally related activity for
each p 6∈ D, by issuing report(24hr, causal, p). The result
is the stored blocks that relate to this activity. These blocks are
automatically reassembled by mapping blocks to files using the
filesystem metadata saved by the storage module (as discussed
in Section IV-A). At this point we have a set of unsanctioned
applications and what blocks they touched on disk. For each
returned event sequence, we then classified it as either (i) an
info stealer: that is, a process that copied monitored objects
onto an external location (e.g., L=network) or (ii) an installer:
a process that installs blocks belonging to an info stealer.

To do so, our recovery utility first iterates through the set
of unsanctioned applications and checks the corresponding
version-trees for events that match an info stealer’s signa-
ture. For each match, we extract all its blocks, and issue
report(24hr, bi, . . . , bn). This yields the list of all unsanc-
tioned applications that touched an info stealer’s blocks. From
this list, we searched for the one that initially wrote the blocks
onto disk by issuing report(24hr, write, bi, . . . , bn). The
result is an installer.

Table II shows the result of running our proof-of-concept
forensic tool on the audit logs collected from the laptop.
The table shows the percentage of activity for each malicious
binary and the classification as per the tool. For independent
analysis, we uploaded the reconstructed files to Microsoft’s
Malware Center; indeed all the samples were returned as
positive confirmation as malware. We also subjected the entire
disk to a suite of AV software, and no binaries were flagged
beyond those that we already detected by our tool.

To get a better sense of what a recovered binary did, we
classify its behavior as active if it had activity in the audit
logs every day after it was first installed; or passive otherwise.
The label “Exfiltration” means that data was attempted to be
shipped off the disk. “Disk search” means that the malware
scanned for files on the monitored store. As the table shows,
approximately 75% of the recorded activity can be attributed
to the info stealers. Upon closer examination of the blocks
that were accessed by these binaries, we were able to classify
the files as Internet Explorer password caches and Microsoft
Protected Storage files. An interesting case worth pointing
out here is Zeus. The causal event linkage by the forensic
tool allowed us to track the initialization of Zeus as Zbot

by Sinowal. Even though Sinowal constitutes only 4% of
activity in the logs, it was responsible for downloading 60%
of the malware on the system. Zeus appears to be a variant
that used Amazon’s EC-2 machines as control centers9. Finally
even though malware such as Kenzero, Tapin, Pilleuz were
found to have low activity in the logs, they neverthless
had interesting behavior worth noting. Pilleuz and Tapin

scanned the system for the presence of network and removable
drives and would copy themselves over to those drives as a
possible way to increase the spread of the worms. Pilleuz
would also scan removable drives (e.g., our mounted USB
drive), and scan for possible files to exfiltrate. Mebormi is a
fairly recent malware that attempts to infect the Master Boot
Record (MBR), similar to Mebroot that we perform detailed

9We verified this hypothesis independently based on our network logs.

12

Malware % Activity in Log Disk search Exfiltration Classification
Zeus & Variants 30.0 active active info stealer

Ldpinch 20.5 active active info stealer
Alureon 15.0 active active info stealer

Koobface 10.0 passive active installer
Bubnix 5.0 passive active installer

Masavebe 5.0 passive active both
Sinowal 3.5 active active both
Pilleuz 4.5 active active both
Tapin 3.0 passive passive installer

Mebromi 2.5 passive passive installer
Kenzero 1.5 active active info stealer

TABLE II: Malicious applications recovered from the audit log, and their high-level classification.

installer executes end of
disk

repeated reads

end of
disk

2x write

old
MBR

read read

new
MBR

write installer deletes
itself

D,SS

D,S,M

DD,S,M D,S

D
S

Disk Monitoring
System Call Monitoring

M Memory Monitoring

Logging

Fig. 8: Annotated graph of the causal reconstruction of Mebroot’s
attack vector as recovered from processing the audit logs

analysis on in §VIII-A. Interestingly, the average growth of our
audit log was only 9 MB per day compared to over 400 MB
per day from the combined Snort and network data recorded
during the experiment. Yet, as we show later, the data we are
able to capture is detailed enough to allow one to perform
interesting behavioral analyses. The analysis in Table II took
less than 4 hours in total to generate the report, and our proof-
of-concept prototype can be significantly optimized. Finally
the selective blocking mode blocked all of the exfiltration
attempts, as confirmed by the absence of alerts in the Snort
logs.

A. Example Reconstruction
With the framework at our disposal, we decided to explore

its flexibility in helping with behavioral analysis. Specifically,
we were interested in analyzing Mebroot, which is a part
of the stealthy Sinowal family. Mebroot serves as a good
example as reports by F-Secure [33] label it as one of
the “stealthiest” malware they have encountered because it
eschews traditional Windows system call hooking, thereby
making its execution very hard to detect. The anatomy of the
Mebroot attack can be summarized as follows: first, a binary
is downloaded and executed. Next, the payload (i.e., from
the binary) is installed, and the master boot record (MBR)
is modified. Lastly, the installer deletes itself.

To understand what Mebroot did, we issued report(∞,
causal, ID(Mebroot)). The reason why the causal relationship

between the first two steps is built by our monitoring infras-
tructure should be obvious. In our platform, the connection
between the first and last steps is made when the file deletion
is noted (i.e., when the storage module rescans the inodes). An
annotated profile of the behavior recovered from our audit log
is shown in Figure 8. Notice that because we store “diffs” in
the version trees, we are also able to see all the modifications
made to the master boot record.

To further evaluate the strength of our platform in helping an
analyst quickly reconstruct what happened after a compromise
is detected, we provided two malware samples to a seasoned
malware analyst (i.e., the second author) for inspection. In
both cases, the malware was successfully unpacked and dis-
assembled using commercial software and inspected using
dynamic analysis techniques for system-call sequence analysis,
for finding the payload in memory, and for single-stepping its
execution. We then compared our results to those from this
labor-intensive exercise.

The breakdown in terms of diagnosed functionality is shown
in Table III. The overall results were strikingly similar, though
the analyst was able to discover several hooks coded in
Phalanx2 (a sophisticated info stealer) for hiding itself, the
presence of a backdoor, and different modes for injection
that are not observable by our platform. From a functional
point of view, the results for Mebroot were equivalent. More
important, however, is the fact that the manual inspection
verified the behavioral profile that we reported, attesting to
the accuracy of the linkages we inferred automatically.

IX. ATTACKS AND LIMITATIONS

As stated earlier, the approach we take relies on the security
properties of the hypervisor to properly isolate our monitoring
code from tampering by malicious entities residing in the
guest OSes. This assumption is not unique to our solution,
and to date, there has been no concrete demonstration that
suggests otherwise. However, if the security of the hypervisor
is undermined, so too is the integrity and correctness of
the transactions we record. Likewise, our approach suffers
from the same limitations that all other approaches that have
extended Xen (e.g., [16, 17, 20, 25]) suffer from—namely, that
it extends the trusted code base.

A known weakness of current hypervisor designs is their
vulnerability to hypervisor-detection attacks [34–36]. One way
to address these attacks might be to rely on a thin hypervisor
layer built specifically for data forensics, instead of using

13

a hypervisor like Xen which provides such a rich set of
functionality (which inevitably lends itself to being easily
detected). Once the presence of a hypervisor has been detected,
the attacker can, for instance, change the guest VM’s state
in a way that would cause the forensic platform to capture
a morphed view of the VM [36]. An example of such an
attack would involve the attacker attempting to circumvent our
event model by modifying the System Call Tables in Linux
or the SSDT in Windows to remap system calls. This could
cause false events at the system call layer and pollute the
audit logs. That said, such an attack poses a challenge for all
the hypervisor-based monitoring platforms we are aware of.
Techniques to mitigate such attacks remain an open problem.

The techniques described in this paper depend on dynamic
flow tracking of memory location. A known drawback of this
approach are sophisticated attacks using implicit flows [37]
For example an attacker might perform a bitwise copy of
the protected data using local variables. Currently our system
does not prevent such attacks since prevention of such attacks
require detailed static analysis.

Resource exhaustion attacks offer another avenue for hin-
dering our ability to track causal chains. As our infrastructure
tracks all monitored objects in memory, an attacker could at-
tempt to access hundreds of files within a short period of time,
causing the memory monitoring module to allocate space for
each object in its watchlist. If done using multiple processes,
the attack would likely lead to memory exhaustion, in which
case some monitored objects would need to be evicted from
the watchlist. While we have built several optimizations to
mitigate such threats (e.g., by collapsing contiguous pages
to be tracked as a single address range), this attack strategy
remains viable. Lastly, since we do not monitor interactions
that directly manipulate the receive and transmit rings of
virtual network interfaces, such accesses will not be logged.

X. CONCLUSION

We present an architecture for efficiently and transparently
recording the accesses to monitored objects. Our techniques
take advantage of characteristics of platforms supporting hard-
ware virtualization, and show how lightweight mechanisms
can be built to monitor the causal data flow of objects in a
virtual machine—using only the abstractions exposed by the
hypervisor. The heuristics we developed allow the monitoring
framework to coalesce the events collected at various layers
of abstraction, and to map these events back to the offending
processes. We extended this mechanism to also provide the
ability to block network events that attempt to exfiltrate
data over a network connection. The mappings we infer are
recorded in an audit trail, and we provide several mechanisms
that help with data forensics efforts; for example, allowing an
analyst to quickly reconstruct detailed information about what
happened when such information is needed the most (e.g., after
a system compromise). To demonstrate the practical utility of
our framework, we show how our approach can be used to
glean insightful information on behavioral profiles of malware
activity after a security breach has been detected.

ACKNOWLEDGMENTS

This work is supported in part by the National Science
Foundation under awards OCI-1127361 and CNS-0915364

REFERENCES

[1] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, and
N. Modadugu, “The Ghost in the Browser: Analysis of
Web-based Malware,” in First Workshop on Hot Topics
in Understanding Botnets, 2006.

[2] J. Franklin, A. Perrig, V. Paxson, and S. Savage, “An
Inquiry into the Nature and Causes of the Wealth of In-
ternet Miscreants,” in 14th ACM conference on Computer
and communications security, 2007, pp. 375–388.

[3] D. Farmer and W. Venema, Forensic Discovery.
Addison-Wesley, 2006.

[4] R. Goldberg, “Survey of Virtual Machine Research,”
IEEE Computer Magazine, vol. 7, no. 6, pp. 34–35, 1974.

[5] P. Chen and B. Noble, “When Virtual is Better than
Real,” in Workshop on Hot Topics in Operating Systems,
May. 2001, pp. 133–138.

[6] Sean Peiset and Matt Bishop and Keith Marzullo, “Com-
puter Forensics in Forensis,” ACM Operating System
Review, vol. 42, 2008.

[7] G. H. Kim and E. H. Spafford, “The Design and Imple-
mentation of Tripwire: a File System Integrity Checker,”
in 2nd ACM Conference on Computer and Communica-
tions Security, 1994, pp. 18–29.

[8] D. Vincenzetti and M. Cotrozzi, “ATP - Anti Tampering
Program,” in USENIX Security, 1993, pp. 79–90.

[9] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara,
“The Taser Intrusion Detection System,” in Symposium
on Operating Systems Principles, Oct. 2005.

[10] S. Jain, F. Shafique, V. Djeric, and A. Goel, “Application-
Level Isolation and Recovery with Solitude,” in EuroSys,
Apr. 2008, pp. 95–107.

[11] K. Muniswamy-Reddy, D. Holland, U. Braun, and
M. Seltzer, “Provenance-aware Storage Systems,” in
USENIX Annual Technical Conference, 2006, pp. 43–56.

[12] K.-K. Muniswamy-Reddy, P. Macko, and M. Seltzer,
“Provenance for the Cloud,” in USENIX Conference on
File and Storage Technologies (FAST). Berkeley, CA,
USA: USENIX Association, 2010.

[13] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh, “Terra: A Virtual Machine-Based Platform for
Trusted Computing,” in ACM Symposium on Operating
System Principles, 2003, pp. 193–206.

[14] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Antfarm: Tracking Processes in a Virtual
Machine Environment,” in USENIX Annual Technical
Conference, 2006.

[15] S. Jones, A. Arpaci-Dusseau, and R. Arpaci-Dusseau,
“Geiger: monitoring the buffer cache in a virtual ma-
chine environment,” 12th International conference on
Architectural Support for Programming Languages and
Operating Systems(ASPLOS), vol. 41, no. 11, pp. 14–24,
2006.

14

[16] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware
Detection through VMM-based “out-of-the-box” Seman-
tic View Reconstruction,” in 14th ACM conference on
Computer and Communications Security, 2007, pp. 128–
138.

[17] S. King and P. Chen, “Backtracking Intrusions,” 19th

ACM Symposium on Operating Systems Principles, Dec
2003.

[18] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M. Chen,
“Enriching intrusion alerts through multi-host causality,”
in Network and Distributed System Security Symposium,
2005.

[19] L. Litty, H. Lagar-Cavilla, and D. Lie, “Hypervisor
Support for Identifying Covertly Executing Binaries,” in
USENIX Security Symposium, Aug. 2008, pp. 243–257.

[20] B. D. Payne, M. Carbone, and W. Lee, “Secure and flex-
ible monitoring of virtual machines,” Annual Computer
Security Applications Conference, pp. 385–397, 2007.

[21] S. Krishnan, K. Z. Snow, and F. Monrose, “Trail of bytes:
Efficient Support for Forensic Analysis,” in 17th ACM
conference on Computer and Communications Security,
Oct 2010.

[22] F. Buchholz and E. Spafford, “On the Role of File System
Metadata in Digital Forensics,” Digital Investigation,
vol. 1, no. 4, pp. 298 – 309, 2004.

[23] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen
and the Art of Virtualization,” in 19th ACM Symposium
on Operating Systems Principles, 2003, pp. 164–177.

[24] F. Leung, G. Neiger, D. Rodgers, A. Santoni, and R. Uh-
lig, “Intel Virtualization Technology: Hardware Support
for Efficient Processor Virtualization,” Intel Technology
Journal, vol. 10, 2006.

[25] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether:
Malware Analysis via Hardware Virtualization Exten-
sions,” in 15th ACM Conference on Computer and Com-
munications Security, 2008, pp. 51–62.

[26] D. E. Denning and P. J. Denning, “Certification of Pro-
grams for Secure Information Flow,” Communications of
the ACM, vol. 20, no. 7, pp. 504–513, 1977.

[27] S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K.
Iyer, “Defeating Memory Corruption Attacks via Pointer
Taintedness Detection,” in IEEE International Confer-
ence on Dependable Systems and Networks (DSN, 2005,
pp. 378–387.

[28] A. Slowinska and H. Bos, “Pointless Tainting? Evaluat-
ing the Practicality of Pointer Tainting,” in EuroSys, Apr.
2009.

[29] S. Quinlan and S. Dorward, “Venti: A New Approach to
Archival Data Storage,” in USENIX Conference on File
and Storage Technologies, 2002, pp. 89–101.

[30] A. W. Leung, S. Pasupathy, G. Goodson, and E. L. Miller,
“Measurement and Analysis of Large-scale Network File
System Workloads,” in USENIX Annual Technical Con-
ference, 2008, pp. 213–226.

[31] A. Tirumala, F. Qin, J. Dugan, J. Ferguson, and K. Gibbs,
“Iperf: The tcp/udp bandwidth measurement tool,” URL:
http://dast. nlanr. net/Projects/Iperf, 2004.

[32] NIST, “National Software Reference Library,” 2009.
[33] F-Secure, “MBR Rootkit, A New Breed of Mal-

ware,” See http://www.f-secure.com/weblog/archives/
00001393.html, 2008.

[34] T. Garfinkel, K. Adams, A. Warfield, and J. Franklin,
“Compatibility is not Transparency: VMM Detection
Myths and Realities,” in 11th USENIX workshop on Hot
topics in operating systems, 2007, pp. 1–6.

[35] X. Chen, J. Andersen, Z. Mao, M. Bailey, and J. Nazario,
“Towards an Understanding of Anti-virtualization and
Anti-debugging Behavior in Modern Malware,” in De-
pendable Systems and Networks, June 2008, pp. 177–
186.

[36] T. Garfinkel and M. Rosenblum, “A Virtual Machine In-
trospection Based Architecture for Intrusion Detection,”
in Network and Distributed Systems Security Symposium,
2003, pp. 191–206.

[37] L. Cavallaro, P. Saxena, and R. Sekar, “On the limits
of information flow techniques for malware analysis and
containment,” Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 143–163, 2008.

Srinivas Krishnan Srinivas Krishnan is a Ph.D.
candidate at the University of North Carolina at
Chapel Hill under Dr. Fabian Monrose. He obtained
his Master’s degree in Computer Science from Uni-
versity of North Carolina at Chapel Hill in 2007.
After graduating, he worked for VMware in their
performance R&D division, where he headed efforts
on developing performance benchmarks for virtual
desktop infrastructure. He began his PhD in 2008
and spent the summer of 2010 at Microsoft Research
working on datacenter routing. His primary interests

are in computer and network security with a focus on developing mechanisms
to monitor and leverage DNS infrastructure for detecting network exploits. He
is also keenly interested in developing virtualization methods for providing
monitoring and forensic capabilities.

Kevin Z. Snow Kevin Z. Snow is a Ph.D. candi-
date at University of North Carolina at Chapel Hill
under the advisement of Dr. Fabian Monrose. He
obtained dual Master’s degrees in Computer Sci-
ence and Information Security from Johns Hopkins
University in 2007. After graduating, he joined the
Cyber Operations group at Johns Hopkins Applied
Physics Laboratory, primarily working in the areas
of information system attack and scalable network
monitoring. He began pursuit of his Ph.D. in 2009
and spent the summers of 2011 and 2012 with

Google’s Safe Browsing Team. His primary interests are in computer and
network security with a particular focus on practical methods of software
exploitation, scalable detection of information system attacks, and attack
forensic techniques that add value for network operators.

15

Fabian Monrose Dr. Fabian Monrose is an Asso-
ciate Professor of Computer Science at University
of North Carolina at Chapel Hill. He was awarded a
Ph.D. in Computer Science from the Courant Insti-
tute of Mathematical Sciences, New York University,
in 1999. After graduating, he joined the Secure
Systems group at Bell Labs, Lucent Technologies,
where he remained until 2002. From 2002 through
2008 he held appointments in the department of
Computer Science at Johns Hopkins University and
the Information Security Institute. His interests span

the fields of Networking and Security and includes such diverse topics as
Traffic Classification, Computer Forensics, User Authentication, and Privacy.
In 2006, he received a CAREER award from the National Science Foundation.
He has published over 70 peer reviewed papers in flagship security conferences
and journals, and has been the recepient of several best paper awards.

