
Traffic Classification Using Visual Motifs:
An Empirical Evaluation

Wilson Lian
Dept. of Computer Science

University of North Carolina at
Chapel Hill

wwlian@gmail.com

Fabian Monrose
Dept. of Computer Science

University of North Carolina at
Chapel Hill

fabian@cs.unc.edu

John McHugh
Dept. of Computer Science

University of North Carolina at
Chapel Hill

mchugh@cs.unc.edu

ABSTRACT
In this paper, we explore the effectiveness of using graphical meth-
ods for isolating the differences between common application protocols—
both in their transient and steady-state behavior. Specifically, we
take advantage of the observation that many Internet application
protocols proscribe a very specific series of client/server interac-
tions that are clearly visible in the sizes and timing of packets pro-
duced at the network layer and below. We show how so-called “vi-
sual motifs” built on these features can be used to assist a human
operator to recognize application protocols in unidentified traffic.
From a practical point of view, visual traffic classification can be
used, for example, for anomaly detection to verify that all traffic to
a web server on TCP port 80 does indeed exhibit the characteristic
behavior patterns of HTTP, or for misuse detection to find unau-
thorized servers or to identify traffic generated by prohibited appli-
cations. We present our technique for building a classifier based
on the notion of visual motifs, and report on our experience us-
ing this technique to automatically classify on-the-wire behavioral
patterns from network flow data collected from a campus network.
Specifically, we analyze over 1 billion flows corresponding to over
5 million sessions on nearly 200 distinct ports, and show that our
approach achieves high recall and precision.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Interfaces;
I.5.4 [Pattern Recognition]: Applications; K.6.5 [Security and
Protection]: Network monitoring

General Terms
Traffic visualization, traffic analysis, evaluation

Keywords
Information visualization, security, network management

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
VizSec ’10, September 14, 2010, Ottawa, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0013-1/10/09 ...$10.00.

Over the last few decades, packet timing and size have been
used in intriguing ways to glean useful information about the con-
tents of network communications. In fact, with the increased use
of cryptographic techniques on the Internet, so too have we have
witnessed a marked increase in techniques for unveiling interest-
ing facets of encrypted communications [6, 18] using only those
features that remain intact after encryption. Some notable exam-
ples include detecting what web pages are being transferred over
ssl-encrypted connections [14, 9], inferring the keystrokes being
entered in an ssh-session as a user types her password [13], and
more recently, inferring the language of—or even the presence of
particular phrases in—encrypted VoIP communications [17, 21], to
name a few.

To better assist security practitioners in diagnosing aberrant be-
havior on their networks, informative (and interactive) visualiza-
tions have been widely sought after. Indeed, several venues (e.g.,
“FloCon” and “VizSec”) have sprung up to provide forums for op-
erational analysts, software developers, and researchers to explore
next-generation ideas for analyzing large volumes of network traf-
fic. Spurred by the need for practical solutions to real-world chal-
lenges, countless approaches (e.g., [19, 3, 8, 10, 20, 15, 2, 5, 11])
have been suggested in the last few years for providing new and
insightful ways for visualizing such traffic.

In what follows, we investigate a particular strategy for classi-
fying encrypted network traffic for the purpose of detecting the
presence of application protocols running outside of their normal
port ranges. Obviously, the ability to reliably detect instances of
various application protocols—without inspecting the contents of
packets as they fly across the network—would be of tremendous
practical value to network administrators, traffic engineers, and the
networking community at large. This information can inform net-
work administrators’ decisions to investigate and remedy possible
misbehaving clients or to deploy appropriate countermeasures.

The approach we explore focuses on application protocol visu-
alization and naturally extends the ideas first proposed by Wright
et al. [19]. That work proposed the use of packet size, direction
and order as features, which were shown to be useful features when
building HMM-based classifiers [18] for single flow detectors. Like
Wright et al., our work is guided by a handful of assumptions re-
garding the nature of the traffic being classified. Specifically, we
assume that the application protocols that we are interested in clas-
sifying use the Transmission Control Protocol (TCP) at the trans-
port layer. Additionally, we assume that any encryption in use takes
place at the transport layer or higher and, for efficiency, employs a
stream cipher which preserves the relative sizes of payloads. Even
with this limited set of information, we show that protocol clas-
sification using visualizations built on these features can be quite
successful, assuming, of course, that the adversary is not making

Tim
e

SYN 48 bytes

SYN-ACK 48 bytes

ACK 40 bytes
HTTP Request 746 bytes

1280 bytes

40 bytes

40 bytes

1500 bytes
270 bytes
40 bytes

Client Server

48
-48
40

746
-40

-270
-1500

40
-1280

40

1502.5-1502.5 -901.5 -300.5 300.5 901.5

1502.5

-1502.5

-901.5

-300.5

300.5

901.5

(48, -48)

(-48, 40)

(40, 746)

(746, -40)
(-40, -270)

(-270, -1500)

(-1500, 40)

(40, -1280)

(-1280, 40)

Figure 1: Example binning for a fragment of a typical HTTP session. Arrow heads indicate the order in which the data points are added.
Cartesian axes are shown as solid lines, and the boundaries of 601× 601 heatmap bins are shown as dashed lines.

deliberate active attempts to change a protocol’s behavior to more
closely resemble something else [1, 16]. In what follows, we pro-
vide the first extensive evaluation using visual motifs as features
for classifying a large collection of real-world traffic, and highlight
several practical considerations (e.g., on parameter selection) that
were not considered before.

The remainder of the paper is structured as follows. We discuss
our traffic visualization and modeling technique in § 2. We outline
our methodology for traffic classification "in the dark" [6] in § 3
and evaluate its efficacy in § 4. We discuss limitations in § 5. In
§ 6, we conclude and propose future extensions.

2. OVERVIEW
In what follows, we summarize the key problem addressed by

our work and the approach we take in addressing the problem at
hand. Loosely speaking, we are interested in examining a collec-
tion of flows for an arbitrary TCP port in order to determine if these
flows may belong to an application of interest to us. The applica-
tion protocols we consider may include any number of common
protocols, for example, HTTP, SSH, SMTP, Kazaa, AIM, etc. For
the purposes of this paper, we are generally interested in inspecting
traffic from a particular host destined for a given TCP port (e.g.,
connections to port 22 over the course of a day) to determine if the
client is genuinely running the well-known application for that port
(e.g., SSH) or if its behavior conforms more to that of a prohibited
application (e.g., BitTorrent) configured to accept connections on
the port in question.

Visual Motifs
The approach we take in this paper is to build a traffic classifier
where the key features are the visual motifs first suggested by Wright
et al. [19]. Loosely speaking, these motifs exploit the structured
nature of application protocols to create vibrant representations of
application protocol behavior.

For pedagogical reasons, we briefly revisit the idea of visual
motifs. Visual motifs provide a representation of aggregated net-
work traffic from multiple sessions and connections using so-called
“heatmaps” that are constructed as follows: Starting with a black
background, ordered pairs are mapped to locations on the heatmap,

which are progressively brightened. In that way, those regions
that have a high concentration of ordered pairs eventually stand
out from the black background. We refer to the locations on the
heatmap as “bins”.

Network traffic is encoded as a heatmap by simply treating the
heatmap as a Cartesian coordinate plane and using the size and di-
rection of consecutive IP packet pairs as coordinates. The mag-
nitude of each coordinate is determined by the size of the packet,
and the sign is defined as positive for packets from the client to the
server and negative for packets in the reverse direction (i.e., from
the server to the client).

Each ordered pair falls into exactly one bin. We ensure this prop-
erty by making the bins rectangular and uniform in size, with a
fixed height and width that must be an odd positive integer. Fur-
thermore, we adopt the convention that the x and y axes must pass
through the centers of the bins that lie along them; bins cannot
overlap.

Figure 1 illustrates how 9 ordered pairs are derived from 10 pack-
ets in a typical HTTP session. Note that the first packet size in
each pair becomes the x-coordinate, and the second packet size be-
comes the y-coordinate. These ordered pairs are mapped onto a
Cartesian plane with 601 × 601 heatmap bins, whose boundaries
are denoted by dashed lines. Notice that no bin boundaries fall on
integer values. Since the boundaries of the bins on the edges of
the figure extend beyond 1500 bytes—the maximum length of an
IP datagram that can be sent over Ethernet [4]—we choose not to
plot the heatmaps beyond the range [−1500, 1500] in the x and y
directions.

Figure 2 shows heatmaps for aggregated network traffic on six
distinct TCP ports, labeled by the application protocol most com-
monly associated with that port. In Figures 2a and 2b, we observe
that in the heatmaps for protocols dominated by traffic from client
to server—such as the Simple Mail Transfer Protocol (SMTP) and
the Line Printer Daemon (LPD) protocol—the top right quadrant is
the brightest. Figures 2c and 2d show the reverse for predominantly
server to client protocols such as the Post Office Protocol (POP)
and the Real Time Streaming Protocol (RTSP). Protocols such as
the HyperText Transfer Protocol (HTTP) and the FastTrack proto-
col employed by the peer-to-peer file sharing application Kazaa are
inherently more bi-directional, resulting in heatmaps that are not

(a) SMTP (b) LPD (c) POP

(d) RTSP (e) HTTP (f) Kazaa

Figure 2: Heatmaps for 4 common application protocols.

dominated by any single quadrant (Figures 2e and 2f).

Modeling Protocol Behavior
We employ the traffic structure captured by the heatmaps to model
application protocols using only the information that remains intact
after encryption. As noted earlier, Wright et al. [19] observed that
message exchanges for distinct instances of a given protocol share
a common structure, and these structures differ between disparate
application protocols. We use these structural differences as the
basis for our classification scheme.

To better understand how this works, consider, for example, a
“push” protocol such as SMTP whose traffic contains message text
and embedded objects and consists mainly of packets from the
client to the server. Typically, these packets sizes correspond to
the maximum transmission unit (MTU), followed by small TCP
ACK packets from the server. That contrasts sharply with that of
an interactive SSH connection, in which packets in both directions
are small, containing key strokes and their corresponding acknowl-
edgments from the server. Key to the preceding discussion is the
fact that our ability to observe these message structures relies only
on packet size, direction, and ordering; the availability of payload
data neither aids nor harms our efforts.

To model the behavior of an application protocol, we consider
the distribution of the data points used to create a stable heatmap
for that protocol. Next, we describe our method for measuring the
difference between an arbitrary pair of such distributions. However,
before doing so we first introduce some notation.

Given a protocol model M with n bins, we number each bin
from {1, . . . , n} and denote the number of data points that map to
bin i as Mφi . Furthermore, we define Mτ as the number of data

points used to construct the entire model M. Given two protocol
models A and B with the same bin layout, we measure the degree
by which they differ using the L1 distance between the equivalent
relative frequency histograms as:

nX
i=1

˛̨̨̨
Aφi

Aτ
− Bφi

Bτ

˛̨̨̨
This metric is symmetric (i.e., L1(A,B) = L1(B,A)) and is

bounded by the range [0, 2]. If L1(A,B) = 0, then the models
have the same distribution of data points, and their heatmaps ap-
pear identical (even though they may have been constructed using
different volumes of data). If L1(A,B) = 2, then there are no bins
for which more than one protocol model contains data points. In
other words, the bins in the model could be partitioned into those
to which only data points from A fall, those to which only data
points from B fall, and those to which no data from either A or B
falls.

3. METHODOLOGY
Once potentially-aberrant traffic has been identified using the

visualization techniques discussed in §2, we can use a properly-
trained classifier to ascertain the nature of the traffic. In this sec-
tion, we describe how our protocol modeling scheme and model
comparison metric are employed in a traffic classifier capable of
detecting the presence of an application protocol in network traffic.

To train the classifier to detect the presence of an application
protocol Pi which operates on some well-known TCP ports (say,
pi1 , . . . , pik), we randomly select a large number of TCP sessions
destined for ports pi1 , . . . , pik , construct ordered pairs from these

(a) (b)

Figure 3: Example classification of a testing model (vertical stripes) against (a) a model from a different protocol (horizontal stripes), and (b)
a model from the same protocol (white spots).

sessions, and bin the ordered pairs from all of the sessions into a
single heatmap model (see Figure 1). Our evaluation of the exact
number of sessions that qualifies as a “large number of TCP ses-
sions” will be revisited in § 4.1.3.

To classify the traffic, we create ordered pairs from randomly-
selected sessions from the traffic and bin the ordered pairs into a
single testing heatmap model (see Figure 1) until some threshold
quantity, λ, of ordered pairs have been aggregated. We compute
the L1 distance between the testing data’s heatmap model and each
of the training models, M1, . . . ,Mm, resulting in a sequence of
distances d1, . . . , dm, and their standard deviation, σ. Let d′ and
d′′ be the smallest and second smallest distances, respectively. The
training model belonging to d′ is considered a match to the testing
sample if |d′ − d′′| ≥ kσ holds, where k is a non-negative con-
stant confidence threshold. If d′ does not lead d′′ by the confidence
threshold, then the classifier is not able to make a decision and sim-
ply returns ⊥.

For example, Figure 3 illustrates the classification of a testing
model (shown with vertical stripes in both Figures 3a and 3b) against
two training models—Model 1 with horizontal stripes and Model 2
with white spots. The height of each bar in a model indicates the
probability that a random ordered pair used in the construction of
the model falls into the heatmap bin represented by that bar (i.e.,
the relative frequency of ordered pairs falling into each bin). The
solid bars below the x-axis indicate the contribution to the L1 dis-
tance for each bin in the histogram. Observe that Model 1 is clearly
a poorer match to the testing model than Model 2. Indeed, in this
illustrative example, it is the case that the testing model and Model
2 are merely instances of the same protocol.

4. EVALUATION
To evaluate the accuracy of our classifier, we perform empiri-

cal evaluations using two large datasets. The first dataset (denoted
dartmouth) was used to explore appropriate parameter values for
training set sizes, confidence thresholds, and heatmap bin sizes. As
shown later, the results from the analysis using that dataset are then
used to set parameters for our evaluation from a disparate set of

labeled traffic (denoted darpa). Before proceeding, we elaborate
on the specifics of each dataset.

The dartmouth dataset contains real Internet traffic data gath-
ered in January and February 2004 from wireless sensors located
on the campus of Dartmouth University. The traces used provide
IP header information in addition to TCP flags and timing informa-
tion which were used to reconstruct TCP sessions. Unfortunately,
these traces do not provide payload data, and so we assume that the
application protocols transmitting on a particular port correspond
to the application protocols that use that well-known or registered
port (i.e, the traffic on port 22 is for SSH). We used 15 days of
weekday data for the three consecutive weeks from January 19–
February 6, 2004. Overall, the network trace comprises 707 GB
of traffic observed across 64,214 ports. There were a total of 193
ports that exhibited at least one million TCP packets, constituting
a total of roughly 1.2 billion packets. We were able to reconstruct
5.2 million TCP sessions from traffic on these ports, and selected
the ten ports with the most sessions—port 25 (smtp), 80 (http),
88 (kerberos), 110 (pop), 135 (dce), 139 (netBIOS), 443
(https), 445 (mds), 902 (vmware), 1214 (kazaa) for analysis.

80 110 445

Training
Data

Testing
Data

Figure 4: The classifier is trained on a randomly-selected percent-
age of the available sessions for each protocol. Testing models are
constructed using randomly-selected sessions until λ data points
are collected.

(a) NetBIOS Session Service (b) Microsoft Active Directory Service

Figure 5: Heatmaps for traffic on ports 139 and 445 in the dartmouth dataset

Our second dataset is from the 1999 DARPA Intrusion Detection
Evaluation conducted at the Lincoln Laboratory at MIT 1. Specifi-
cally, we use weeks, 1, 3, 4 and 5. The data contains full network
headers and payloads, and comprises roughly 12 GB of network
traffic in 60 million packets observed across 10,274 ports. We
reconstructed TCP sessions for all ports exhibiting traffic in this
dataset, resulting in 1,580,416 sessions. Since many ports had only
a handful of sessions, we selected only traffic to those ports that
had enough traffic to perform meaningful analyses; resulting in the
selection of 6 ports, namely, 21 (ftp), 23 (telnet), 25 (SMTP),
79 (finger), 80 (http), 110 (pop3).

The analysis that follow consists of cross-validation tests among
50 independent trials. In each trial, we trained the classifier using a
percentage of the available sessions (sampled at random) for each
protocol, then randomly sample another set of sessions for testing
(see Figure 4). To build the testing model, we sample sessions until
we have λ = 45, 000 data points2. We then use the training models
to classify the data, and compute the number of true positives (TP),
false positives (FP), and false negatives (FN) with respect to each
trained protocol. These results are used to compute the precision
(i.e., TP

TP+FP
) and recall (TP

TP+FN
) across the 50 trials. Finally,

we report the average precision and recall values across all trained
protocols as the overall precision and recall for the set of trials.

4.1 Parameter Selection
As the observant reader would have noticed, our evaluation re-

quires several parameters to be set before we can evaluate the ef-
fectiveness of the classifier. In what follows, we elaborate on how
we selected values for these parameters.

1While the use of this dataset has come under some fire [12] as be-
ing unrealistic for intrusion detection purposes, we simply use the
label data for each benign protocol as a way to gauge the promise
of our techniques
2The choice of λ was derived empirically — at that value, we
observe ≈ 5% increase in accuracy over using as few as 10,000
points. Beyond that the improvement is marginal. See Appendix
A for a table showing of the number of sessions required to build a
testing sample with various values of Mτ

4.1.1 On Setting the Bin Size
Adjusting the size of the bins that comprise the heatmap mod-

els has several implications. For one, it affects the resolution at
which the classifier can distinguish between sequences that share
much of the same packet ordering and direction, but vary primar-
ily in the sizes of packets. Intuitively, one would surmise that small
heatmap bins (e.g., 1×1, 3×3, etc.) would provide a more detailed
representation of the data being analyzed. While true, the high res-
olution afforded by small heatmap bins comes at a price. Specifi-
cally, the total number of bins in the heatmap varies inversely with
the product of the bins’ height and width. Hence, the amount of
time required to calculate the L1 distance between a given pair of
heatmap models increases with decreasing bin size.

This means that any implementation of our traffic classifier (say,
on dedicated hardware) would merit careful selection of the bin
sizes to avoid requiring a prohibitively-expensive quantity of mem-
ory without compromising the classifier’s ability to accurately and
reliably detect protocols. Figure 6 provides box plots of the preci-
sion and recall across the 10 ports in the dartmouth dataset as
we vary the bin sizes. Notice that the smaller sizes perform well,
but since a heatmap with 1× 1 bins takes 25 times longer to calcu-
late an L1 distance than a heatmap with 5 × 5 bins, we sacrifice a
small amount of precision and recall for speed.

4.1.2 On Selecting the Confidence Threshold
The confidence threshold k allows one to specify by how much

the first choice training candidate must be a better fit to the testing
model than the second choice candidate. Recall that the confidence
threshold k is a non-negative constant that is scaled by the standard
deviation σ of the distribution of L1 distances between each of the
training models and the testing model.

We scale k by σ so that the confidence threshold can expand and
contract with the distribution of the L1 distances. The intuition is
that if the distribution of L1 distances exhibits a small variance, we
do not want to require the first choice candidate to lead by a large
constant amount. Alternately, if the L1 distances are spread out,
we want the first choice candidate to lead by more before making
a decision. Scaling by σ allows us to normalize the amount of

(a)

(b)

Figure 6: Box plots of precision (6a) and recall (6b) versus heatmap
bin size. Top and bottom of boxes denote the 1st and 3rd quartiles,
respectively; red band denotes median; whiskers represent 1.5 IQR;
red diamonds denote outliers.

lead required based on the distribution of the L1 distances. Our
preliminary analysis (not shown) suggests that beyond k = 0.75
we see only marginal improvement in precision and recall. Pending
more in-depth evaluation, we set k = 0.75.

4.1.3 On Selecting the Training Set Size
Lastly, an important concern in building and deploying the traffic

classifier is the amount of data required to build a training model for
each protocol so that they are sufficiently stable and capture a broad
enough variety of sessions to allow the classifier to reliably identify
traffic belonging to that protocol. To explore this space, we held
the confidence threshold and heatmap bin sizes constant (k = 0
and 5 × 5, respectively) and performed a set of 50 trials for each
of various training sample sizes from 0.125-15% of the available
data in the dartmouth dataset. The results are shown in Figure
7. Notice that the median precision and recall increase steadily
as sample sizes increase. Beyond 10% there is only a marginal
improvement; for the remainder of the paper we train the classifier
on 15% of the available data.

4.2 Results
We now turn our attention to the performance of our classifier

(a)

(b)

Figure 7: Box plots of precision (7a) and recall (7b) versus training
set size measured as the percent of available sessions. Top and
bottom of boxes denote the 1st and 3rd quartiles, respectively; red
band denotes median; whiskers represent 1.5 IQR; red diamonds
denote outliers.

based on the aforementioned parameter settings. The confusion
matrix generated by following the evaluation methodology outlined
earlier is given in Figure 8. The matrix can be interpreted as fol-
lows: Each column represents the actual port from which testing
samples are drawn; each row represents the port that the testing
model was classified as belonging to. The color of the square at
each row-column intersection intensifies with each decision that
falls in that square. A completely black square, for example, in-
dicates that such a classification never occurred in any of the trials,
and a completely white square indicates that samples from the cor-
responding column were always classified in that manner. Thus,
we would want to see a completely white line across the diagonal.

Notice that our accuracy is quite high, with the exception of con-
fusion between traffic belonging to MS Active Directory ser-
vice (445) and NetBIOS session service (139). The heatmaps for
traffic on these ports in the dartmouth dataset is shown in Figure
5. Notice, however, how strikingly similar they are. Investigating
this “misclassification,” we find that, interestingly, traffic on these
ports both relate to access to file shares, and are routinely attacked
by similar malware. Moreover, in Windows NT/2000, the file shar-
ing protocol is run over NetBIOS. Additionally, if the client has

Figure 8: Confusion matrix for the dartmouth dataset.

NetBIOS enabled, it makes connections on both ports 139 and 445
simultaneously3. Without access to payloads, we cannot say with
certainty what the cause of the confusion is. Nonetheless, we be-
lieve it underscores the success of our approach in that it provides
a network administrator with a fast and reliable way to assess what
types of traffic she may be seeing on a given port. Our average
precision and recall were 98.5% and 98.4%, respectively.

Figure 9: Confusion matrix the darpa dataset

Similarly, we provide results for a cross-validation test using the
darpa dataset, with parameters chosen based on the previous ex-
periments with the dartmouth data. Recall that in this case, we
only have traffic from six protocols, so the evaluation only focuses
on deciding if we can accurately classify one of these protocols.
The results are shown in Figure 9. As before, the approach is very
accurate, with our average precision and recall being 99.4% and
99.3%, respectively.

4.2.1 Inter-dataset analysis
3See http://ntsecurity.nu/papers/port445/ for a
more detailed discussion on this issue.

Lastly, to explore how well the models perform when training
and testing on disparate networks, we perform the same type of
cross-validation, but this time, train on samples selected from one
dataset, and test on samples from the other. Specifically, we train
on the 10 models from dartmouth, and take testing samples
from the 3 protocols (SMTP, HTTP, POP3) for which we have
ground truth in the darpa dataset and that are also in the dart-
mouth dataset. We then examine how well we do in classifying
these protocols4. The results are shown in Figure 10. These experi-
ments yielded an average precision and recall of 84.2% and 68.7%,
respectively.

Figure 10: Confusion matrix for trials training on the dartmouth
dataset and testing from the darpa dataset

The most notable misclassification is the confusion of port 25
(SMTP) and port 110 (POP3). Upon closer inspection of the data,
we found a high prevalence of small packets exchanged in the SMTP
data from the darpa dataset that is not present in the dartmouth
dataset. We conjecture that this might be due to the presence of the
so-called “Mailbomb” attack that is present in the darpa dataset.
These high-intensity regions (see Figure 11) are more alike the
pattern expected for POP3, which therefore mislead the classifier.
Kendall [7] notes that the typical instance of this attack in the dataset
is a series of 10,000 1-kilobyte email messages sent to a single user
on port 25. We intuit that this attack would most certainly produce a
high percentage of small-packet exchanges, as the short email mes-
sage size would allow small TCP acknowledgements to become
more dominant in the traffic pattern.

That said, this underscores the importance of training the clas-
sifier on data that is contextually relevant to the traffic that will be
the subject of classification. In particular, it highlights a weakness
of the approach, suggesting that in practice it would be prudent to
build models from training data collect on the network to be mon-
itored. A promising outcome, however, if that the results do show
that the use of the visual motifs can be very helpful in classifying
traffic and quickly spotting that which does not look like what one
would expect.

4We found that due to discrepancies in the traffic patterns between
the two datasets for the 3 protocols from which testing samples
were drawn, a confidence threshold of k = 0.75 was too high; and
would lead to the classifier not making any decisions. Therefore,
we set k = .25 for this test.

(a) SMTP from dartmouth (b) POP3 from dartmouth (c) SMTP from darpa

Figure 11: Heatmaps for traffic on ports 25 and 110 in the dartmouth and darpa datasets

5. LIMITATIONS
A limitation of this work is its susceptibility to evasive maneu-

vers [1, 16], where a user attempts to disguise her actions by mor-
phing or padding her packets to look like a different protocol. Tech-
niques for mitigating such attacks remain as future work.

A more practical limitation is the fact that we assume that ses-
sions can be separated from each other. Clearly, while this assump-
tion holds for cleartext traffic or even for separating traffic employ-
ing application layer encryption (say using SSL), the assumption
does not hold in cases where traffic from disjoint protocols is mul-
tiplexed over a single encrypted tunnel—as is typically done when
using VPNs. Lastly, the approach we take is only applicable to
TCP traffic. That said, since TCP dominates UDP traffic (e.g., 86%
of the dartmouth data was TCP traffic), we argue this limitation
may not be that significant in practice.

6. CONCLUSIONS & FUTURE WORK
In this paper, we demonstrate how a technique for heatmap vi-

sualization can be used to model application protocol behavior in
TCP/IP traffic in addition to a method for using the L1 distance
to detect the presence of an application protocol using only those
features that remain intact after encryption. We present a usage
model wherein a network operator seeks to detect the presence of
certain application protocols within a body of traffic. We evaluated
our traffic classification methodology using a large dataset of real
Internet traffic and found that our classifier performs well.

We are exploring how the classifier can be extended to work in
an on-line fashion with the potential to adapt its training models
using live data gathered during operation. We leave as future work
an examination on how the techniques can be used to distinguish
between different protocol behaviors of the same application (e.g,
the file transfer vs. interactive mode of ssh, or streaming video
and audio over http).

Acknowledgments
We thank the anonymous reviewers for their insightful comments
and suggestions for improving the paper. This work is supported
by the National Science Foundation under award CNS-0852649.

7. REFERENCES
[1] FOGLA, P., SHARIF, M., PERDISCI, R., KOLESNIKOV, O.,

AND LEE, W. Polymorphic blending attacks. In Proceedings

of the 15th USENIX Security Symposium (August 2006),
pp. 241–256.

[2] GLANFIELD, J., PATERSON, D., SMITH, C., TAYLOR, T.,
BROOKS, S., GATES, C., AND MCHUGH, J. FloVis:
Leveraging Visualization to Protect Sensitive Network
Infrastructure. In Symposium on Information Assurance and
Cyber Defence (CATCH) (march 2009).

[3] GOLDRING, T. Scatter (and other) plots for visualizing user
profiling data and network traffic. In VizSEC/DMSEC ’04:
Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security (New York, NY,
USA, 2004), ACM Press, pp. 119–123.

[4] HORNIG, C. RFC 894: A Standard for the Transmission of
IP Datagrams over Ethernet Networks, April 1984.

[5] JANIES, J. Existence Plots: A Low-Resolution Time Series
for Port Behavior Analysis. In VizSec ’08: Proceedings of the
5th international workshop on Visualization for Computer
Security (2008), pp. 161–168.

[6] KARAGIANNIS, T., PAPAGIANNAKI, K., AND TSOS, M. F.
BLINC: Multilevel traffic classification in the dark. In ACM
SIGCOMM (August 2005).

[7] KENDALL, K. A Database of Computer Attacks for the
Evaluation of Intrusion Detection Systems. Master’s thesis,
Massachusetts Institute of Technology, 1998.

[8] LAKKARAJU, K., YURCIK, W., AND LEE, A. J.
NVisionIP: netflow visualizations of system state for security
situational awareness. In VizSEC/DMSEC ’04: Proceedings
of the 2004 ACM workshop on Visualization and data mining
for computer security (2004), pp. 65–72.

[9] LIBERATORE, M., AND LEVINE, B. Inferring the Source of
Encrypted HTTP Connections. In Proceedings of the ACM
conference on Computer and Communications Security
(October 2006), pp. 255–263.

[10] LIN, J., KEOGH, E., AND LONARD, S. Visualizing and
discovering non-trivial patterns in large time series
databases. Information Visualization Journal 4, 2 (April
2005), 61–âĂŞ82.

[11] MAIOLINI, G., BAIOCHHI, A., LACOVAZZI, A., AND
RIZZI, A. Real Time Identification of SSH Encrypted
Application Flows by Using Cluster Analysis Techniques. In
Proceedings of the 8th International IFIP-TC 6 Networking
Conference (2009), pp. 182 – 194.

[12] MCHUGH, J. Testing Intrusion Detection Systems: A
Critique of the 1998 and 1998 DARPA Intrusion Detection
System Evaluations as Performed by Lincoln Laboratory.
ACM Transactions on Information and Systems Security 3, 4
(2000).

[13] SONG, D., WAGNER, D., AND TIAN, X. Timing analysis of
keystrokes and SSH timing attacks. In Proceedings of the
10th USENIX Security Symposium (August 2001).

[14] SUN, Q., SIMON, D. R., WANG, Y.-M., RUSSELL, W.,
PADMANABHAN, V. N., AND QIU, L. Statistical
identification of encrypted web browsing traffic. In
Proceedings of the IEEE Symposium on Security and Privacy
(May 2002), pp. 19–30.

[15] TAYLOR, T., BROOKS, S., AND MCHUGH, J. NetBytes
Viewer: An Entity-based Netflow Visualization Utility for
Identifying Intrusive Behavior. In Mathematics and
Visualization (Proceedings of VizSEC) (August 2008).

[16] WRIGHT, C., COULL, S., AND MONROSE, F. Traffic
morphing: An efficient defense against statistical traffic
analysis. In Proceedings of the Network and Distributed
Security Symposium - NDSS ’09 (February 2009), IEEE.

[17] WRIGHT, C. V., BALLARD, L., COULL, S. E., MONROSE,
F., AND MASSON, G. M. Spot me if you can: Uncovering
spoken phrases in encrypted VoIP conversations. In
Proceedings of the 2008 IEEE Symposium on Security and
Privacy (May 2008).

[18] WRIGHT, C. V., MONROSE, F., AND MASSON, G. M. On
inferring application protocol behaviors in encrypted
network traffic. Journal of Machine Learning Research 7
(December 2006), 2745–2769. Special Topic on Machine
Learning for Computer Security.

[19] WRIGHT, C. V., MONROSE, F., AND MASSON, G. M.
Using visual motifs to classify encrypted traffic. In
Proceedings of the 3rd International Workshop on
Visualization for Computer Security (VizSEC) (November
2006).

[20] YIN, X., YURCIK, W., TREASTER, M., LI, Y., AND
LAKKARAJU, K. Visflowconnect: netflow visualizations of
link relationships for security situational awareness. In
Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security (2004), pp. 26–34.

[21] YU-CHUN CHANG AND KUAN-TA CHEN AND CHEN-CHI
WU AND CHIN-LAUNG LEI. Inferring speech activity from
encrypted skype traffic. In IEEE Globecomm (2008).

Appendix A
Table 1 below provides insights on how we choose λ. It shows the
average number of sessions that would be generated for the given
port with the specified number of data points. Results averaged
across 25 trials. Notice that at even at 25,000 data points, the me-
dian number of sessions is less than 1000.

Testing Size
Port 10,000 15,000 25,000 35,000 45,000
25 167.00 214.12 307.20 362.08 498.40
80 413.56 547.96 934.48 1190.80 1494.16
88 1553.40 2331.72 3885.44 5439.24 6993.72
110 413.28 575.80 973.00 1285.88 1689.24
135 1356.92 2033.68 3380.60 4729.04 6084.68
139 225.48 317.00 523.92 552.92 653.92
443 438.68 641.48 1027.00 1477.04 1844.96
445 30.12 28.16 65.56 95.84 116.28
902 1466.48 2211.56 3683.72 5131.04 6611.28

1214 31.92 37.32 65.12 69.76 86.44
median 413.42 561.88 953.74 1238.34 1591.70

Table 1: Mapping of average number of data points (per protocol)
to number of sessions.

