
1

31 August 2004 Comp120 Fall 2004 1

August 31

• Email addresses

• Drop box

• Questions?

31 August 2004 Comp120 Fall 2004 2

The Really Big Ideas

• Just bits for data and program

• Program is a sequence of instruction words

• Data-type determined by instruction

• Large linear “array” of memory

• Small number of “variables” (registers)

31 August 2004 Comp120 Fall 2004 3

Just Bits

• Program and data have the same
representation

• Programs can manipulate programs

• Programs can manipulate themselves!

• Bits not the only way (Lisp)

31 August 2004 Comp120 Fall 2004 4

Data Types

• char byte short int pointer quad float double

• Instruction determines type of operands
– Add (int), Add.s (float), Add.d (double)

• Free to reinterpret at will

• How big is a char?

• What’s a pointer?

31 August 2004 Comp120 Fall 2004 5

Memory

• Large (usually) linear array

• Only read with load instructions
– lw $t5, 100($a3) ($t5 = mem[100+$a3])

• Only modified with store instructions
– sw $s0, 24($t3) (mem[24+$t3] = $s0)

• CISC machines have lots of ways to read
and write memory

31 August 2004 Comp120 Fall 2004 6

Memory

• Address is always in bytes

• Words on 4 byte boundary (how many 0’s?)

• Short only on 2 byte boundary

• Doubles only on 8 byte boundary

• CISC allowed them anywhere

Why?

I t’ s an ABSTRACTION!

2

31 August 2004 Comp120 Fall 2004 7

GP Registers

• Variables for our programs

• The ONLY operands for most instructions

• A very small number (32 in MIPS)

Why?

• All 32 bits

• What about new 64 bit ISA’s?

31 August 2004 Comp120 Fall 2004 8

Just enough C

For our purposes C is almost identical to JAVA except:

C has “ functions” , JAVA has “methods”.
function == method without “class” .

A global method.

C has “pointers” explicitly. JAVA has them but hides
them under the covers.

31 August 2004 Comp120 Fall 2004 9

C pointers
int i; // simple integer variable

int a[10]; // array of integers

int *p; // pointer to integer(s)

*(expression) is content of address computed by expression.

a[k] == *(a+k)

a is a constant of type “ int *”

a[k] = a[k+1] EQUI V * (a+k) = * (a+k+1)

31 August 2004 Comp120 Fall 2004 10

Legal uses of C Pointers
int i; // simple integer variable

int a[10]; // array of integers

int *p; // pointer to integer(s)

p = &i; // & means address of

p = a; // no need for & on a

p = &a[5]; // address of 6th element of a

*p // value of location pointed by p

*p = 1; // change value of that location

*(p+1) = 1; // change value of next location

p[1] = 1; // exactly the same as above

p++; // step pointer to the next element

31 August 2004 Comp120 Fall 2004 11

Legal uses of Pointers

int i; // simple integer variable

int a[10];// array of integers

int *p; // pointer to integer(s)

So what happens when

p = &i;

What is value of p[0]?

What is value of p[1]?

31 August 2004 Comp120 Fall 2004 12

C Pointers vs. object size

Does “ p++” r eal l y add 1 t o t he poi nt er ?
NO! I t adds 4.
Why 4?

char * q;

. . .

q++; / / r eal l y does add 1

3

31 August 2004 Comp120 Fall 2004 13

Clear123
void clear1(int array[], int size) {

for(int i=0; i<size; i++)

array[i] = 0;

}

void clear2(int *array, int size) {

for(int *p = &array[0]; p < &array[size]; p++)
*p = 0;

}

void clear3(int *array, int size) {

int *arrayend = array + size;

while(array < arrayend) *array++ = 0;

}

31 August 2004 Comp120 Fall 2004 14

Pointer summary
• In the “C” world and in the “machine” world:

– a pointer is just the address of an object in memory

– size of pointer is fixed regardless of size of object

– to get to the next object increment by the object’s size
in bytes

– to get the the ith object add i*sizeof(object)

• More details:

– int R[5] � R is int* constant address of 20 bytes

– R[i] � *(R+i)

– int *p = &R[3] � p = (R+3) (p points 12 bytes after R)

31 August 2004 Comp120 Fall 2004 15

Representations

You need to know your
powers of 2!

1G2^30

1M2^20

1k2^10

5122^9

2562^8

1282^7

642^6

322^5

162^4

82^3

42^2

22^1

12^0

31 August 2004 Comp120 Fall 2004 16

Pointer Size vs. Addressable Space

• Pointers ARE addresses

• Number of unique addresses for N bits is 2^N

• With addresses that are 32 bits long you can
address 4G bytes

• With addresses that are 13 bits long you can
address 8k bytes

– that’s 2k words

31 August 2004 Comp120 Fall 2004 17

C versus ASM

Swap:
muli $t0, $a1, 4
add $t0, $a0, $t0
lw $t1, 0($t0)
lw $t2, 4($t0)
sw $t2, 0($t0)
sw $t1, 4($t0)
jr $ra

Swap(int v[], int k) {
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

31 August 2004 Comp120 Fall 2004 18

Form of the Instructions

• Opcode

• Register (usually result destination)

• Operand 1

• Operand 2
e.g.

add $t0, $a0, $t0

4

31 August 2004 Comp120 Fall 2004 19

Naming Registers

This is all just software “ convention”

• $a0 - $a3 arguments to functions

• $v0 - $v1 results from functions

• $ra return address

• $s0 - $s7 “saved” registers

• $t0 - $t9 “ temporary” registers

• $sp stack pointer
31 August 2004 Comp120 Fall 2004 20

What are the operands?

• Registers e.g. $a0

• With load and store this is logical enough

• But small constants are VERY common

• So, some instructions allow “ immediate”
operands. E.g. muli $t0, $a1, 4

• Where do we get big constants?

31 August 2004 Comp120 Fall 2004 21

C versus ASM

Swap:
muli $t0, $a1, 4
add $t0, $a0, $t0
lw $t1, 0($t0)
lw $t2, 4($t0)
sw $t2, 0($t0)
sw $t1, 4($t0)
jr $ra

Swap(int v[], int k) {
int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

31 August 2004 Comp120 Fall 2004 22

• Measure, Report, and Summarize

• Make intelligent choices

• See through the marketing hype

• Key to understanding underlying organizational motivation

Why is some hardware better than others for different programs?

What factors of system performance are hardware related?
(e.g., Do we need a new machine, or a new operating system?)

How does the machine's instruction set affect performance?

Next: Performance

31 August 2004 Comp120 Fall 2004 23

Where we are headed
Performance issues (Chapter 2) vocabulary and

motivation

• A specific instruction set architecture (Chapter 3)
Why MIPS? Why not Intel?

• Arithmetic and how to build an ALU (Chapter 4)

• Pipelining to improve performance (Chapter 6)
briefly
Memory: caches and virtual memory (Chapter 7)

• Key to a good grade: reading the book!

