
1

September 2

• Performance

• Read 3.1 through 3.4 for Tuesday

• Only 4 classes before 1st Exam!

• Old Fashioned Farmer’s Days

Which of these airplanes has the best per formance?

79,4245448720146DC-8-50

178,20013504000132Concorde

286,7006104150470747

228,7506104630375777

ThroughputSpeedRange(mi)PassengersAirplane

Which communications network is best?

• 56kb modem (56k bits / second, WW)

• Road Runner (1.5M bits / second, WW)

• USB Memory + Sneakers (2G bits / 5
minutes, feet)

• DLT (Digital Linear Tape) + FedEx
(1T bit/12 hours)

TIME is THE measure!
• Response Time (latency)

— How long does it take for my job to run?
— How long does it take to execute a job?
— How long must I wait for the database query?

• Throughput
— How many jobs can the machine run at once?
— What is the average execution rate?
— How much work is getting done?

If we upgrade a machine with a new processor what do we

increase?

If we add a new machine to the lab what do we increase?

What kind of time?
•Wall-clock Time

–counts everything (disk and memory accesses, I/O , etc.)

–a useful number, but sometimes not good for
compar ison or analysis purposes

•CPU time

–doesn't count I /O or time spent running other programs

–can be broken up into system time, and user time

•Our focus: user CPU time

–time spent executing the lines of code that are " in" our
program

DANGER Will Robinson!

• Focus on CPU time can SERIOUSLY
distor t our wor ld view…

• SYSTEM designers (as opposed to CPU
designers) must focus on the USER
EXPERIENCE.

2

“Performance”

• For some program running on machine X,

PerformanceX = 1 / Execution timeX

• "X is n times faster than Y“

PerformanceX / PerformanceY = n

Problem:
– machine A runs a program in 20 seconds
– machine B runs the same program in 25 seconds

Cycles
• I nstead of repor ting execution time in seconds, we often use cycles

• Clock “ ticks” indicate when to star t activities (one abstraction):

• cycle time = time between ticks = seconds per cycle
• clock rate (frequency) = cycles per second (1 Her tz. = 1 cycle/sec)

A 200 MHz clock has a

seconds

program
=

cycles

program
×

seconds

cycle

time

 timecycle snanosecond 5
 610200

1
 =

×

How to improve performance?

seconds

program
=

cycles

program
×

seconds

cycle

So, to improve per formance (everything else being equal)
you can either

________ the # of required cycles for a program, or
________ the clock cycle time or , said another way,
________ the clock rate.

• Could assume that # of cycles = # of instructions

WRONG!

different instructions take different amounts of time on
different machines.

WHY?

time

1s
t i

ns
tr

uc
ti

on

2n
d

in
st

ru
ct

io
n

3r
d

in
st

ru
ct

io
n

4t
h

5t
h

6t
h ...

How many cycles are required for a program?

• Division takes more time than addition
• Floating point operations take longer than integer ones
• Accessing memory takes more time than accessing

registers

• Important point: changing the cycle time often changes
the number of cycles required for various instructions
(more later)

time

Instructions take differing numbers of cycles Now that we understand cycles…
• A given program will require

– some number of instructions (machine instructions)
– some number of cycles
– some number of seconds

• We have a vocabulary that relates these quantities:
– cycle time (seconds per cycle)
– clock rate (cycles per second)
– CPI (cycles per instruction) a floating point intensive

application might have a higher CPI
– MIPS (millions of instructions per second) this would

be higher for a program using simple instructions

3

Do any of these equal
performance?

of cycles to execute program?

of instructions in program?

of cycles per second?

average # of cycles per instruction?

average # of instructions per second?

Common pitfall: thinking one of the variables is
indicative of per formance when it really isn’ t.

CPI Example
Suppose we have two implementations of the same

instruction set architecture (ISA).
For some program,
Machine A has a clock cycle time of 10 ns. and a CPI of 2.0
Machine B has a clock cycle time of 20 ns. and a CPI of 1.2
Which machine is faster for this program, and by how

much?
If two machines have the same ISA which of our quantities

(e.g., clock rate, CPI, execution time, # of instructions,
MIPS) will always be identical?

of instructions example
A compiler designer is trying to decide between two code
sequences for a par ticular machine. Based on the hardware
implementation, there are three different classes of
instructions: Class A, Class B, and Class C, and they
require one, two, and three cycles (respectively).

The first code sequence has 5 instructions:
2 of A, 1 of B, and 2 of C

The second sequence has 6 instructions:
4 of A, 1 of B, and 1 of C.

Which sequence will be faster? How much?
What is the CPI for each sequence?

MIPS example
• Two different compilers are being tested for a 100 MHz. machine

with three different classes of instructions: Class A, Class B, and
Class C, which require one, two, and three cycles (respectively).
Both compilers are used to produce code for a large piece of
software.

The first compiler 's code uses 5 million Class A, 1 million Class
B, and 1 million Class C instructions.

The second compiler 's code uses 10 million Class A, 1 million
Class B, and 1 million Class C instructions.

• Which sequence will be faster according to MIPS?
• Which sequence will be faster according to execution time?

Benchmarks
• Performance best determined by running a real

application
– Use programs typical of expected workload
– Or, typical of expected class of applications

e.g., compilers/editors, scientific applications, graphics, etc.

• Synthetic benchmarks (Dhrystone, Whetstone)
– nice for architects and designers
– easy to standardize
– Easy to abuse

• SPEC (System Performance Evaluation Cooperative)
– companies have agreed on a set of real program and inputs
– can still be abused
– valuable indicator of performance (and compiler technology)

SPEC ‘89
• Compiler “enhancements” and performance

0

100

200

300

400

500

600

700

800

tomcatvfppppmatrix300eqntottlinasa7doducspiceespressogcc

Benchmark
Compiler

Enhanced compiler

S
P

E
C

 p
er

fo
rm

an
ce

 r
at

io

4

SPEC ‘95
Does doubling the clock rate double the performance?

Can a machine with a slower clock rate have better
performance?

Clock rate (MHz)

S
P

E
C

in
t

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Pentium

Pentium Pro

Pentium
Clock rate (MHz)

S
P

E
C

fp

Pentium Pro

2

0

4

6

8

3

1

5

7

9

10

200 25015010050

Amdahl's Law
Execution Time After Improvement =

Execution Time Unaffected +
Execution Time Affected /

Amt of Improvement

I

T
TT A

UI +=

Amdahl’s law Example

Suppose a program runs in 100 seconds on a
machine, with multiply responsible for 80 seconds
of this time. How much do we have to improve
the speed of multiplication if we want the program
to run 4 times faster?

16
80

20
4

100 =→+= n
n

How about 5 times faster?

Amdahl’s Law

• Principle: Make the common case fast

• Parallel machines, VLSI algorithms, GPU

I

T
TT A

UI +=

Suppose we enhance a machine making all floating-point
instructions run five times faster. If the execution time
of some benchmark before the floating-point
enhancement is 10 seconds, what will the speedup be if
half of the 10 seconds is spent executing floating-point
instructions?

Example

speedup = old/new =
10 / (0.5*10 + 0.5*10/5) = 1.67

Example
We are looking for a benchmark to show off the new

floating-point unit described above, and want the
overall benchmark to show a speedup of 3. One
benchmark we are considering runs for 100
seconds with the old floating-point hardware.
How much of the execution time would floating-
point instructions have to account for in this
program in order to yield our desired speedup on
this benchmark?

100/3 = 100*f/5 + 100*(1-f); f = 5/6

5

• Performance is specific to particular programs

– Total execution time is a consistent summary of
performance

• For a given architecture performance increases come from:

– increases in clock rate (without adverse CPI affects)

– improvements in processor organization that lower CPI

– compiler enhancements that lower CPI and/or instruction
count

• Pitfall: expecting improvement in one aspect of a machine’s

performance to affect the total performance

Remember

