
•1

10/26/2004 Comp 120 Fall 2004 1

26 October

• Only 11 to go!
• Questions?
• Today Exam Review and Instruction Execution

10/26/2004 Comp 120 Fall 2004 2

1

[10] How many bits are required to store a 10-digit number
(i.e. a phone number that might range from 0000000000
to 9999999999) as a binary integer? As ASCII
characters?

1010 = 10 * 109 = 10 * 230 < 234 = 34 bits

10 characters * 8 bits/character = 80 bits

10/26/2004 Comp 120 Fall 2004 3

2

[5] Suppose the byte at location 1000 in memory contains the hex
value 0x87. What is the content of register $t0 after the instruction
“lb $t0,1000($zero)”? What is its content after the instruction “lbu
$t0,1000($zero)”? We’re comparing the “load byte” instruction to the
“load byte unsigned” instruction.

The l b i nst r uct i on wi l l “ si gn ext end” so t he
r esul t wi l l be 0xf f f f f f 87 whi l e t he l bu
wi l l pr oduce 0x00000087

10/26/2004 Comp 120 Fall 2004 4

3

[10] Which of the following cannot be EXACTLY represented by an
IEEE double-precision floating-point number?
(a) 0
(b) 10.2
(c) 1.625
(d) 11.5

10/26/2004 Comp 120 Fall 2004 5

4

[12] All of the following equations are true for the idealized numbers
you studied in algebra. Which ones are true for IEEE floating point
numbers? Assume that all of the numbers are well within the range
of largest and smallest possible numbers (that is, underflow and
overflow are not a problem)
– A+B=A if and only if B=0

– (A+B)+C = A+(B+C)

– A+B = B+A

– A*(B+C) = A*B+A*C

10/26/2004 Comp 120 Fall 2004 6

5
[12] Consider the characteristics of two machines M1 and M2. M1 has a clock rate of 1GHz. M2
has a clock rate of 2GHz. There are 4 classes of instructions (A-D) in the instruction set. In a set
of benchmark programs, the frequency of each class of instructions is shown in the table.

Instruction Class Frequency M1 CPI M2 CPI
A 40% 2 6
B 25% 3 6
C 20% 3 6
D 15% 5 8

What is the average CPI for each machine? Which machine is faster? By what factor
faster is it? What is the cycle time of each machine?

CPI1 = 2*0.4+3*0.25+3*0.2+5*0.15 = 2.9

CPI2 = 6*0.4+6*0.25+6*0.2+8*0.15 = 6.3

M1 is faster by (1000/2.9) / (2000/6.3) = 1.086

M1 cycle time = 1ns, M2 cycle time = 0.5ns

•2

10/26/2004 Comp 120 Fall 2004 7

6

[10] How can the ALU we talked about in class be used to compare
two values for equality?

Subtract (invert, add, with Cin=1) and OR the 32 bits of the
result together with an additional gate. If the output of that
gate is 9; then the values are equal.

10/26/2004 Comp 120 Fall 2004 8

7

[5] Using 2’s complement arithmetic, negate 0x1234ffff. What is its
value in hex?

0x1234ffff inverted = 0xedcb0000 plus 1 = 0xedcb0001

10/26/2004 Comp 120 Fall 2004 9

8

[10] Show, step by step, how to add -17 (negative 17) and 20 (positive
20) using 2’s complement arithmetic and 8 bit integers.

17 is 0x11, so ~17 is 0xee, so -17 is 0xef = 11101111

20 is 0x14 = 00010100

Add them bit-by-bit to get 00000011 = 0x03

10/26/2004 Comp 120 Fall 2004 10

9

[6] When multiplying unsigned numbers that are N bits long using the
shift and add algorithm, how many additions are required on
average if all multipliers are equally likely?

N/2

Are all multipliers equally likely?

10/26/2004 Comp 120 Fall 2004 11

10

[15] Draw a block diagram showing how to implement 2’s complement
subtraction of 4 bit numbers (A minus B) using 1-bit full-adder
blocks with inputs A, B, and Cin and outputs Sum and Cout and any
other AND, OR, or INVERT blocks you may need.

+

+

+

+

~

~

~

~

A0

B0

A1
B1

A2

B2
A3
B3

1

Diff0

Diff1

Diff2

Diff3

10/26/2004 Comp 120 Fall 2004 12

Grade Distribution

0

1
2

3

4

5
6

7

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Bin

F
re

q
u

en
cy

•3

10/26/2004 Comp 120 Fall 2004 13

Instruction Execution

10/26/2004 Comp 120 Fall 2004 14

Five Execution Steps
• Instruction Fetch

• Instruction Decode and Register Fetch

• Execution, Memory Address Computation, or Branch Completion

• Memory Access or R-type instruction completion

• Memory Read Completion

INSTRUCTIONS TAKE FROM 3 - 5 CYCLES!
• A FSM looks at the op-code to determine how many...

10/26/2004 Comp 120 Fall 2004 15

• Use PC to get instruction and put it in the Instruction Register.
• Increment the PC by 4 and put the result back in the PC.
• Can be described succinctly using RTL "Register-Transfer Language"

I R = Memor y[PC] ; IR is “Instruction Register”
PC = PC + 4;

What is the advantage of updating the PC now?

Step 1: Instruction Fetch

10/26/2004 Comp 120 Fall 2004 16

• Read registers rs and rt in case we need them
• Compute the branch address in case the instruction is a branch
• RTL:

A = Reg[I R[25- 21]] ;
B = Reg[I R[20- 16]] ;
ALUOut = PC + (s i gn- ext end(I R[15- 0]) << 2) ;

• We aren't setting any control lines based on the instruction type
(we are busy "decoding" it in our control logic)

Step 2: Instruction Decode and Register Fetch

10/26/2004 Comp 120 Fall 2004 17

• ALU is performing one of three functions, based on instruction type

• Memory Reference:

ALUOut = A + si gn- ext end(I R[15- 0]) ;

• R-type:

ALUOut = A op B;

• Branch:

i f (A==B) PC = ALUOut ;

Step 3 (instruction dependent)

10/26/2004 Comp 120 Fall 2004 18

• Loads and stores access memory

MDR = Memor y[ALUOut] ; MDR is Memory Data Register
or

Memor y[ALUOut] = B;

• R-type instructions finish

Reg[I R[15- 11]] = ALUOut ;

Step 4 (R-type or memory-access)

•4

10/26/2004 Comp 120 Fall 2004 19

• Reg[I R[20- 16]] = MDR;

Step 5 Memory Read Completion

10/26/2004 Comp 120 Fall 2004 20

Summary:

Step name
Action for R-type

instructions
Action for memory-reference

instructions
Action for
branches

Action for
jumps

Instruction fetch IR = Memory[PC]
PC = PC + 4

Instruction A = Reg [IR[25-21]]
decode/register fetch B = Reg [IR[20-16]]

ALUOut = PC + (sign-extend (IR[15-0]) << 2)

Execution, address ALUOut = A op B ALUOut = A + sign-extend if (A ==B) then PC = PC [31-28] II
computation, branch/ (IR[15-0]) PC = ALUOut (IR[25-0]<<2)
jump completion

Memory access or R-type Reg [IR[15-11]] = Load: MDR = Memory[ALUOut]
completion ALUOut or

Store: Memory [ALUOut] = B

Memory read completion Load: Reg[IR[20-16]] = MDR

10/26/2004 Comp 120 Fall 2004 21

10!

