
•1

10/28/2004 Comp 120 Fall 2004 1

28 October

• 10 Classes to go!
• Read Sections 7.1 and 7.2
• You read 6.1 for this time. Right?
• Pipelining then on to Memory hierarchy

10/28/2004 Comp 120 Fall 2004 2

Doing Laundry
Time

76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task�
order

Task�
order

10/28/2004 Comp 120 Fall 2004 3

Pipelining
• Improve performance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline. Do we achieve this?

Instruction�
fe tch

Reg ALU Data�
access

R eg

8 ns
Instruction�

fetch
Reg ALU

Data�
access

Reg

8 ns
Instruction�

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program�
execution�
order�
(in instructions)

Instruction�
fetch

Reg ALU
Data�

access
Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction�

fetch
Reg ALU

Data�
access

Reg

2 ns
Instruction�

fetch
Reg ALU

Data�
access

Reg

2 ns 2 ns 2 ns 2 ns 2 ns

�

Program�
execution�
order�
(in instructions)

10/28/2004 Comp 120 Fall 2004 4

• We have 5 stages. What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Register Write Back

• How would control be handled in an automobile plant?
– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline control

10/28/2004 Comp 120 Fall 2004 5

Pipelining
• What makes it easy

– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards: suppose we had only one memory
– control hazards: need to worry about branch instructions
– data hazards: an instruction depends on a previous instruction

• Individual Instructions still take the same number of cycles

• But we’ve improved the through-put by increasing the number of
simultaneously executing instructions

10/28/2004 Comp 120 Fall 2004 6

Structural Hazards

Reg
Write

Data
Access

ALUReg
Read

Inst
Fetch

Reg
Write

Data
Access

ALUReg
Read

Inst
Fetch

Reg
Write

Data
Access

ALUReg
Read

Inst
Fetch

Reg
Write

Data
Access

ALUReg
Read

Inst
Fetch

•2

10/28/2004 Comp 120 Fall 2004 7

• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Data Hazards

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution�
order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of �
register $2:

DM Reg

Reg

Reg

Reg

DM

10/28/2004 Comp 120 Fall 2004 8

• Have compiler guarantee no hazards
• Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• Problem: this really slows us down!

Software Solution

10/28/2004 Comp 120 Fall 2004 9

• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register

– ALU forwarding

Forwarding

IM Reg

IM Reg

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

sub $2, $1, $3

Program�
execution order�
(in instructions)

and $12, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

10 10 10 10 10/– 20 – 20 – 20 – 20 – 20

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Value of register $2 :

DM Reg

Reg

Reg

Reg

X X X – 20 X X X X XValue of EX/MEM :
X X X X – 20 X X X XValue of MEM/WB :

DM

10/28/2004 Comp 120 Fall 2004 10

• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that writes to the

same register.

–

• Thus, we need a hazard detection unit to “stall” the instruction

Can't always forward

Reg

IM

Reg

Reg

IM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6

Time (in clock cycles)

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

IM Reg DM Reg

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

DM Reg

Reg

Reg

DM

10/28/2004 Comp 120 Fall 2004 11

Stalling
• We can stall the pipeline by keeping an instruction in the same

stage

lw $2, 20($1)

Program�
execution�
order�
(in instructions)

and $4, $2, $5

or $8, $2, $6

add $9, $4, $2

slt $1, $6, $7

Reg

IM

Reg

Reg

IM DM

CC 1 CC 2 CC 3 CC 4 CC 5 CC 6
Time (in clock cycles)

IM Reg DM RegIM

IM DM Reg

IM DM Reg

CC 7 CC 8 CC 9 CC 10

DM Reg

RegReg

Reg

bubble

10/28/2004 Comp 120 Fall 2004 12

• When we decide to branch, other instructions are in the pipeline!

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Branch Hazards

Reg

Reg

CC 1

Time (in clock cycles)

40 beq $1, $3, 7

Program�
execution�
order�
(in instructions)

IM Reg

IM DM

IM DM

IM DM

DM

DM Reg

Reg Reg

Reg

Reg

RegIM

44 and $12, $2, $5

48 or $13, $6, $2

52 add $14, $2, $2

72 lw $4, 50($7)

CC 2 CC 3 CC 4 CC 5 CC 6 CC 7 CC 8 CC 9

Reg

•3

10/28/2004 Comp 120 Fall 2004 13

Improving Performance
• Try to avoid stalls! E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar: start more than one instruction in the same cycle

10/28/2004 Comp 120 Fall 2004 14

Dynamic Scheduling

• The hardware performs the “scheduling”
– hardware tries to find instructions to execute

– out of order execution is possible

– speculative execution and dynamic branch prediction

• All modern processors are very complicated
– Pentium 4: 20 stage pipeline, 6 simultaneous instructions

– PowerPC and Pentium: branch history table

– Compiler technology important

10/28/2004 Comp 120 Fall 2004 15

Chapter 7 Preview

Memory Hierarchy

10/28/2004 Comp 120 Fall 2004 16

Memory Hierarchy
• Memory devices come in several different flavors

– SRAM – Static Ram
• fast (1 to 10ns)
• expensive (>10 times DRAM)
• small capacity (< ¼ DRAM)

– DRAM – Dynamic RAM
• 16 times slower than SRAM (50ns – 100ns)
• Access time varies with address
• Affordable ($160 / gigabyte)
• 1 Gig considered big

– DISK
• Slow! (10ms access time)
• Cheap! (< $1 / gigabyte)
• Big! (1Tbyte is no problem)

10/28/2004 Comp 120 Fall 2004 17

• Users want large and fast memories!

Try to give it to them
– build a memory hierarchy

Memory Hierarchy

CPU

Level n

Level 2

Level 1

Levels in the�
m emory h ierarchy

Increas ing distance �
from the CPU in �

access time

Size of the m emory at each level

10/28/2004 Comp 120 Fall 2004 18

Locality
• A principle that makes having a memory hierarchy a good idea

• If an item is referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

•4

10/28/2004 Comp 120 Fall 2004 19

9

