28 October

10 Classes to go!

Read Sections 7.1 and 7.2

You read 6.1 for this time. Right?
Pipelining then on to Memory hierarchy

10/28/2004 Comp 120 Fall 2004

Doing Laundry
e ——

10/28/2004 Comp 120 Fall 2004

Pipelining

Pipeline control

Improve performance by increasing instruction throughput

Program

execution 2
" Time

a 5 s 10 12 14 15 18

(in instructions)

wsa, 10060 [P oegl ao | o Toeg

nstructon Data
cton peg| ALy

w 52, 200($0) 8ns

w §3, 300($0) Bns

execution 1 2 4 6 s 10 12 14

order
(in instructions)
O T A

A

Reg

s, 20080 zme |

Reg

|

Reg

Dara.

* We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Register Write Back

* How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
— should we use a finite state machine?

w $3,300(80) Zns | e Reg| A [200 |Reg)

2ns 2ns | 2ns o 2ns | 2ns

Ideal speedup is number of stagesin the pipeline. Do we achieve this?

10/28/2004 Comp 120 Fall 2004

Pipelining

What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

Individual Instructions still take the same number of cycles

But we've improved the through-put by increasing the number of
simultaneously executing instructions

10/28/2004 Comp 120 Fall 2004

10/28/2004 Comp 120 Fall 2004
Structural Hazards
Inst Reg ALU Data Reg
Fetch | Read Access | Write
Inst Reg ALU Data Reg
Fetch | Read Access | Write
Inst Reg ALU Data Reg
Fetch |Read Access | Write
Inst Reg ALU Data Reg
Fetch | Read Access | Write
10/28/2004 Comp 120 Fall 2004

Data Hazards

Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards

Vaeof CC1 CC2 CC3 cc4 cCS CCE cC7 CCB CCO
register $2: 10 10 10 10
Program

w0-20 -2 -0 -2 -2

(i instructions)
b <2, 51,83

nd$12,52,85

ors13,86,

add 514,

w315, 100

10/28/2004 Comp 120 Fall 2004

Software Solution

« Have compiler guarantee no hazards
* Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

« Problem: this really slows us down!

10/28/2004 Comp 120 Fall 2004

Forwarding

* Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding

cc1 ccz cca cea ces cce co7 ccB oo
Value ofregiser 82 10 10 10 0w - -2 om0
Vae of EXIMEM - X x x) x x x x
Ve of MEMWE : X x x x 2 x x x x
executon order
(i msuucions)
b2 51,53

anasi2, 52,55

ors13, 55

asasis

swsis, 100,

10/28/2004 Comp 120 Fall 2004

Can't always forward

« Load word can still cause a hazard:

— aninstruction tries to read a register following a load instruction that writes to the
same register.

ogan~ cci ccz ce3 cca ces cos o7 cce CCo

(in msuucions)
sz, 2068

addso,

st 56,57

Thus, we need a hazard detection unit to “stall” the instruction

10/28/2004 Comp 120 Fall 2004 10

Stalling

We can stall the pipeline by keeping an instruction in the same

stage
e S B)
[EHEE]
nasa, 52,95 ml'.n
- s
(1 ouone |
e elE
shsiHmte
10/28/2004 Comp 120 Fall 2004

Branch Hazards

* When we decide to branch, other instructions are in the pipeline!

excoution cor

order
(i nsructions)

0beqst,s3.7
daangs12,52,95
amorsia w52

s2adasie 52,32

721w 54,5067

« We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong

10/28/2004 Comp 120 Fall 2004 12

Improving Performance

Dynamic Scheduling

Try to avoid stalls! E.g., reorder these instructions:

lw $t0, O($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

Add a “branch delay slot”
— the next instruction after a branch is always executed

— rely on compiler to “fill" the slot with something useful

Superscalar: start more than one instruction in the same cycle

10/28/2004 Comp 120 Fall 2004

The hardware performs the “scheduling”
— hardware tries to find instructions to execute
— out of order execution is possible
— speculative execution and dynamic branch prediction
All modern processors are very complicated
— Pentium 4: 20 stage pipeline, 6 simultaneous instructions
— PowerPC and Pentium: branch history table
— Compiler technology important

10/28/2004 Comp 120 Fall 2004 14

Chapter 7 Preview

Memory Hierarchy

Memory Hierarchy

10/28/2004 Comp 120 Fall 2004

Memory devices come in several different flavors
— SRAM - Static Ram
« fast (1to 10ns)
« expensive (>10 times DRAM)
« small capacity (< ¥aDRAM)
— DRAM - Dynamic RAM
« 16 times slower than SRAM (50ns — 100ns)
* Access time varies with address
« Affordable ($160/ gigabyte)
« 1 Gig considered big
— DISK
« Slow! (10ms access time)
« Cheap! (< $1/ gigabyte)
« Big! (1Thyte is no problem)

10/28/2004 Comp 120 Fall 2004 16

Memory Hierarchy

Locality

Users want large and fast memories!

Try to give it to them
— build a memory hierarchy

cpy

Level 1 Increasing distance

from the CPU in
access time

Levels in the Level 2
memory hierarchy

Leveln

Size of the memory at each level

10/28/2004 Comp 120 Fall 2004

A principle that makes having a memory hierarchy a good idea

If an item is referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?

10/28/2004 Comp 120 Fall 2004 18

10/28/2004

Comp 120 Fall 2004

