
•1

10/28/2004 Comp 120 Fall 2004 1

28 October

• 10 Classes to go!
• Read Sections 7.1 and 7.2
• You read 6.1 for this time. Right?
• Pipelining then on to Memory hierarchy

10/28/2004 Comp 120 Fall 2004 2

Doing Laundry
Time

76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task�
order

Task�
order

10/28/2004 Comp 120 Fall 2004 3

Pipelining
• Improve performance by increasing instruction throughput

Ideal speedup is number of stages in the pipeline.  Do we achieve this?
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• We have 5 stages.  What needs to be controlled in each stage?
– Instruction Fetch and PC Increment
– Instruction Decode / Register Fetch
– Execution
– Memory Stage
– Register Write Back

• How would control be handled in an automobile plant?
– a fancy control center telling everyone what to do?
– should we use a finite state machine?

Pipeline control
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Pipelining
• What makes it easy

– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards:   suppose we had only one memory
– control hazards:  need to worry about branch instructions
– data hazards:  an instruction depends on a previous instruction

• Individual Instructions still take the same number of cycles

• But we’ve improved the through-put by increasing the number of 
simultaneously executing instructions
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Structural Hazards
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• Problem with starting next instruction before first is finished
– dependencies that “go backward in time” are data hazards

Data Hazards
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• Have compiler guarantee no hazards
• Where do we insert the “nops” ?

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
sw $15, 100($2)

• Problem:  this really slows us down!

Software Solution
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• Use temporary results, don’t wait for them to be written
– register file forwarding to handle read/write to same register

– ALU forwarding

Forwarding
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• Load word can still cause a hazard:
– an instruction tries to read a register following a load instruction that writes to the 

same register.

–

• Thus, we need a hazard detection unit to “stall” the instruction

Can't always forward
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Stalling
• We can stall the pipeline by keeping an instruction in the same 

stage
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• When we decide to branch, other instructions are in the pipeline!

• We are predicting “branch not taken”
– need to add hardware for flushing instructions if we are wrong

Branch Hazards
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Improving Performance
• Try to avoid stalls!  E.g., reorder these instructions:

lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

• Add a “branch delay slot”
– the next instruction after a branch is always executed
– rely on compiler to “fill” the slot with something useful

• Superscalar:  start more than one instruction in the same cycle
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Dynamic Scheduling

• The hardware performs the “scheduling”
– hardware tries to find instructions to execute

– out of order execution is possible

– speculative execution and dynamic branch prediction

• All modern processors are very complicated
– Pentium 4: 20 stage pipeline, 6 simultaneous instructions

– PowerPC and Pentium:  branch history table

– Compiler technology important
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Chapter 7 Preview

Memory Hierarchy
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Memory Hierarchy
• Memory devices come in several different flavors

– SRAM – Static Ram
• fast (1 to 10ns)
• expensive (>10 times DRAM)
• small capacity (< ¼ DRAM)

– DRAM – Dynamic RAM
• 16 times slower than SRAM (50ns – 100ns)
• Access time varies with address
• Affordable ($160 / gigabyte)
• 1 Gig considered big

– DISK
• Slow! (10ms access time)
• Cheap! (< $1 / gigabyte)
• Big! (1Tbyte is no problem)
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• Users want large and fast memories! 

Try to give it to them
– build a memory hierarchy

Memory Hierarchy
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Locality
• A principle that makes having a memory hierarchy a good idea

• If an item is referenced,

temporal locality:  it will tend to be referenced again soon
spatial locality:   nearby items will tend to be referenced soon.

Why does code have locality?
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