28 October

10 Classes to go!

Read Sections 7.1 and 7.2

You read 6.1 for this time. Right?
Pipelining then on to Memory hierarchy
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Doing Laundry
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Pipelining

Pipeline control

Improve performance by increasing instruction throughput
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* We have 5 stages. What needs to be controlled in each stage?
— Instruction Fetch and PC Increment
— Instruction Decode / Register Fetch
— Execution
— Memory Stage
— Register Write Back

* How would control be handled in an automobile plant?
— afancy control center telling everyone what to do?
— should we use a finite state machine?
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Ideal speedup is number of stagesin the pipeline. Do we achieve this?
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Pipelining

What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

Individual Instructions still take the same number of cycles

But we've improved the through-put by increasing the number of
simultaneously executing instructions
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Structural Hazards
Inst Reg ALU Data Reg
Fetch | Read Access | Write
Inst Reg ALU Data Reg
Fetch | Read Access | Write
Inst Reg ALU Data Reg
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Inst Reg ALU Data Reg
Fetch | Read Access | Write
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Data Hazards

Problem with starting next instruction before first is finished
— dependencies that “go backward in time” are data hazards
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Software Solution

« Have compiler guarantee no hazards
* Where do we insert the “nops” ?

sub  $2, $1, $3
and  $12, $2, $5
or $13, $6, $2
add  $14, $2, $2
sw  $15, 100($2)

« Problem: this really slows us down!
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Forwarding

* Use temporary results, don’t wait for them to be written
— register file forwarding to handle read/write to same register
— ALU forwarding
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Can't always forward

« Load word can still cause a hazard:

— aninstruction tries to read a register following a load instruction that writes to the
same register.
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Thus, we need a hazard detection unit to “stall” the instruction
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Stalling

We can stall the pipeline by keeping an instruction in the same

stage
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Branch Hazards

*  When we decide to branch, other instructions are in the pipeline!
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« We are predicting “branch not taken”
— need to add hardware for flushing instructions if we are wrong
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Improving Performance

Dynamic Scheduling

Try to avoid stalls! E.g., reorder these instructions:

lw $t0, O($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)

Add a “branch delay slot”
— the next instruction after a branch is always executed

— rely on compiler to “fill" the slot with something useful

Superscalar: start more than one instruction in the same cycle
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The hardware performs the “scheduling”
— hardware tries to find instructions to execute
— out of order execution is possible
— speculative execution and dynamic branch prediction
All modern processors are very complicated
— Pentium 4: 20 stage pipeline, 6 simultaneous instructions
— PowerPC and Pentium: branch history table
— Compiler technology important
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Chapter 7 Preview

Memory Hierarchy

Memory Hierarchy
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Memory devices come in several different flavors
— SRAM - Static Ram
« fast (1to 10ns)
« expensive (>10 times DRAM)
« small capacity (< ¥aDRAM)
— DRAM - Dynamic RAM
« 16 times slower than SRAM (50ns — 100ns)
* Access time varies with address
« Affordable ($160/ gigabyte)
« 1 Gig considered big
— DISK
« Slow! (10ms access time)
« Cheap! (< $1/ gigabyte)
« Big! (1Thyte is no problem)
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Memory Hierarchy

Locality

Users want large and fast memories!

Try to give it to them
— build a memory hierarchy

cpy

Level 1 Increasing distance

from the CPU in
access time

Levels in the Level 2
memory hierarchy

Leveln

Size of the memory at each level
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A principle that makes having a memory hierarchy a good idea

If an item is referenced,

temporal locality: it will tend to be referenced again soon
spatial locality: nearby items will tend to be referenced soon.

Why does code have locality?
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